JP2004196637A - Monolithic refractory for waste melting furnace and waste melting furnace lined with it - Google Patents

Monolithic refractory for waste melting furnace and waste melting furnace lined with it Download PDF

Info

Publication number
JP2004196637A
JP2004196637A JP2002370688A JP2002370688A JP2004196637A JP 2004196637 A JP2004196637 A JP 2004196637A JP 2002370688 A JP2002370688 A JP 2002370688A JP 2002370688 A JP2002370688 A JP 2002370688A JP 2004196637 A JP2004196637 A JP 2004196637A
Authority
JP
Japan
Prior art keywords
refractory
raw material
melting furnace
waste melting
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002370688A
Other languages
Japanese (ja)
Other versions
JP4355486B2 (en
Inventor
Yasukuni Tanaka
泰邦 田中
Toshiyuki Suzuki
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2002370688A priority Critical patent/JP4355486B2/en
Publication of JP2004196637A publication Critical patent/JP2004196637A/en
Application granted granted Critical
Publication of JP4355486B2 publication Critical patent/JP4355486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monolithic refractory which has a comparable durability to a refractory containing chromium oxide such as an alumina-chromium oxide-based refractory even not substantially containing chromium oxide, when it is used for a lining of a waste melting furnace. <P>SOLUTION: The monolithic refractory which is very excellent in anti-corrosive properties as the lining of the waste melting furnace contains tin oxide of 0.5-40 mass% in terms of SnO<SB>2</SB>. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物溶融炉用不定形耐火物およびそれを内張りした廃棄物溶融炉に関する。
【0002】
【従来の技術】
近年、廃棄物の発生量は増加の一途をたどり、その処理は大きな社会問題となっている。廃棄物の埋め立て処理には膨大な土地面積が必要であり、その土地の確保が容易でない。従来は焼却炉によって廃棄物の減容化を図っているが、その焼却灰を埋め立てる土地すら確保が困難な状況にある。そこで、廃棄物のさらなる減容化のために、廃棄物を直接溶融するガス化溶融炉あるいは廃棄物の焼却灰を溶融する灰溶融炉が出現している。
【0003】
廃棄物溶融炉は長期にわたり連続運転され、しかもその操業温度は1300℃以上の超高温である。また、炉内容物のスラグはCaO/SiO重量比が0.5〜1.5の低塩基度であり、しかもKO、NaOに代表されるアルカリ成分の含有量が多く、内張りの耐火物にとって過酷な使用条件となっている。
【0004】
特に塩基性耐火原料あるいは中性耐火原料を含む耐火物が、この低塩基度のスラグに対して耐食性に劣る。また、低塩基度のスラグは粘性が低く、かつスラグのアルカリ成分が耐火物組織へ浸透し易いことが原因し、耐火物の耐食性を低下させている。
【0005】
廃棄物溶融炉に使用される耐火物は、定形耐火物と不定形耐火物に大別される。定形耐火物の施工はれんが積み作業であり、重労働でしかも高度な技術を要するため、近年は不定形耐火物による内張りが汎用されている。
【0006】
廃棄物溶融炉用の不定形耐火物として従来使用されている材質は、酸化クロムを含むアルミナ−酸化クロム質不定形耐火物である。この材質はアルミナの容積安定性と酸化クロムの耐スラグ性とが相まって優れた耐食性を示す。しかし酸化クロムが人体に有害な六価クロムを生成し、スラグ及び使用後耐火物の廃棄物が環境汚染を招く問題があった。
【0007】
そこで、酸化クロムを含まず、しかも耐食性に優れた廃棄物溶融炉用不定形耐火物が提案されている。例えばZrO2-SiC質(例えば特許文献1)、ZrB2-SiC質(例えば特許文献2)、ZrO2-ZrB2に-SiC質(例えば特許文献3)、MgO-Al23・MgO質(例えば特許文献4)、MgO-Al23・MgO-ZrO2質(例えば特許文献5)、Al23-MgO質 (例えば特許文献6)である。
【0008】
【特許文献1】
特開2000-239072号公報(1-7頁)
【0009】
【特許文献2】
特開2000-327436号公報(1-6頁)
【0010】
【特許文献3】
特開2000-335969号公報(1-7頁)
【0011】
【特許文献4】
特開2001-253782号公報(1-7頁)
【0012】
【特許文献5】
特開2002-128573号公報(1-6頁)
【0013】
【特許文献6】
特開2001-153321号公報(1-9頁)
【0014】
【発明が解決しようとする課題】
しかし、前記の従来の材質はいずれも十分な耐食性が得られない。ZrO2、MgOの成分が低塩基度のスラグに溶出し易く、しかも耐アルカリ侵食性に劣る。また、ZrB2 炭化珪素を含む材質では、廃棄物溶融炉が酸化雰囲気下での操業のためにZrB2、炭化珪素成分が酸化し、耐食性を低下させる。
【0015】
本発明は廃棄物溶融炉の内張りとして、酸化クロムを実質的に含まなくとも、酸化クロム含有の例えばアルミナ−酸化クロム質に匹敵する耐用性の不定形耐火物を得ることを目的とする。
【0016】
【課題を解決するための手段】
本発明の不定形耐火物は、質量割合において酸化スズをSnO2換算で0.5〜40%含むことにより、廃棄物溶融炉の内張りとして極めて優れた耐食性を発揮する。酸化スズ含有溶融体の粘性、熱力学的データが殆ど無いことから、酸化スズによる本発明の耐食性向上の機構は必ずしも明確ではないが、本発明者らの実験、観察から以下のとおりと考えられる。
【0017】
例えばアルミナ原料を主材とした不定形耐火物は、廃棄物溶融炉の低塩基度のスラグに対して容易に溶損されるが、これに酸化スズを本発明で限定した範囲内で添加した場合、耐スラグ侵食性が大幅に向上する。
【0018】
廃棄物溶融炉の低塩基度スラグは低粘性であるが、耐火物との接触部位において耐火物に含まれる酸化スズがスラグに溶解することによってスラグの粘性が高くなる。そして、スラグの粘性が高いことで耐火物表面に付着し、耐火物表面に高粘性スラグの被膜を形成して、耐火物組織の保護と耐火物組織へのアルカリ成分の侵入を阻止することにより、耐食性が向上する。
【0019】
酸化スズは一般の耐火性原料に比べて融点が低く、技術常識からすると操業条件の厳しい廃棄物溶融炉用耐火物の配合物としては不適合である。したがって、酸化スズを本発明で限定した範囲内での使用により、廃棄物溶融炉特有の低塩基度スラグの粘性を高めることで得られる耐食性向上の効果は、従来技術からは決して容易に予測できるものではない。
【0020】
本発明の不定形耐火物における耐火性骨材は、例えばアルミナ原料、アルミナ−シリカ原料、シリカ原料、スピネル原料、マグネシア原料から選ばれる一種または二種以上を主体とするが、この耐火性原料をアルミナ主体とした場合、酸化スズ添加による耐食性向上の効果は、より顕著なものとなる。これは、アルミナ原料が容積安定性に優れしかも酸化スズと比較的反応し難いことから、スラグの粘性を高める酸化スズが耐火物組織から溶出し易いことが考えられる。
【0021】
また、本発明の不定形耐火物は酸化クロムを実質的に含まない材質とした場合でも、従来の酸化クロム含有品に匹敵する耐食性を得ることができる。酸化クロムを実質的に含まない材質にすることで、人体に有害な六価クロムの生成もなく、環境汚染の問題が解消される。
【0022】
図1はアルミナ質不定形耐火物を例に挙げ、酸化スズの割合と耐火物の耐食性との関係を示したグラフである。ここでは後述する実施例2の配合組成の不定形耐火物をベースとし、酸化スズの割合を変化させて耐食性を測定した。また、この耐食性の測定は実施例の欄で示した試験方法に基づいて行い、酸化スズを含まない材質の侵食寸法を100とした指数で表した。
【0023】
同グラフから、酸化スズを本発明で限定した割合で含む不定形耐火物が、廃棄物溶融炉のスラグに対して耐食性に優れることが確認される。
【0024】
【発明の実施の形態】
酸化スズは、酸化第一スズ(SnO)と酸化第二スズ(SnO2)とがある。本発明では、廃棄物溶融炉の操業条件である酸化雰囲気で安定な酸化第二スズの使用が好ましい。また、その純度は少量添加の場合でも効果的に作用するように高純度のものが好ましく、SnO2換算で例えば80質量%以上、さらに好ましくは95質量%以上である。
【0025】
不定形耐火物に占める酸化スズの割合は、質量割合において0.5〜40%、さらに好ましくは1〜30%である。これに合わせ、不定形耐火物製造の際には酸化スズを耐火性配合物に占める割合で例えば0.5〜40%、さらに好ましくは1〜30%使用する。
【0026】
酸化スズの割合が少ないと本発明の耐食性向上の効果が得られない。多過ぎると酸化スズが耐火性原料あるいは結合剤成分と反応し、低融点物質を多量に生成して耐食性が低下する。
【0027】
酸化スズの粒子径は、酸化スズ使用による本発明の耐食性向上の効果を十分なものにするために、JISふるい目開きにおいて、例えば1mm以下、さらに好ましくは0.5mm以下の微粒を主体とするのが好ましい。酸化スズの使用量が多い場合は、不定形耐火物の密充填化を図るために、耐火性配合物全体の粒度構成のバランスから1mmを超える粒径のものを組み合わせて使用してもよい。
【0028】
本発明で耐火性原料として使用するアルミナ原料の具体例は、焼結アルミナ、電融アルミナ、ばん土けつ岩、ボーキサイト等である。中でも、Al純度の高い焼結アルミナ、電融アルミナ等の合成品が好ましい。微粉部には仮焼アルミナを使用してもよい。
【0029】
耐火性原料はこのアルミナ原料を主体に使用すると、本発明の不定形耐火物は酸化スズとの関係において、耐食性向上が顕著である。具体的には耐火性配合物に占める割合で、化学組成においてAl2355質量%以上、さらに好ましくは65質量%以上である。なお、このAl23成分はアルミナ原料、アルミナ−シリカ原料、MgO・Al系スピネル原料(以下、スピネル原料と称する)等の耐火性原料だけでなく、例えばアルミナセメント等も供給源となる。
【0030】
アルミナ原料以外の耐火性原料は、例えばアルミナ−シリカ原料、スピネル原料、ジルコニア原料、マグネシア原料から選ばれる一種または二種以上を使用することができる。
【0031】
アルミナ−シリカ質原料としては、電融ムライト、焼結ムライトのほか、天然ムライト、ろう石等である。また、アンダリュサイト、シリマナイト、カイアナイトなどを主要鉱物とする原料も使用できる。
【0032】
スピネル原料の具体例は、例えば電融スピネルまたは焼結スピネルである。経済面から、バナジウム精錬時に副生するスピネル質スラグを使用してもよい。微粉部には仮焼スピネルを使用してもよい。このスピネルの成分(MgO・Al23)はスピネル理論値のものに限らず、例えばAl23値が多いアルミナリッチスピネルでもよい。
【0033】
ジルコニア原料としては、ジルコン、ジルコニアがある。ジルコニアの具体例は例えばCaO、MgO、Y等を添加した安定化ジルコニアあるいは部分安定化ジルコニアである。
【0034】
マグネシア原料は、合成品としての電融または焼結のマグネア、マグネシア-カルシアが挙げられる。天然マグネシアでもよい。また、微粉として軽焼マグネシアを使用することもできる。アルミナ原料とこのマグネシア原料を併用した場合は、耐火物使用時の高温下においてスピネルを生成し、そのスピネル生成に伴う体積膨張で耐火物組織を緻密化し、スラグ浸透を防止して耐火物の耐食性がさらに向上する。
【0035】
マグネシア原料は熱膨張性の大きな耐火原料のため、不定形耐火物の耐スポーリング性を損なわないために、その使用量は耐火性配合物に占める割合で20質量%以下が好ましい。
【0036】
本発明の不定形耐火物は実質的に酸化クロムを含まない材質とした場合、環境汚染の問題を解決することができる。ここでの実質的に含まないとは、酸化クロムを全く含まない場合の他、例えば酸化クロムを不可避的不純物としての含有、さらにはマグネシア原料の消化防止剤としての微量添加がある。
【0037】
従来の酸化クロム含有不定形耐火物における酸化クロムの含有量は10〜60質量%である。これに対し、マグネシア原料の消化防止剤として使用する酸化クロムは、マグネシア原料中に占める割合で通常1〜3質量%である。しかも、マグネシア原料の好適な使用量は20質量%以下であり、この場合の酸化クロム量を耐火性配合物に占める割合に換算すると0.6質量%以下である。このように、マグネシア原料の消化防止剤としての酸化クロムの使用はごく微量であり、環境汚染への影響も殆どない。
【0038】
また、本発明の不定形耐火物はさらに酸化クロムを添加してもよいが、前記したように酸化クロムは環境汚染の問題がある。したがって、酸化クロムを添加する場合でも、その量は極力少なくすることが好ましい。
【0039】
耐火性原料の粒子径は、例えば最大粒子径を3〜10mmとし、粗粒、中粒、微粒に適宜調整する。また、不定形耐火物の耐スポーリング性の付与を目的として、前記の粗粒、中粒、微粒に加え、例えば粒径10〜50mmの粗大粒径の耐火骨材を組み合わせてもよい。この耐火性原料は、耐火物使用後品、耐火物廃材等を粉砕し、粒径を調整したものを使用してもよい。
【0040】
本発明の効果を損わない程度であれば、耐火性原料として以上の他にも、けい石、揮発シリカ、粘土、炭素、ガラス、消石灰、窒化珪素、窒化珪素鉄等を例えば20質量%以下、さらに好ましくは10質量%以下の範囲で使用してもよい。特に揮発シリカは耐火物施工時の流動性付与に優れ、施工体組織の緻密化に効果がある。
【0041】
結合剤の具体的な種類、添加量は従来の不定形耐火物に使用されるものと特に変わりない。例えばアルミナセメント、マグネシアセメント、リン酸塩、ケイ酸塩、コロイダルシリカ、コロイダルアルミナ等が使用できる。中でもアルミナセメントが好ましい。結合剤の使用量は耐火性配合物に占める割合で0.5〜10質量%が好ましい。コロイダルシリカ、コロイダルアルミナ等は水溶液である。水溶液の結合剤の場合、本発明においての前記使用量は固形物換算である。
【0042】
アルミナセメントは施工体組織の強度付与に優れている。また、それに含まれるAl23成分が酸化スズと反応し難く、しかも超微粉のためにその酸化スズと反応し難いAl23成分が不定形耐火物組織のマトリックスに介在し、耐火物使用時には酸化スズが溶出し易い。これにより、結合剤としてアルミナセメントの使用は酸化スズによる本発明の耐食性向上に効果的に作用する。
【0043】
分散剤は不定形耐火物の施工時の流動性を付与する。具体例な種類は何ら限定されるものではなく、例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダ、ポリメタリン酸塩などの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ポリカルボン酸塩、β−ナフタレンスルホン酸塩類、ナフタリンスルフォン酸、カルボキシル基含有ポリエーテル系分散剤等である。添加量は耐火性配合物100質量%に対し、外掛けで好ましくは0.01〜1質量%、さらに好ましくは0.03〜0.5質量%である。
【0044】
以上の耐火性原料、結合剤および分散剤以外にも、必要によっては不定形耐火物の添加物として知られている、乾燥促進剤、Al、Si等の金属粉、金属ファイバー、有機ファイバー、セラミックファイバー、塩基性乳酸アルミニウム、酸化防止剤、増粘剤、硬化剤、硬化遅延剤等を添加してもよい。
【0045】
本発明の不定形耐火物の施工は、流し込み、圧入、吹付け等によって行われる。吹付けでは結合剤の一部または全部あるいは急結剤等をノズル部で添加して施工してもよい。施工水分は不定形耐火物全体に対して例えば3〜13質量%、さらに好ましくは3〜7質量%とする。また、この施工は炉壁等の新規な施工に限らず、補修のための継ぎ足し施工がある。
【0046】
流し込み施工では型枠を使用して施工する。施工水分は不定形耐火物全体に対して例えば3〜7質量%が好ましい。施工時には振動を付与して充填化を促進させることが好ましい。施工後は養生および乾燥を行う。
【0047】
施工は廃棄物溶融炉に対する直接の施工の他、別の場所で予め施工して得たプレキャスト品を使用してもよい。この直接の施工とプレキャスト品の両者の組合わせてもよい。
【0048】
廃棄物溶融炉の内張りは不定形耐火物で施工される場合においても、部分的には耐火れんが使用されることがある。また、不定形耐火物の種類もスラグと直接接触しない場所には断熱不定形耐火物等の異なる材質の不定形耐火物が使用されることもある。本発明の不定形耐火物は、このようなゾーン毎に異なる材質の耐火物が使用される廃棄物溶融炉においては、最も使用条件の厳しい部位の内張りとしてその優れた耐食性の効果を発揮する。
【0049】
【実施例】
以下に本発明実施例とその比較例について、その配合組成と試験結果を示す。試験方法は以下のとおりである。なお、本試験はいずれも施工水分4質量%添加し、混練後、振動を付与した型枠に流し込み、成形した。次いで養生・乾燥し、試験サンプルを得た。
【0050】
曲げ強さ:40×40×160mmの試験サンプルをJIS R2205に準じて測定した。
【0051】
耐食性:並形レンガの形状に成形した試験サンプルを、回転侵食炉に内張りして耐食性を測定した。ガス化溶融炉から排出したスラグ(CaO/SiO:0.74)を侵食剤とし、1500℃×20時間侵食させた後、侵食寸法を測定し、比較例1の侵食寸法を100とした指数で表した。数値が小さいほど耐食性に優れることを示す。
【0052】
実機試験:1日あたりのゴミ処理量が100tのガス化溶融炉に内張りし、12ヶ月間の使用後において、損耗速度(mm/月)を測定した。このガス化溶融炉の操業温度は1400℃、そのスラグ成分は質量%で、SiO:42.8、CaO:31.7、Al:12.4、Fe:4.8、NaO:3.7、(CaO/SiO:0.74)であった。
【0053】
【表1】

Figure 2004196637
【0054】
【表2】
Figure 2004196637
試験結果が示すとおり、本発明の実施例はいずれも優れた耐食性を示す。その耐食性は酸化クロム含有のアルミナ−酸化クロム質の比較例7にくらべても遜色がない。また、中でも結合剤にアルミナセメントを使用したものが耐食性に優れている。
【0055】
これに対し、酸化スズを添加していない比較例1、酸化スズ添加量が多過ぎる比較例2は耐食性に劣る。アルミナ−炭化系素質の比較例3、アルミナ−マグネシア質の比較例4は、アルミナ−ジルコニア質の比較例5についても、本発明の実施例に比較して耐食性に劣る。
【0056】
比較例7はアルミナ−酸化クロム質不定形耐火物である。良好な耐食性を示すものの、酸化クロムを10質量%含み、使用後の耐火物中に環境上有害な六価クロムが多量に生成する。
【0057】
図2は、酸化スズを10質量%含む実施例2の不定形耐火物をベースにアルミナ原料の増減で耐火性配合物中のAl23成分の割合を変化させ、Al23の割合と不定形耐火物の耐食性との関係を試験し、その結果をグラフに示したものである。また、耐食性は実施例2(Al:88.7%)の侵食寸法を100とした指数で表した。
【0058】
同グラフの結果から、酸化スズを本発明の範囲内で含む不定形耐火物の耐食性において、Al23成分の割合が55質量%以上、さらには60質量%以上の材質が好ましいことが確認される。
【0059】
また、以上の本発明実施例での優れた耐食性向上の効果は実機試験においても同様である。
【0060】
【発明の効果】
廃棄物溶融炉特有のスラグ成分、超高温操業に対し、本発明の耐火物は以上の試験結果が示とおり、優れた耐食性を発揮する。また、本発明は実質的に酸化クロムを含まない材質であっても、酸化クロムを含む材質に匹敵する耐用性を示す。
【0061】
ガス化溶融炉、灰溶融炉等の廃棄物溶融炉は廃棄物の減容化に効果的である反面、その過酷な操業条件のために高耐用の耐火物が求められる。本発明はこれに対応できる耐火物として、また環境面で好適な耐火物として、その産業的価値はきわめて高い。
【図面の簡単な説明】
【図1】アルミナ質不定形耐火物において、酸化スズの割合と耐火物の耐食性との関係を示したグラフである。
【図2】耐火性配合物中のAl23の割合と不定形耐火物の耐食性との関係を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an amorphous refractory for a waste melting furnace and a waste melting furnace lined with the same.
[0002]
[Prior art]
In recent years, the amount of generated waste has been increasing steadily, and its disposal has become a major social problem. Landfilling of waste requires a huge land area, and it is not easy to secure the land. Conventionally, the volume of waste has been reduced by incinerators, but it is difficult to secure even land for reclaiming the incinerated ash. Therefore, in order to further reduce the volume of waste, a gasification melting furnace for directly melting waste or an ash melting furnace for melting incineration ash of waste has appeared.
[0003]
The waste melting furnace is operated continuously for a long time, and its operating temperature is extremely high, over 1300 ℃. In addition, the slag of the furnace contents has a low basicity with a CaO / SiO 2 weight ratio of 0.5 to 1.5, and has a high content of alkali components represented by K 2 O and Na 2 O. It is a severe use condition.
[0004]
In particular, refractories containing a basic refractory raw material or a neutral refractory raw material have poor corrosion resistance to this low basicity slag. Further, the slag having a low basicity has low viscosity and the alkali component of the slag easily penetrates into the refractory structure, thereby reducing the corrosion resistance of the refractory.
[0005]
Refractories used in waste melting furnaces are broadly classified into fixed refractories and irregular refractories. The construction of fixed refractories is brickwork, requires heavy labor and requires a high level of skill. In recent years, lining with irregular shaped refractories has been widely used.
[0006]
A material conventionally used as an amorphous refractory for a waste melting furnace is an alumina-chromium oxide amorphous refractory containing chromium oxide. This material exhibits excellent corrosion resistance in combination with the volume stability of alumina and the slag resistance of chromium oxide. However, there has been a problem that chromium oxide generates hexavalent chromium harmful to the human body, and slag and refractory waste after use cause environmental pollution.
[0007]
Therefore, there has been proposed an amorphous refractory for a waste melting furnace which does not contain chromium oxide and has excellent corrosion resistance. For example, ZrO 2 -SiC material (for example, Patent Document 1), ZrB 2 -SiC material (for example, Patent Document 2), ZrO 2 -ZrB 2 -SiC material (for example, Patent Document 3), MgO-Al 2 O 3 .MgO material (Eg, Patent Document 4), MgO—Al 2 O 3 .MgO—ZrO 2 (for example, Patent Document 5), and Al 2 O 3 —MgO (for example, Patent Document 6).
[0008]
[Patent Document 1]
JP 2000-239072 A (pages 1-7)
[0009]
[Patent Document 2]
JP 2000-327436 A (pages 1-6)
[0010]
[Patent Document 3]
JP-A-2000-335969 (pages 1-7)
[0011]
[Patent Document 4]
JP 2001-253782 A (pages 1-7)
[0012]
[Patent Document 5]
JP 2002-128573 A (pages 1-6)
[0013]
[Patent Document 6]
JP 2001-153321 A (pages 1-9)
[0014]
[Problems to be solved by the invention]
However, none of the above-mentioned conventional materials has sufficient corrosion resistance. The components of ZrO 2 and MgO are easily eluted into slag of low basicity, and are poor in alkali erosion resistance. In the case of a material containing ZrB 2 and silicon carbide, the waste melting furnace operates in an oxidizing atmosphere, so that the ZrB 2 and silicon carbide components are oxidized, and the corrosion resistance is reduced.
[0015]
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a chromium oxide-containing, amorphous, refractory material having a service life comparable to that of, for example, alumina-chromium oxide, which is substantially free of chromium oxide, as a lining of a waste melting furnace.
[0016]
[Means for Solving the Problems]
The amorphous refractory of the present invention exhibits extremely excellent corrosion resistance as a lining of a waste melting furnace by containing 0.5 to 40% of tin oxide in terms of SnO 2 in mass ratio. Since there is almost no viscosity and thermodynamic data of the tin oxide-containing melt, the mechanism of improving the corrosion resistance of the present invention by tin oxide is not necessarily clear, but from the experiments and observations of the present inventors, the following is considered. .
[0017]
For example, amorphous refractories based on alumina raw materials are easily eroded to low basicity slag of waste melting furnaces, and tin oxide was added to this within the range limited by the present invention. In this case, the slag erosion resistance is significantly improved.
[0018]
The low basicity slag of the waste melting furnace has low viscosity, but the tin oxide contained in the refractory dissolves in the slag at the site of contact with the refractory, so that the viscosity of the slag increases. The high viscosity of the slag adheres to the refractory surface, forms a high-viscosity slag coating on the refractory surface, and protects the refractory structure and prevents the entry of alkali components into the refractory structure. And the corrosion resistance is improved.
[0019]
Tin oxide has a lower melting point than general refractory raw materials, and is incompatible with the formulation of refractory for waste melting furnaces under severe operating conditions from technical common sense. Therefore, by using tin oxide within the range limited in the present invention, the effect of improving the corrosion resistance obtained by increasing the viscosity of the low basicity slag specific to the waste melting furnace can be easily predicted from the prior art. Not something.
[0020]
The refractory aggregate in the amorphous refractory of the present invention is, for example, one or two or more selected from alumina raw materials, alumina-silica raw materials, silica raw materials, spinel raw materials, and magnesia raw materials. When the main component is alumina, the effect of improving the corrosion resistance by adding tin oxide becomes more remarkable. This is considered to be because the alumina raw material is excellent in volume stability and relatively difficult to react with tin oxide, and thus tin oxide, which increases the viscosity of slag, is likely to elute from the refractory structure.
[0021]
Further, even if the amorphous refractory of the present invention is made of a material substantially free of chromium oxide, it can obtain corrosion resistance comparable to that of a conventional chromium oxide-containing product. By using a material substantially free of chromium oxide, there is no generation of hexavalent chromium harmful to the human body, and the problem of environmental pollution is solved.
[0022]
FIG. 1 is a graph showing the relationship between the ratio of tin oxide and the corrosion resistance of a refractory, taking an alumina refractory as an example. Here, the corrosion resistance was measured by changing the ratio of tin oxide based on the amorphous refractory having the composition of Example 2 described later. The measurement of the corrosion resistance was carried out based on the test method shown in the section of Examples, and was represented by an index with the erosion dimension of a material not containing tin oxide being 100.
[0023]
From the graph, it is confirmed that the amorphous refractory containing tin oxide in a ratio limited in the present invention has excellent corrosion resistance to slag of a waste melting furnace.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Tin oxide includes stannous oxide (SnO) and stannic oxide (SnO 2 ). In the present invention, it is preferable to use stannic oxide which is stable in an oxidizing atmosphere which is the operating condition of the waste melting furnace. The purity is preferably high so that it works effectively even when a small amount is added, and is, for example, 80% by mass or more, more preferably 95% by mass or more in terms of SnO 2 .
[0025]
The ratio of tin oxide in the amorphous refractory is 0.5 to 40% by mass, more preferably 1 to 30% by mass. In accordance with this, tin oxide is used at a ratio of, for example, 0.5 to 40%, more preferably 1 to 30% in the refractory composition when producing an amorphous refractory.
[0026]
If the proportion of tin oxide is small, the effect of improving corrosion resistance of the present invention cannot be obtained. If the amount is too large, the tin oxide reacts with the refractory raw material or the binder component, generates a large amount of low melting point substances, and deteriorates the corrosion resistance.
[0027]
The particle diameter of tin oxide is, for example, 1 mm or less, more preferably 0.5 mm or less in the JIS sieve opening, in order to sufficiently enhance the effect of improving the corrosion resistance of the present invention by using tin oxide. Is preferred. When the amount of tin oxide used is large, a combination of particles having a particle size exceeding 1 mm may be used in view of the balance of the particle size composition of the entire refractory composition in order to achieve a dense packing of the amorphous refractory.
[0028]
Specific examples of the alumina raw material used as the refractory raw material in the present invention include sintered alumina, fused alumina, shale, bauxite, and the like. Above all, synthetic products such as sintered alumina and electrofused alumina having high Al 2 O 3 purity are preferable. Calcined alumina may be used for the fine powder portion.
[0029]
When the alumina material is mainly used as the refractory raw material, the amorphous refractory of the present invention has a remarkable improvement in corrosion resistance in relation to tin oxide. Specifically, it is 55% by mass or more, more preferably 65% by mass or more of Al 2 O 3 in the chemical composition in proportion to the refractory composition. The Al 2 O 3 component is supplied not only from a refractory raw material such as an alumina raw material, an alumina-silica raw material, or a MgO.Al 2 O 3 -based spinel raw material (hereinafter referred to as a spinel raw material), but also, for example, an alumina cement. It becomes.
[0030]
As the refractory raw material other than the alumina raw material, for example, one or more selected from alumina-silica raw material, spinel raw material, zirconia raw material, and magnesia raw material can be used.
[0031]
Alumina-siliceous raw materials include electrofused mullite and sintered mullite, as well as natural mullite and pyroxene. In addition, a raw material containing andalusite, sillimanite, kyanite and the like as main minerals can also be used.
[0032]
Specific examples of the spinel raw material are, for example, an electrofused spinel or a sintered spinel. From an economical point of view, spinel slag produced as a by-product during vanadium refining may be used. A calcined spinel may be used for the fine powder portion. The component (MgO.Al 2 O 3 ) of the spinel is not limited to the theoretical value of the spinel, but may be, for example, an alumina-rich spinel having a large Al 2 O 3 value.
[0033]
Examples of zirconia raw materials include zircon and zirconia. Specific examples of zirconia include, for example, stabilized zirconia or partially stabilized zirconia to which CaO, MgO, Y 2 O 3, etc. are added.
[0034]
Examples of the magnesia raw material include electrofused or sintered magnesia and magnesia-calcia as synthetic products. Natural magnesia may be used. Light burned magnesia can also be used as fine powder. When the alumina raw material and this magnesia raw material are used together, spinel is generated at high temperature when using the refractory, and the volume expansion accompanying the spinel generation densifies the refractory structure, prevents slag penetration and prevents corrosion of the refractory. Is further improved.
[0035]
Since the magnesia raw material is a refractory raw material having a large thermal expansion property, the amount of the magnesia raw material is preferably not more than 20% by mass in the refractory compound so as not to impair the spalling resistance of the amorphous refractory.
[0036]
When the amorphous refractory of the present invention is made of a material substantially free of chromium oxide, the problem of environmental pollution can be solved. The phrase “substantially not contained” includes not only the case where chromium oxide is not contained at all but also the case where chromium oxide is contained as an unavoidable impurity, and a small amount of magnesia raw material is added as a digestion inhibitor.
[0037]
The content of chromium oxide in a conventional refractory containing chromium oxide is 10 to 60% by mass. On the other hand, chromium oxide used as an antidigestion agent for magnesia raw material is usually 1 to 3% by mass in the magnesia raw material. In addition, the preferred amount of the magnesia raw material is 20% by mass or less, and the amount of chromium oxide in this case is 0.6% by mass or less when converted to the proportion of the refractory composition. As described above, the use of chromium oxide as an antidigestion agent for magnesia raw materials is extremely small, and has little effect on environmental pollution.
[0038]
Further, chromium oxide may be further added to the amorphous refractory of the present invention, but chromium oxide has a problem of environmental pollution as described above. Therefore, even when chromium oxide is added, it is preferable to minimize the amount.
[0039]
The particle size of the refractory raw material is adjusted, for example, to a coarse particle, a medium particle, or a fine particle, for example, with a maximum particle diameter of 3 to 10 mm. For the purpose of imparting spalling resistance to the amorphous refractory, in addition to the coarse, medium, and fine particles described above, a refractory aggregate having a large particle diameter of, for example, 10 to 50 mm may be combined. The refractory raw material may be used after refractory use, refractory waste material, or the like, and the particle size of which is adjusted.
[0040]
To the extent that the effects of the present invention are not impaired, silica, volatile silica, clay, carbon, glass, slaked lime, silicon nitride, silicon nitride, and the like may be used in an amount of, for example, 20% by mass or less, in addition to the above as a refractory raw material. , More preferably 10% by mass or less. In particular, volatile silica is excellent in imparting fluidity during construction of a refractory and is effective in densifying the construction body structure.
[0041]
The specific type and amount of the binder are not particularly different from those used for conventional amorphous refractories. For example, alumina cement, magnesia cement, phosphate, silicate, colloidal silica, colloidal alumina and the like can be used. Among them, alumina cement is preferred. The amount of the binder used is preferably 0.5 to 10% by mass in the refractory composition. Colloidal silica, colloidal alumina and the like are aqueous solutions. In the case of an aqueous binder, the amount used in the present invention is in terms of solids.
[0042]
Alumina cement is excellent in imparting strength to the construction body structure. Further, the Al 2 O 3 component contained therein hardly reacts with tin oxide, and the Al 2 O 3 component which hardly reacts with the tin oxide due to ultrafine powder intervenes in the matrix of the amorphous refractory structure, Tin oxide is easily eluted during use. Thus, the use of alumina cement as a binder effectively affects the improvement of the corrosion resistance of the present invention by tin oxide.
[0043]
The dispersant imparts fluidity during construction of the amorphous refractory. Specific examples are not limited at all, for example, sodium tripolyphosphate, sodium hexametaphosphate, sodium polypolyphosphate, sodium acid hexametaphosphate, sodium borate, sodium carbonate, inorganic salts such as polymetaphosphate, sodium citrate Sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylates, β-naphthalene sulfonates, naphthalenesulfonic acid, and carboxyl group-containing polyether dispersants. The addition amount is preferably 0.01 to 1% by mass, more preferably 0.03 to 0.5% by mass, based on 100% by mass of the refractory composition.
[0044]
In addition to the above refractory raw materials, binders and dispersants, if necessary, known as additives for amorphous refractories, drying accelerators, metal powders such as Al and Si, metal fibers, organic fibers, ceramics Fibers, basic aluminum lactate, antioxidants, thickeners, curing agents, curing retarders and the like may be added.
[0045]
Construction of the refractory of the present invention is performed by pouring, press-fitting, spraying, or the like. In the spraying, a part or all of the binder or a quick-setting binder may be added at the nozzle portion. The working moisture is, for example, 3 to 13% by mass, and more preferably 3 to 7% by mass, based on the entire amorphous refractory. In addition, this construction is not limited to new construction of a furnace wall or the like, but may be additional construction for repair.
[0046]
In the pouring work, a formwork is used. The working moisture is preferably, for example, 3 to 7% by mass with respect to the entire amorphous refractory. At the time of construction, it is preferable to apply vibration to promote filling. After construction, cure and dry.
[0047]
For the construction, in addition to the direct construction to the waste melting furnace, a precast product obtained in advance at another place may be used. A combination of both the direct construction and the precast product may be used.
[0048]
Even when the lining of the waste melting furnace is constructed of irregular refractories, refractory bricks may be used partially. In addition, in places where the type of the refractory is not in direct contact with the slag, a refractory of a different material such as an adiabatic refractory may be used. In a waste melting furnace in which a refractory of a different material is used for each of such zones, the amorphous refractory of the present invention exerts its excellent corrosion resistance as a lining at a site where the use conditions are strictest.
[0049]
【Example】
The composition and test results of Examples of the present invention and Comparative Examples are shown below. The test method is as follows. In each of the tests, the working water was added in an amount of 4% by mass, and after kneading, the mixture was poured into a vibrating mold and molded. Next, curing and drying were performed to obtain a test sample.
[0050]
Flexural strength: A test sample of 40 × 40 × 160 mm was measured according to JIS R2205.
[0051]
Corrosion resistance: A test sample molded into a regular brick shape was lined in a rotary erosion furnace to measure corrosion resistance. The slag (CaO / SiO 2 : 0.74) discharged from the gasification and melting furnace was used as an erosion agent, and after erosion was performed at 1500 ° C. for 20 hours, the erosion dimension was measured. did. The smaller the value, the better the corrosion resistance.
[0052]
Actual machine test: A garbage melting furnace with a garbage disposal rate of 100 tons per day was lined, and the wear rate (mm / month) was measured after 12 months of use. The operating temperature of this gasification and melting furnace is 1400 ° C., and its slag component is mass%, SiO 2 : 42.8, CaO: 31.7, Al 2 O 3 : 12.4, Fe 2 O 3 : 4.8, Na 2 O: 3.7, ( CaO / SiO 2 : 0.74).
[0053]
【table 1】
Figure 2004196637
[0054]
[Table 2]
Figure 2004196637
As shown by the test results, all of the examples of the present invention show excellent corrosion resistance. Its corrosion resistance is not inferior to Comparative Example 7 of alumina-chromium oxide containing chromium oxide. In particular, those using alumina cement as a binder are excellent in corrosion resistance.
[0055]
In contrast, Comparative Example 1 in which tin oxide was not added and Comparative Example 2 in which the amount of tin oxide added was too large were inferior in corrosion resistance. Comparative Example 3 of the alumina-carbide material and Comparative Example 4 of the alumina-magnesia material are also inferior in corrosion resistance to Comparative Example 5 of the alumina-zirconia material as compared with the examples of the present invention.
[0056]
Comparative Example 7 is an alumina-chromium oxide amorphous refractory. Although exhibiting good corrosion resistance, it contains 10% by mass of chromium oxide and generates a large amount of environmentally harmful hexavalent chromium in refractories after use.
[0057]
2 changes the ratio of Al 2 O 3 component in refractory formulations in decreasing the alumina raw material based monolithic refractory of Example 2 containing tin oxide 10 wt%, the proportion of Al 2 O 3 The relationship between the corrosion resistance of the refractory and the amorphous refractory was tested, and the results are shown in the graph. Further, the corrosion resistance was represented by an index with the erosion dimension of Example 2 (Al 2 O 3 : 88.7%) being 100.
[0058]
From the results of the graph, it was confirmed that, in the corrosion resistance of the amorphous refractory containing tin oxide within the scope of the present invention, a material having an Al 2 O 3 component ratio of 55% by mass or more, and more preferably 60% by mass or more is preferable. Is done.
[0059]
Further, the excellent effect of improving the corrosion resistance in the embodiment of the present invention described above is the same in the actual machine test.
[0060]
【The invention's effect】
As shown in the above test results, the refractory of the present invention exhibits excellent corrosion resistance to slag components specific to waste melting furnaces and ultrahigh-temperature operation. In addition, the present invention shows a durability comparable to a material containing chromium oxide even if the material does not substantially contain chromium oxide.
[0061]
Waste melting furnaces such as gasification melting furnaces and ash melting furnaces are effective in reducing the volume of waste, but are required to have high durability refractories due to their severe operating conditions. The present invention has a very high industrial value as a refractory that can cope with this and as a refractory suitable for the environment.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ratio of tin oxide and the corrosion resistance of a refractory in an alumina-based amorphous refractory.
FIG. 2 is a graph showing the relationship between the proportion of Al 2 O 3 in the refractory composition and the corrosion resistance of the amorphous refractory.

Claims (10)

質量割合において、酸化スズを0.5〜40%含む廃棄物溶融炉用不定形耐火物。An amorphous refractory for waste melting furnaces containing 0.5 to 40% tin oxide by mass. 質量割合において酸化スズを0.5〜40%、残部が耐火性原料および結合剤を主材とする耐火性配合物と、分散剤を含む廃棄物溶融炉用不定形耐火物。An amorphous refractory for a waste melting furnace containing a refractory composition containing 0.5 to 40% of tin oxide in mass ratio, the balance being a refractory raw material and a binder, and a dispersant. 耐火性原料が、アルミナ原料、アルミナ−シリカ質原料、MgO・Al23系スピネル原料、ジルコニア質原料、マグネシア質原料から選ばれる一種または二種以上を主体とした請求項2記載の廃棄物溶融炉用不定形耐火物。 3. The waste according to claim 2, wherein the refractory raw material is mainly one or two or more selected from an alumina raw material, an alumina-silica raw material, a MgO.Al 2 O 3 spinel raw material, a zirconia raw material, and a magnesia raw material. Irregular refractories for melting furnaces. 耐火性原料がアルミナ原料主体である請求項2記載の廃棄物溶融炉用不定形耐火物。3. The amorphous refractory for a waste melting furnace according to claim 2, wherein the refractory raw material is mainly composed of an alumina raw material. 耐火性配合物に占める割合で、化学組成においてAl23含有量が55質量%以上である請求項4記載の廃棄物溶融炉用不定形耐火物。5. The amorphous refractory for a waste melting furnace according to claim 4, wherein the content of Al 2 O 3 in the chemical composition is 55% by mass or more as a percentage of the refractory composition. 酸化クロムを実質的に含まない請求項1ないし5のいずれか1項に記載の廃棄物溶融炉用不定形耐火物。6. The amorphous refractory for a waste melting furnace according to any one of claims 1 to 5, substantially not containing chromium oxide. マグネシア原料が消化防止剤として酸化クロムを含む請求項1ないし6のいずれか1項に記載の廃棄物溶融炉用不定形耐火物。7. The amorphous refractory for a waste melting furnace according to claim 1, wherein the magnesia raw material contains chromium oxide as a digestion inhibitor. 結合剤がアルミナセメントである請求項1ないし7のいずれか1項に記載の廃棄物溶融炉用不定形耐火物。8. The amorphous refractory for a waste melting furnace according to claim 1, wherein the binder is alumina cement. 請求項1ないし8のいずれか1項に記載の不定形耐火物を内張りした廃棄物溶融炉。A waste melting furnace lined with the amorphous refractory according to any one of claims 1 to 8. 不定形耐火物の内張りが、炉に対する直接の施工、別の場所で予め施工して得たプレキャスト品の使用、あるいはこの両者の組合わせである請求項9記載の廃棄物溶融炉。10. The waste melting furnace according to claim 9, wherein the lining of the amorphous refractory is direct application to the furnace, use of a precast product obtained in advance at another location, or a combination of both.
JP2002370688A 2002-12-20 2002-12-20 Unshaped refractory for waste melting furnace and waste melting furnace lined with it Expired - Fee Related JP4355486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370688A JP4355486B2 (en) 2002-12-20 2002-12-20 Unshaped refractory for waste melting furnace and waste melting furnace lined with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370688A JP4355486B2 (en) 2002-12-20 2002-12-20 Unshaped refractory for waste melting furnace and waste melting furnace lined with it

Publications (2)

Publication Number Publication Date
JP2004196637A true JP2004196637A (en) 2004-07-15
JP4355486B2 JP4355486B2 (en) 2009-11-04

Family

ID=32766538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370688A Expired - Fee Related JP4355486B2 (en) 2002-12-20 2002-12-20 Unshaped refractory for waste melting furnace and waste melting furnace lined with it

Country Status (1)

Country Link
JP (1) JP4355486B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111334A (en) * 2009-11-24 2011-06-09 Kurosaki Harima Corp Monolithic refractory
WO2014208620A1 (en) 2013-06-26 2014-12-31 旭硝子株式会社 Powder composition for tin oxide monolithic refractory, production method for tin oxide monolithic refractory, glass melting furnace, and waste-product melting furnace
WO2014208618A1 (en) * 2013-06-26 2014-12-31 旭硝子株式会社 Powder composition for tin oxide monolithic refractory, production method for tin oxide monolithic refractory, glass melting furnace, and waste-product melting furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111334A (en) * 2009-11-24 2011-06-09 Kurosaki Harima Corp Monolithic refractory
WO2014208620A1 (en) 2013-06-26 2014-12-31 旭硝子株式会社 Powder composition for tin oxide monolithic refractory, production method for tin oxide monolithic refractory, glass melting furnace, and waste-product melting furnace
WO2014208618A1 (en) * 2013-06-26 2014-12-31 旭硝子株式会社 Powder composition for tin oxide monolithic refractory, production method for tin oxide monolithic refractory, glass melting furnace, and waste-product melting furnace
CN105339323A (en) * 2013-06-26 2016-02-17 旭硝子株式会社 Powder composition for tin oxide monolithic refractory, production method for tin oxide monolithic refractory, glass melting furnace, and waste-product melting furnace
US20160075605A1 (en) * 2013-06-26 2016-03-17 Asahi Glass Company, Limited Powder composition for tin oxide monolithic refractory, method for producing tin oxide monolithic refractory, glass melting furnace and waste melting furnace

Also Published As

Publication number Publication date
JP4355486B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
US20090227441A1 (en) Refractory shaped body with increased alkali resistance
JP4456563B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JP2001114571A (en) Castable refractory for trough of blast furnace
JP4355486B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
US20060014622A1 (en) Refractory shaped body with increased alkali resistance
JP2000203953A (en) Castable refractory for trough of blast furnace
JP2001316172A (en) Alumina-chromia based refractory for ash melting furnace
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP2004352600A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2604310B2 (en) Pouring refractories
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP2004299929A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace lined with the same
JP4205926B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP4445256B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace lined with this
JP2000281455A (en) Alumina-zirconia-based amorphous refractory
JP5271239B2 (en) Furnace
JP6599574B1 (en) Curing accelerator, cement composition, and amorphous refractory
JP4404515B2 (en) Unshaped refractories for waste treatment furnaces
JP2000256071A (en) Castable refractory for blast furnace trough
JP2004352601A (en) Chromium-free monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2000319073A (en) Monolithic refractory material and waste melting furnace
JP2001158661A (en) Alumina-magnesia refractory brick
JPH0967170A (en) Refractory for casting
JP2005213120A (en) Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees