WO2004057309A1 - 多成分混合気体の組成測定方法及び組成測定装置 - Google Patents
多成分混合気体の組成測定方法及び組成測定装置 Download PDFInfo
- Publication number
- WO2004057309A1 WO2004057309A1 PCT/JP2003/016169 JP0316169W WO2004057309A1 WO 2004057309 A1 WO2004057309 A1 WO 2004057309A1 JP 0316169 W JP0316169 W JP 0316169W WO 2004057309 A1 WO2004057309 A1 WO 2004057309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- pressure
- gas mixture
- gas
- gauge
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 178
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000010453 quartz Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000009987 spinning Methods 0.000 claims abstract description 11
- 238000009530 blood pressure measurement Methods 0.000 claims abstract description 8
- 230000000704 physical effect Effects 0.000 claims description 53
- 239000000470 constituent Substances 0.000 claims description 3
- 239000008246 gaseous mixture Substances 0.000 claims 2
- 239000007789 gas Substances 0.000 abstract description 134
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 22
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 11
- 239000001301 oxygen Substances 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 11
- 238000004880 explosion Methods 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 abstract 1
- 230000005855 radiation Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 14
- 238000011088 calibration curve Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0011—Sample conditioning
- G01N33/0016—Sample conditioning by regulating a physical variable, e.g. pressure or temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N7/00—Analysing materials by measuring the pressure or volume of a gas or vapour
Definitions
- composition measuring method and composition measuring device of multi-component gas mixture Description Composition measuring method and composition measuring device of multi-component gas mixture
- Figure 9 is a table showing the molecular weight and viscosity coefficient in various machines.
- Examples of the measuring element used in the present invention include, for example, those sensitive only to pressure, such as a liquid column differential gauge, a compression gauge, a diaphragm gauge, a Bourdon tube gauge, etc. Change in frictional force received by a solid from a gasChange in thermal conductivity from a solid to a gasPressure at which one of the physical quantities such as the heat of decomposition received by a solid when a gas reacts near the solid surface changes Meter can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
従来の多成分混合気体の組成測定に際して、混合気体の圧力が大気圧以外の時には正確な混合比(組成)が測定できず、また、熱や光を照射する測定方法では、爆発の危険性のある混合気体は測定できない等の問題があった。そこで本発明においては、例えば窒素、酸素、オゾンの多成分混合気体のように、予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるが、その中でオゾンの混合比が不明の混合気体のような、多成分混合気体の配管4に対して、例えば隔膜真空計等の絶対圧力を測定する絶対圧力測定子1と、気体の物性値として例えば粘性に敏感な圧力計である水晶摩擦真空計、スピニングロータゲージ、あるいはその他の物性値に敏感な圧力測定子2とを接続し、同時に圧力を測定する。両圧力測定値から多成分混合気体の真の物性値を求め、物性値と組成の対応データから組成を求める。
Description
明細書 多成分混合気体の組成測定方法及び組成測定装置 技術分野
本発明は、 予め構成する気体が知られている 3成分以上の気体が混合した多成 分混合気体 (以下 「多成分混合気体」 という) であって、 混合気体の粘性から組 成が一意的に定義されるような組成変化をする混合気体の組成を測定する方法及 びその方法を実施する装置に関し、 特に、 被測定気体の圧力に依存せず、 計測時 に被測定混合気体が分解することなく、 また、 計測後に被測定混合気を廃棄する ことがないようにした多成分混合気体の組成測定方法、 及びこの測定方法を実施 する装置に関する。 背景技術
従来、 多成分の気体からなる混合気体の組成を求めるに際して、 例えば窒素、 酸素、 オゾン混合ガス中のオゾン濃度を計測するとき、 紫外線のうちオゾンは吸 収するが他の成分はほとんど吸収しない特定の波長を選択してこれを混合ガスに 照射し、 紫外線の吸収率を測定することによりオゾンの濃度、 即ち多成分の気体 の組成を求めるようにした紫外線吸光度測定法が知られている。
このような組成測定に際して一般に用いられている混合気体の圧力は大気圧で あり、 これ以外の圧力での組成測定はほとんど想定されることがなかった。 その ため、 たとえば上記のように紫外線吸光法を前記のような混合気体に用いる場合 、 混合気体圧力が減少するとォゾン濃度が同じでも紫外線吸光度が減少してしま うため、 圧力が低い状態の多成分混合気体の組成を正確に測定することはできな かった。
即ち、 例えば上記の例の場合のように混合気体を紫外線吸光度によりを計測し ているとき、 混合気体の組成比が変化するとそれに対応して指示値が変化し、 組 成と物性指示値の間には相関がある。 したがってその指示値から混合気体の組成 を求めることができる。 その指示値と混合気体の模式的関係を図 8曲線 p iで示
す。 しかしこの相関を示す曲線は、 一般に圧力依存性があり、 混合気体圧力が変 わると、 図 8中の p 2、 p 3で示すように相関曲線も変化する。 そのため圧力が 変動すると組成を求めることができなかった。
また、 前記のような光吸収法による組成測定方法においては、 ランプのような 光源が必要であるが、 このランプは寿命が有限であり、 定期的な交換が必要であ り、 メンテナンスが面倒であつ 。 更に、 前記紫外線の吸光度を利用して組成を 測定する手法は、 気体の種類毎に吸収波長が異なるため、 一つの紫外線ランプで 複数の混合ガスに対応することは不可能であり、 混合ガスの種類によつては必要 な光の波長を生成する光源が存在しない場合もあり、 汎用性に欠けていた。 一方、 多成分混合気体の組成の測定法において熱や光を加えることで混合気体 の分解率を測定する原理を利用した測定法も存在するが、 このような測定方法に おいては熱や光を加えると爆発 ·引火の可能性がある混合気体の組成測定すると き、 誘爆 ·引火の危険性があった。 例えば、 大気圧オゾン酸素混合気体を含む多 成分混合気体でオゾン濃度が 5 0 %を越えると、 引火したときに轟爆の危険性が 伴うため、 光照射によるオゾン分解を伴う紫外線吸光法では高濃度オゾン気体の 測定には危険があった。
また、 上記のような熱や光を加えて分解率を測定する原理の測定法においては 、 例えばオゾン酸素混合気体を含む多成分混合気体の場合、 サンプリングした混 合気体中のオゾンは紫外線の照射により分解されて酸素になるため、 混合気体中 のオゾン濃度は減少してしまう。 そのため精度の高い濃度測定にはオゾン分解に よる混合気体組成の変化を無視できるような、 混合気体の大量のサンプリングが 必要であった。 しかも、 測定によって被測定混合気体の組成が変化するため、 サ ンプリングした気体は破棄して非測定気体に混入しないような手段が必要であつ た。
更に、 混合気体を一部抜きとつた後別の場所で化学分析する方法もあるが、 そ の場合は気体の組成が時間とともに変化していくために実時間で組成を知ること が必要な場合において、 即時性の点で不都合であった。 発明の開示
本発明は圧力が変化しても正確な組成を測定することができ、 特定の波長の紫 外線ランプ等を必要とせず、 メンテナンスが容易であり、 また、 熱や光を加えて 測定を行う方法のように爆発引火の危険性が無く、 かつ、 被測定ガスの分解が無 いことによりサンプリングガスを多量に用意し、 またそれを廃棄する必要が無く 、 気体組成の変化に対応して即時に組成を測定することができるようにした、 多 成分混合気体の組成測定方法、 及びその方法を実施するための組成測定装置を提 供することを目的とする。
上記従来の課題を解決するため本願の多成分混合気体の組成測定方法の発明は 、 予め構成する気体が知られている多成分混合気体であって、 混合気体の粘性か ら組成が一意的に定義されるような組成変化をする混合気体の組成を測定する多 成分混合気体の組成測定方法において、 混合気体の組成に対応した物性値のデー 夕を取得し、 物性値に敏感な圧力測定装置により被測定混合気体の圧力を測定し 、 同時に前記物性値に影響を受けない圧力測定装置により同気体の圧力を測定し 、 両圧力測定値から混合気体の物性値を求め、 該物性値から組成を求めることを 特徴とする多成分混合気体の組成測定方法としたものである。
また本願の他の多成分混合気体の組成測定方法発明は、 前記発明において、 前 記物性値に敏感な圧力測定装置として、 互いに特性の異なる複数の圧力測定装置 を用いて同時に被測定混合気体の圧力を測定し、 各圧力測定値と前記物性値に影 響を受けない圧力測定装置装置の測定値から混合気体の物性値を求めるようにし たものである。
また本願の他の多成分混合気体の組成測定方法の発明は、 前記発明において、 前記物性値は粘性とし、 該物性値に敏感な圧力測定装置として水晶摩擦真空計ま たはスピニングロ一夕ゲージを用い、 物性値に影響を受けない圧力測定装置とし て隔膜真空計を用いたものである。
また本願の多成分混合気体の組成測定装置の発明は、 予め構成する気体が知ら れている多成分混合気体であって、 混合気体の粘性から組成が一意的に定義され るような組成変化をする混合気体の組成測定装置において、 物性値に敏感な圧力 測定装置と、 前記物性値に影響を受けない圧力測定装置と、 両圧力測定装置から の圧力値を入力して物性値を求めると共に該物性値から予め取得されている組成
に対応した物性値のデータに基づき組成を求める組成計算手段とを備えたもので ある。
また、 本願の他の多成分混合気体の組成測定装置の発明は、 前記発明において 、 前記物性値に敏感な圧力測定装置として、 互いに特性の異なる複数の圧力測定 装置を備えたものである。
また、 本願の他の多成分混合気体の組成測定装置の発明は、 前記発明において 前記物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロ一夕 ゲージを用い、 物性値に影響を受けない圧力測定装置として隔膜真空計を用いた ものである。
本発明は上記のような測定方法を採用し、 また上記測定装置としたので、 予め 構成する気体が知られている多成分混合気体であって、 混合気体の粘性から組成 がー意的に定義されるような組成変化をする混合気体の組成測定に際して、 混合 気体の圧力が大気圧以外の時でも、 また圧力が変化しても常に正確な組成を測定 することができる。 また、 熱や光を照射しない手法を採用することができるため 、 熱や光による刺激によって爆発の起こる混合気体でも安全に測定することがで きる。 また、 特定の波長の紫外線ランプ等を必要とせず、 メンテナンスが容易で あり、 更に気体組成の変化に対応して即時にその組成を測定することが可能とな る
また、 物性値に敏感な圧力測定装置として、 互いに特性の異なる複数の圧力測 定装置を用いたものにおいては、 各特性の最も適切な部分を用いて物性値を求め 、 それにより組成を求めることができるので、 より正確な組成測定装置とするこ とができる。 図面の簡単な説明
第 1図は、 本発明の測定原理を説明する測定機器構成図である。
第 2図は、 本発明の第 1実施例の測定機器構成図である。
第 3図は、 本発明の実施例で用いる水晶摩擦真空計の特性を示すグラフである ο
第 4図は、 本発明の実施例で用いる隔膜真空計と水晶摩擦真空計の指示値の相
違の例を示すグラフである。
第 5図は、 本発明の第 2の実施例の測定機器構成図である。
第 6図は、 本発明の実施例で用いるスピニングロ一夕ゲージの特性図である。 第 7図は、 混合気体の組成と粘性の関係を示すグラフである。
第 8図は、 従来の組成測定装置としての濃度計の圧力依存性を示す特性図であ つて、 圧力は P l、 P 2、 P 3で異なっている例を示している。
図 9は、 各種機内の分子量と粘性係数を示す表である。 発明を実施するための最良の形態
本発明の基本原理は、 粘性■熱伝導率 ·密度 ·分子量およびそれらの関数とし ての混合気体の物性値を測定し、 純粋気体固有の物性値をもとに気体の成分を算 出する手法を採用するものである。 更に詳細には、 圧力と例えば粘性等の物性値 に敏感な測定子 Aと、 圧力のみに敏感な測定子 B を同時に用いて対象混合気体 を計測し、 演算処理によって圧力の影響を除いて混合気体の例えば粘性等の物性 値を算出することで、 物性値に応じた多成分混合気体の組成を求めるものである 上記測定子 Aと測定子 Bに、 測定子 Aの対象圧力範囲以外に対応した測定子 Cを追加することでさらに測定圧力範囲を広げることができる。 また、 組成の校 正は、 混合ガスを構成する気体について、 純気体をあらかじめ既知割合で混合し て各種組成の標準気体を作成し、 前記組成測定装置で標準気体を実測してみて検 量線を得て、 この検量線を組成計算機に記録させておくことで行うことができる o
本発明における使用測定子の例としては、 例えば液柱差真空計、 圧縮真空計、 隔膜真空計、 ブルドン管真空計等の圧力のみに敏感なものや、 圧力に依存して変 わると共に、 運動固体が気体から受ける摩擦力変化 ·固体から気体への熱伝導率 変化 ·固体表面近傍で気体が反応したときの固体が受ける分解生成熱といった物 理量のうち、 いずれかの物理量が変化する圧力計が使用できる。
前記圧力が変化すると共に物理量が変化する圧力計としては、 例えば粘性 (摩 擦) を利用する水晶摩擦真空計ゃスピニングロ一夕ゲージ、 熱伝導を利用する熱
電対真空計やピラニー真空計、 そのほかクヌーセン真空計等を用いることができ 、 また、 電離現象を利用する例えば熱陰極電離真空計、 冷陰極電離真空計、 放射 線電離真空計等を使用することができる。 これら測定子は、 引火性,爆発性とい つた気体の性質 ·対象混合気体の組成 ·圧力によって使い分けることができる。 図 1に本発明を実施する装置の概要を示す。 同図に示されるように、 被測定混 合ガスが供給される配管 4に連通管を接続し、 この連通管に対して混合ガスの粘 性や分子密度等の物性によって測定値が変化しない絶対圧力を測定することがで きる絶対圧力測定子 1を接続すると共に、 気体の粘度等の物性により表示圧力が 変化し、 且つ予めその特性が知られている圧力測定子、 即ち圧力 ·物性値測定子 2を接続している。 また、 前記絶対圧力測定子 1、 及び圧力 ·物性測定子 2のデ —夕を入力し、 純粋気体固有の物性値に基づき、 混合ガスの組成と物性値により 変化した表示圧力の関係を示すデ一夕から組成を計算する組成計算機 3を備えて いる。
上記のような本発明による組成測定の基本原理の元に、 例えば図 2に示すよう な具体的な装置により実施することができる。 図 2に示す装置においては、 窒素 、 酸素、 オゾン混合ガスに対する測定装置の実施例であり、 絶対圧力測定子とし て隔膜真空計 5を用いている。 この隔膜真空計 5は物性値に無関係に気体圧力の 絶対値を得ることができ、 それにより気体の種別に無関係に気体圧力の絶対値を 計測することができる。
また、 圧力 ·物性値測定子としては水晶摩擦真空計 6を用いている。 この水晶 摩擦真空計 6の特性を図 3に示す。 これは例えば図 9の表に示すように気体の分 子量と粘性係数の違いによって水晶摩擦真空計の指示値が見かけ上異なる圧力を 表示していることを示すものである。 この理由は、 水晶摩擦真空計が、 気体に接 した水晶振動子の受ける気体との摩擦力が、 圧力が粘性流の領域では気体の分子 量と気体の粘性係数の積の 1 / 2乗に比例することから生じるものである。 この 水晶摩擦真空計は、 常温で動作し、 また気体への接触面も金、 石英、 ステンレス のみであり、 オゾンを分解する要因がない。 図 4は、 測定装置を校正するための検量線作成に用いた実測結果であり、 測定
装置でオゾン酸素を含む混合濃度標準気体 (オゾン濃度 5 %、 酸素濃度 9 5 %、 窒素 0 % ) を計測したものである。 混合ガスの圧力を測定すると水晶摩擦真空計 は粘性 ·分子量の大きいオゾン気体の混入のため純酸素圧力測定時よりも見かけ 上圧力指示値が大きくなる。 この実測値を元に検量線を作成し、 濃度計算器に記 憶させ、 濃度の算出を行う。 このような検量線デ一夕は各混合比に応じて予め計 測しておくことができ、 絶対圧力を示す隔膜真空計圧力の圧力測定値と、 水晶摩 擦真空計の圧力表示値に基づいて混合比を得ることができる。 したがって、 例え ば窒素、 酸素、 オゾンの多成分混合気体についても、 窒素の混合比率が一定でか つ既知であり、 オゾンと酸素の混合比のみが変化するような気体の場合は、 前記 のような実測値を元に検量線を作成し、 組成計算器に記憶させ、 組成の算出を行 う。 このような検量線デ一夕は各組成に応じて予め計測しておくことができ、 絶 対圧力を示す隔膜真空計圧力の圧力測定値と、 水晶摩擦真空計の圧力表示値に基 づいて組成を得ることができる。
図 5は、 前記図 2に示す実施例の装置に、 更に配管 1 5の連通管にスピニング 口一夕ゲージ 1 3を接続し、 3種類の真空計で構成された組成計測装置の実施例 を示す。 隔膜式真空計 1 1は前記のように気体の種別に無関係に絶対圧力を計測 し、 水晶摩擦真空計 2は気体の粘性 ·分子量の物性値と圧力の双方に敏感であつ て使用圧力範囲は 1 0— 2pa から 1 0 5pa であり、 スピニングロ一夕ゲージ 1 3 は水晶摩擦真空計 1 2と同様に気体の粘性 ·分子量の物性値と圧力の双方に敏感 であって、 使用圧力範囲は 1 0 _ 5 Paから l Paである。 図 6には前記スピニング 口一夕ゲージ 5の特性を示しており、 この測定子は水晶摩擦真空計よりも真空度 の高い領域を計測できる。
したがって、 図 5の組成計算器 1 4においては、 真空度の高い領域ではスピニ ングロ一夕ゲージ 1 3の表示値に基づいた組成の計算を行い、 低い領域では水晶 摩擦真空計 1 2の表示値に基づいた組成の計算を行うことによってより正確な組 成の計算を行うことができ、 また、 両者の値の有効な範囲では両者の値を用い、 圧力の影響を演算処理して取り除くことで、 気体の物性値を得ることにより、 気 体の組成をより正確に算出することができる。
上記のように、 予め構成する気体が知られている多成分混合気体であって、 混
合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組 成測定に際しては、 例えばその成分が窒素、 酸素、 オゾンであり、 その中で窒素 組成が一定であって、 酸素とオゾンの混合比のみが変化するときには、 図 7 ( a ) に示すように、 多成分混合ガス中の窒素の組成割合 C 1 %、 C 2 %、 ■ · ·に 応じて、 他の 2成分における 1成分の組成割合 (オゾンと酸素中のオゾンの組成 割合等) に対する粘性が予め求められているときには、 前記のような手法により 粘性を求めることによって、 この混合ガスの組成を求めることができる。 即ち、 窒素濃度が図 7において C 1のときは、 検量線 S 1を、 C 2のときは S 2を使用 する。
また、 2成分だけが変化するのでなく、 3成分以上が変化するときも場合によ つては本手法が使用でき、 X , Y , Zの混合ガスにおいて、 Xのガスの成分につ れて Yと Zの成分が共に所定の割合で変化するガスの場合は、 図 7 ( b ) に示す ように、 その混合ガスの粘性から X気体の混合割合が判明し、 それにより Yと Z のガスの組成が判明する。 産業上の利用可能性
本発明は、 予め構成する気体が知られている 3成分以上の気体が混合した多 成分混合気体であって、 混合気体の粘性から組成が一意的に定義されるような組 成変化をする混合気体の組成を測定する各種の分野に利用することができる。
Claims
1 . 予め構成する気体が知られている多成分混合気体であって、 混合気体の 粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定方 法において、
混合気体の組成に対応した物性値のデータを取得し、
物性値に敏感な圧力測定装置により被測定混合気体の圧力を測定し、 同時に前記物性値に影響を受けない圧力測定装置により同気体の圧力を測定し 両圧力測定値から混合気体の物性値を求め、
該物性値から組成を求めることを特徴とする多成分混合気体の組成測定方法。
2 . 前記物性値に敏感な圧力測定装置として、 互いに特性の異なる複数の 圧力測定装置を用いて同時に被測定混合気体の圧力を測定し、 各圧力測定値と前 記物性値に影響を受けない圧力測定装置装置の測定値から混合気体の物性値を求 めることを特徴とする請求項 1記載の多成分混合気体の組成測定方法。
3 . 前記物性値は粘性とし、 該物性値に敏感な圧力測定装置として水晶摩擦 真空計またはスピニングロ一夕ゲージを用い、 物性値に影響を受けない圧力測定 装置として隔膜真空計を用いたことを特徴とする請求項 1または請求項 2記載の 多成分混合気体の組成測定方法。
4 . 予め構成する気体が知られている多成分混合気体であって、 混合気体の 粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定装 置において、
物性値に敏感な圧力測定装置と、
前記物性値に影響を受けない圧力測定装置と、
両圧力測定装置からの圧力値を入力して物性値を求めると共に該物性値から予 め取得されている組成に対応した物性値のデ一夕に基づき組成を求める組成計算 手段とを備えたことを特徴とする多成分混合気体の組成測定装置。
5 . 前記物性値に敏感な圧力測定装置として、 互いに特性の異なる複数の圧 力測定装置を備えたことを特徴とする請求項 4記載の多成分混合気体の組成測定 衣 [to
6 . 前記物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニ ングロ一夕ゲージを用い、 物性値に影響を受けない圧力測定装置として隔膜真空 計を用いたことを特徴とする請求項 4または請求項 5記載の多成分混合気体の組 成測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003289393A AU2003289393A1 (en) | 2002-12-20 | 2003-12-17 | Method of measuring composition of multicomponent mixture gas and composition measuring apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002369085A JP2004198328A (ja) | 2002-12-20 | 2002-12-20 | 多成分混合気体の組成測定方法及び組成測定装置 |
JP2002-369085 | 2002-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004057309A1 true WO2004057309A1 (ja) | 2004-07-08 |
Family
ID=32677133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/016169 WO2004057309A1 (ja) | 2002-12-20 | 2003-12-17 | 多成分混合気体の組成測定方法及び組成測定装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2004198328A (ja) |
AU (1) | AU2003289393A1 (ja) |
WO (1) | WO2004057309A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241516A (ja) * | 2005-03-03 | 2006-09-14 | National Institute Of Advanced Industrial & Technology | 混合ガスによる薄膜作製方法とその装置 |
JP4953087B2 (ja) * | 2007-11-09 | 2012-06-13 | 独立行政法人産業技術総合研究所 | 濃度測定方法および装置 |
JP2013040914A (ja) * | 2011-08-15 | 2013-02-28 | Toyo Denshi Kenkyusho:Kk | 校正機能付き冷陰極形電離真空計 |
JP6160932B2 (ja) * | 2015-02-16 | 2017-07-12 | 大陽日酸株式会社 | ガス分析方法、ガス分析装置、及びヘリウム液化システム |
US10914717B2 (en) * | 2018-05-09 | 2021-02-09 | Mks Instruments, Inc. | Method and apparatus for partial pressure detection |
-
2002
- 2002-12-20 JP JP2002369085A patent/JP2004198328A/ja active Pending
-
2003
- 2003-12-17 WO PCT/JP2003/016169 patent/WO2004057309A1/ja active Application Filing
- 2003-12-17 AU AU2003289393A patent/AU2003289393A1/en not_active Abandoned
Non-Patent Citations (2)
Title |
---|
KUROKAWA ET AL.: "Mcasurement of Binary Gas Concentration with Quartz Gauge", J. VAC. SOC. JPN., vol. 44, no. 3, 20 March 2001 (2001-03-20), pages 167 - 170, XP002903736 * |
KUROKAWA ET AL.: "Suisho masatsu shinkukei o mochiita 2 seibun kongo kitai no nodo keisoku", SHINKU NI KANSURU RENGO KOENKAI KOEN YOKOSHU DAI 41 KAI, 14 November 2000 (2000-11-14), pages 95 - 96, XP002903737 * |
Also Published As
Publication number | Publication date |
---|---|
AU2003289393A1 (en) | 2004-07-14 |
JP2004198328A (ja) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Keyser | High-pressure flow kinetics. A study of the hydroxyl+ hydrogen chloride reaction from 2 to 100 torr | |
WO1989006358A1 (en) | System for monitoring sterilant vapor concentration | |
Schellekens et al. | Measurements of the refractive index of air using interference refractometers | |
JP2006241516A (ja) | 混合ガスによる薄膜作製方法とその装置 | |
CN112326497A (zh) | 挥发性有机物挥发速率测定装置及方法 | |
Magee et al. | Isochoric (p, ρ, T) measurements for five natural gas mixtures fromT=(225 to 350) K at pressures to 35 MPa | |
JP2019124488A (ja) | 気体の音速関連固有値測定装置及びそれを応用した気体の成分割合測定装置、更にはそれを応用した地球環境モニター装置 | |
WO2004057309A1 (ja) | 多成分混合気体の組成測定方法及び組成測定装置 | |
Birch et al. | The effect of variations in the refractive index of industrial air upon the uncertainty of precision length measurement | |
JP3336384B2 (ja) | 2種類混合気体の濃度測定方法及び濃度測定装置 | |
JP4266850B2 (ja) | 2成分混合気体の濃度測定装置 | |
JPH04148846A (ja) | 濃度補正装置 | |
CN112964834A (zh) | 一种固定污染源用动态校准仪的校准方法 | |
KR910001371A (ko) | 장치공업계기의 직결교정방법과 확인장치 | |
Hübert et al. | On-site calibration system for trace humidity sensors | |
Konopel’ko et al. | Metrological problems of gas analyzers based on wavelength-scanned cavity ring-down spectroscopy | |
Bengesai | High pressure vapour-liquid equilibrium measurements for R116 and ethane with perfluorohexane and perfluorooctane. | |
Kortbeek et al. | Measurement of the compressibility and sound velocity of neon up to 1 GPa | |
Niederhauser et al. | Bilateral comparison of primary low-gas-flow standards between the BNM-LNE and METAS | |
JP4953087B2 (ja) | 濃度測定方法および装置 | |
CN214583355U (zh) | 一种过氧化氢浓度传感器校准仪 | |
Wallroth et al. | Refractive indices for volatile anesthetic gases: Equipment and method for calibrating vaporizers and monitors | |
Bich et al. | Quasi-isochoric pθT measurements, 2nd virial coefficient and vapor pressure of benzene | |
Nwaboh et al. | Laser-spectroscopic HCl measurements in gas metrology | |
Martynets et al. | Critical line of (xenon+ carbon dioxide) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |