JP2004196606A - Method for manufacturing high purity lithium carbonate - Google Patents

Method for manufacturing high purity lithium carbonate Download PDF

Info

Publication number
JP2004196606A
JP2004196606A JP2002368379A JP2002368379A JP2004196606A JP 2004196606 A JP2004196606 A JP 2004196606A JP 2002368379 A JP2002368379 A JP 2002368379A JP 2002368379 A JP2002368379 A JP 2002368379A JP 2004196606 A JP2004196606 A JP 2004196606A
Authority
JP
Japan
Prior art keywords
lithium carbonate
lithium
aqueous solution
carbonate
lithium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002368379A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawai
博之 川合
Yutaka Konose
豊 木ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002368379A priority Critical patent/JP2004196606A/en
Publication of JP2004196606A publication Critical patent/JP2004196606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for enabling manufacture of high purity lithium carbonate having ≤1ppm content of each element of Na, K, Ca, Al, and Si and ≤0.1wt.% ignition loss at 500°C even when lithium hydroxide having a high impurity content is used as a reaction material. <P>SOLUTION: High purity lithium carbonate is manufactured by subjecting an aqueous solution containing crude lithium hydroxide to precision filtration, crystallizing to obtain purified lithium hydroxide, allowing the obtained lithium hydroxide to react with carbon dioxide in an water solvent to recover lithium carbonate (a), introducing carbon dioxide into the slurry containing the lithium carbonate (a) to obtain an aqueous solution containing lithium hydrogencarbonate, hydrolyzing the aqueous solution containing lithium hydrogencarbonate to obtain lithium carbonate (b), and heat treating the obtained lithium carbonate at 350 to 600°C to obtain lithium carbonate (c). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に、電子材料、光工業材料、特にタンタル酸リチウム単結晶、タンタル酸リチウムカリウム単結晶、ニオブ酸リチウム単結晶及びニオブ酸リチウムカリウム単結晶の原料として有用な高純度炭酸リチウムの製造方法に関するものである。
【0002】
【従来の技術】
炭酸リチウムは耐熱ガラス、光学ガラス等の配合剤、セラミック材料、携帯電話やノートパソコンのバッテリーに使用されているリチウム2次電池の原料、電解質の材料、半導体レーザー等に使用されるニオブ酸リチウム単結晶やタンタル酸リチウム単結晶等の原料等様々な用途に用いられている。
【0003】
炭酸リチウムに求められている特性は多様であり、用途により異なる。例えば、炭酸リチウムが上記の電子材料や光工業材料として用いられる場合は、不純物が多いと電気特性や光特性が低下するため、不純物の少ない高純度なものであることが求められている。
【0004】
また、近時、炭酸リチウムを原料として得られたニオブ酸リチウム単結晶、ニオブ酸リチウムカリウム単結晶、タンタル酸リチウム単結晶及びタンタル酸リチウムカリウム単結晶は、例えば、特に半導体レーザー用の青色光第二高調波発生(SHG)素子用に有用なものとして注目されている。これらの単結晶は紫外線領域にある390nm程度の短波長の光を発生するため、光ディスクメモリー用、医学用、光化学用、各種光計測用等の幅広い用途への応用が可能になる。また、これらの単結晶は電気光学効果も大きいため、そのフォトリフラクティブ効果を利用した光記憶素子等としても用いることができる。
【0005】
しかし、上記単結晶が例えば第二高調波発生素子用途で用いられる場合においては、単結晶の組成が僅かにでも変動すると、素子から発振する第二高調波の波長が変動するため好ましくない。このように単結晶の組成が変動する原因は通常、原料の強熱減量の大きさに起因することが多い。すなわち、原料の強熱減量が大きいと原料の配合比率が理論量よりずれ易いからである。ここで強熱減量とは、物質を500℃で所定時間加熱処理することにより、該物質中から揮発性成分が除去されることにより生じる物質の減量を加熱処理前の質量で除した値をいう。原料が炭酸リチウムである場合、この揮発成分は、通常、水、有機物質や未反応の水和した水酸化リチウム等である。
【0006】
このように、炭酸リチウムが単結晶の原料として用いられる場合は、上記のように高純度であることに加えて、さらに強熱減量の少ないものであることが求められている。
【0007】
具体的には、炭酸リチウムが電子材料や光工業材料として用いられる場合は、炭酸リチウムには異種金属やその他の不純物含有量が数ppmレベルであることが要望されている。また、炭酸リチウムがニオブ酸リチウム単結晶、ニオブ酸リチウムカリウム単結晶、タンタル酸リチウム単結晶、タンタル酸リチウムカリウム単結晶等の製造原料として用いられる場合は、炭酸リチウムにはこれらの不純分含有量が1ppm以下で且つ強熱減量が0.1重量%未満であることが要望されている。
【0008】
従来、このような高純度の炭酸リチウムの製造方法としては、例えば、粗製炭酸リチウムと二酸化炭素とを反応させて得られる重炭酸リチウムを含有する水溶液を精密濾過した後、該重炭酸リチウムを含有する水溶液を加熱処理して炭酸リチウムを析出させる方法(特開昭62−252315号公報)、粗製炭酸リチウムと二酸化炭素とを反応させて得られる重炭酸リチウムを含有する水溶液をイオン交換モジュールで処理した後、該重炭酸リチウムを含有する水溶液を加熱処理して炭酸リチウムを析出させる方法(特表2002−505248号公報)等が提案されている。これらの方法によれば、ある程度高純度の炭酸リチウムを得ることができる。
【0009】
しかしながら、上記文献に記載された発明では、原料である粗製炭酸リチウムは、Si、Al、Na、K及びCa等の不純物を多く含む水酸化リチウム等を用いて製造されたものであるため、不純物が多い。このため、このような不純物を多く含む粗製炭酸リチウムから高純度炭酸リチウムを製造しても、得られる炭酸リチウムの不純物含有量を十分に低くすることができないという問題があった。また、このように生成された炭酸リチウムについては、たとえ後で精製を行ったとしても、これらの不純物含有量を1ppm以下まで低減させることが困難であるという問題があった。さらに、たとえ、炭酸リチウムの不純物含有量を1ppm以下まで低減することができたとしても、500℃における強熱減量が0.4重量%以上あるため、強熱減量が高いという問題があった。
【0010】
【特許文献1】
特開昭62−252315号公報
【特許文献2】
特表2002−505248号公報
【0011】
【発明が解決しようとする課題】
従って、本発明の目的は、不純物含有量が多い水酸化リチウムを反応原料として用いても、Na、K、Ca、Al及びSiの各元素の含有量が1ppm以下で500℃での強熱減量が0.1重量%以下である高純度炭酸リチウムが得られる製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、かかる実情に鑑み鋭意研究を重ねた結果、特定の精製工程を経た精製水酸化リチウムと二酸化炭素を反応させて得られる炭酸リチウムを用いて炭酸水素リチウムを生成させ、次いで該炭酸水素リチウムを熱分解すると少なくともNa、K、Ca、Al及びSiの各元素の含有量が1ppm以下まで低減された高純度な炭酸リチウムが得られ、更にこれを特定温度範囲で加熱処理すると強熱減量が低減された高純度炭酸リチウムが得られることを見出し、本発明を完成するに至った。
【0013】
すなわち、本発明は、粗製水酸化リチウムを含む水溶液を精密濾過した後、晶析を行って精製水酸化リチウムを得る第一工程、該精製水酸化リチウムと二酸化炭素とを水溶媒中で反応させて析出させた炭酸リチウム(a)を回収する第二工程、該炭酸リチウム(a)を含むスラリーを調製し、該スラリーに二酸化炭素を導入して炭酸水素リチウムを含む水溶液を得る第三工程、該炭酸水素リチウムを含む水溶液を加熱分解して炭酸リチウム(b)を得る第四工程、及び該炭酸リチウム(b)を350〜600℃で加熱処理して炭酸リチウム(c)を得る第五工程を含むことを特徴とする高純度炭酸リチウムの製造方法を提供するものである。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0015】
(第一工程)
本発明の第一工程は、粗製水酸化リチウムを含む水溶液を精密濾過した後、晶析を行って、少なくともNa、K、Ca、Al及びSiの各元素の含有量が数ppm以下まで低減された精製水酸化リチウムを得る工程である。
【0016】
第一工程においては、まず、粗製水酸化リチウムを含む水溶液を準備する。該水溶液は、例えば粗製水酸化リチウムを水に溶解して調製することができる。本発明において粗製水酸化リチウムとは、Na、K、Ca、Al及びSiの各元素の含有量が10ppmを越える水酸化リチウムをいう。第一工程に用いられる粗製水酸化リチウムは、如何なる製造方法で得られるものであってもよく、例えば、炭酸リチウムと水酸化カルシウムとの反応により得られる粗製水酸化リチウム、及び硫酸リチウムと水酸化バリウムとの反応により得られる粗製水酸化リチウム等が挙げられる。
【0017】
粗製水酸化リチウムを溶解する水は、特に限定されないが、なるべく不純物濃度の低いものが用いられる。このうち、少なくとも逆浸透膜、限外ろ過膜、イオン交換膜等を通過させて、Na、K、Ca、Cl、SO等のイオン性不純物を除去した純水を用いると、粗製水酸化リチウムを溶解する水に由来する不純物の混入を防止することができるため、特に好ましい。逆浸透膜、限外ろ過膜又はイオン交換樹脂に通水される被処理水としては、例えば、工業用水、市水、河川水等の原水を凝集ろ過装置及び活性炭等からなる前処理装置で処理し、原水中の懸濁物及び有機物の大半を除去したもの、あるいは、更に、イオン交換樹脂を用いる純水装置で処理されたもの等が用いられる。
【0018】
逆浸透膜としては、市販の膜モジュールを用いることができる。また、該モジュールを用いた純水製造の操作条件等には特に制限はなく常法に従えばよい。例えば、逆浸透膜膜としては、分画分子量が、通常400〜100000、好ましくは1000〜10000のものが挙げられ、該膜の具体的な材質としては、例えば、酢酸セルロース系ポリマー、ポリアミド系ポリマー、架橋ポリアミン系ポリマー、架橋ポリエーテル系ポリマー、ポリスルホン、スルホン化ポリスルホン、ポリビニールアルコール等が挙げられる。これらは適宜選択して使用すればよい。また、膜の形状は平板型、スパイラル型、中空糸型、チューブラー型、プリーツ型等の何れであってもよい。
【0019】
限外濾過膜としては、市販の膜モジュールを用いることができる。また、該モジュールを用いた純水製造の操作条件等には特に制限はなく常法に従えばよい。例えば、限外濾過膜としては、分画分子量が、通常400〜100000、好ましくは1000〜10000のものが挙げられ、該膜の具体的な材質としては、例えば、再生セルロース、ポリエーテルスルホン、ポリスルホン、ポリアクリルニトリル、ポリビニールアルコール、燒結金属、セラミック、カーボン等が適宜使用される。膜の形状は平板型、スパイラル型、チューブラー型、中空糸型、プリーツ型等の何れであってもよい。
【0020】
粗製水酸化リチウムを含む水溶液における粗製水酸化リチウムの濃度は、水酸化リチウムの飽和溶解度以下であればよく特に制限されない。しかし、水酸化リチウムの溶解度は溶解させる温度に強く依存するため、例えば、80℃で溶解させるにはLiOHに換算した濃度を通常1〜12重量%、好ましくは9〜12重量%とする。
【0021】
第一工程においては、次に、粗製水酸化リチウムを含む水溶液を精密濾過して、Si、Al等の不純物成分を含有する不溶分を除去する。
【0022】
精密濾過は精密濾過膜等の濾過材を用いて行うことができる。第一工程に用いることができる精密濾過膜としては、表面濾過作用を有するスクリーンフィルター、内部濾過作用を有するデプスフィルター等が挙げられるが、表面濾過作用を有するスクリーンフィルターが効率よく不溶分を除去することができる点で好ましい。精密濾過膜の公称の孔径は通常1μm以下、好ましくは0.2〜0.5μmである。また、精密濾過膜の材質は、特に制限されるものではないが、例えばコロジオン、セロファン、アセチルセルロース、ポリアクリロニトリル、ポリスルホン、ポリオレフィン、ポリアミド、ポリイミド、ポリビニリデンフロライド等の有機系物質の膜、又は黒鉛、セラミックス、多孔質ガラス等の無機系物質の膜が挙げられる。また、精密濾過を実験室規模で行う場合はPTFEメンブランフィルター等の濾過材を用いることができる。スクリーンフィルターの形式は特に制限されるものではないが、カートリッジ式が操作性において容易である点で好ましい。
【0023】
精密濾過を行う方法としては、例えば、市販の精密濾過装置に上記粗製水酸化リチウム水溶液を導入する方法が挙げられる。精密濾過操作の圧力条件としては特に制限されるものではなく、減圧下又は加圧下のいずれで行うこともできるが、上記粗製水酸化リチウム水溶液を送液ポンプを用いて、温度が通常0〜100℃、好ましくは20〜80℃で、流量を通常1〜30ml/min、好ましくは5〜15ml/minとして精密濾過装置に導入し、通常0.1〜0.5MPa、好ましくは0.2〜0.3MPaの圧力で濾過することが好ましい。なお、精密濾過は、水溶液から水酸化リチウムが析出しない温度で行うことが好ましい。
【0024】
第一工程では、上記精密濾過を行った後、粗製水酸化リチウムを含む水溶液について晶析操作を行って精製水酸化リチウムを得る。本発明では、精密濾過を行った後にさらに晶析操作を行うことにより、精密濾過を行った後の状態に比べてさらにSi、Al、Na、Ca、K、Fe、Zn、Mg、Sr等の不純物を低減させることができる。
【0025】
第一工程で用いられる晶析操作としては、例えば、上記精密濾過後の粗製水酸化リチウムを含む水溶液を冷却して水酸化リチウムを析出させる方法、又は上記精密濾過後の粗製水酸化リチウムを含む水溶液を加熱して、該水溶液中の水分を蒸発させて水酸化リチウムを析出させる方法が挙げられる。このうち、後者の加熱による方法が精製水酸化リチウムの回収効率が良いため好ましい。
【0026】
後者の加熱による方法は、例えば、前記の精密濾過を行った粗製水酸化リチウムを含む水溶液を通常80℃以上、好ましくは90〜100℃に加温した後、水溶液中の水の通常10〜70重量%、好ましくは30〜60重量%を蒸発除去し、その後室温域まで冷却する方法により行うことができる。このように粗製水酸化リチウムを含む水溶液から上記範囲内で水を除去すると、不純物が効率的に除去された精製水酸化リチウムが得られる。なお、加熱による晶析操作は、減圧下に行ってもよい。
【0027】
なお、晶析操作を行う前に、必要により粗製水酸化リチウムの水溶液濃度をLiOHが通常1〜13重量%、好ましくは9〜11重量%となるように濃度調整をしておくと、水酸化リチウムの回収効率がよいため好ましい。
【0028】
また、第一工程においては、上記の精密濾過操作及び晶析操作に加えて、キレート樹脂を用いた水酸化リチウムの精製操作を行うと、更に水酸化リチウムのCa、Zn、Mg及びSr等の不純物を低減させることができるため好ましい。キレート樹脂を用いた精製操作は、晶析操作後、特に精密濾過後且つ晶析操作前 に行うと、液のままで次工程に送って引き続き操作を行えることにより操作上効率的であるため好ましい。
【0029】
キレート樹脂を用いた精製操作に用いることができるキレート樹脂の種類は、特に制限されないが、例えばイミノジ酢酸型、アミノリン酸型等のキレート樹脂が挙げられる。
【0030】
キレート樹脂を用いた精製操作は、例えば、上記精密濾過後且つ晶析操作前の濾過液の水酸化リチウムを含む水溶液、又は晶析操作後の水酸化リチウムを含む水溶液を、LiOHに換算した濃度が通常1〜13重量%、好ましくは9〜11重量%となるように調製した後、該水溶液をキレート樹脂に接触させる方法が挙げられる。
【0031】
キレート樹脂を用いた精製操作は、キレート樹脂を通過する水酸化リチウムを含む水溶液の空間速度(SV)を、通常1〜20hr−1、好ましくは3〜8hr−1とする。上記のようにキレート樹脂を用いた精製操作を行うと、精製水酸化リチウム中のCa、Zn、Mg及びSr等の不純物をppbレベルまで低減させることができる。
【0032】
上記第一工程は、水酸化リチウムに含まれる不純物量が所望量以下になるまで何度でも繰り返して行うことができる。
【0033】
(第二工程)
第二工程は、第一工程で得られた精製水酸化リチウムと二酸化炭素とを水溶媒中で反応させて析出させた炭酸リチウム(a)を回収する工程である。
【0034】
第二工程では、まず、水溶媒中で精製水酸化リチウムと二酸化炭素とが反応できるようにする。具体的には、例えば上記精製水酸化リチウムを水に溶解して、精製水酸化リチウムを含有する水溶液を調製する方法が挙げられる。このように該水溶液を調製すると、該水溶液に二酸化炭素を導入することによって、水溶媒中で精製水酸化リチウムと二酸化炭素とを反応させることが可能になる。
【0035】
精製水酸化リチウムを溶解する水は、粗製水酸化リチウムを溶解する水と同様のものを用いることができる。ただし、粗製水酸化リチウムを溶解する水と同様に、逆浸透膜、限外濾過膜、イオン交換水等を通過させて、Na、K、Ca、Cl、SO等のイオン性不純物を除去した純水を用いると、精製水酸化リチウムを溶解する水に由来する不純物の混入を防止することができるため特に好ましい。
【0036】
精製水酸化リチウムを含む水溶液における精製水酸化リチウムの濃度は、水酸化リチウムの飽和溶解度未満であれば特に制限されない。しかし、水酸化リチウムの溶解度は上記のように温度に強く依存するため、例えば、25℃で溶解させる場合は、上記水溶液における精製水酸化リチウムのLiOHに換算した濃度を通常1〜10重量%、好ましくは5〜10重量%とすると、精製水酸化リチウムが溶解可能で且つ二酸化炭素との反応効率がよいという点で望ましい。
【0037】
第二工程においては、次に、例えば、上記精製水酸化リチウムを含む水溶液に二酸化炭素を導入することにより、精製水酸化リチウムと二酸化炭素とを水溶媒中で反応させて、炭酸リチウム(a)を析出させる。第二工程で用いられる二酸化炭素としては、特に制限はないが、予め、硫酸、硝酸等の酸溶液を通過させ、貯蔵タンク、調圧弁、配管等から混入する不純物を除いた二酸化炭素を用いることが高純度炭酸リチウム(a)を得易いため好ましい。
【0038】
二酸化炭素の導入量は、精製水酸化リチウムに対するモル比で通常0.5〜2.5、好ましくは0.5〜0.8とすると、炭酸水素リチウムへの副反応がなく高純度の炭酸リチウム(a)を高収率で得られるため好ましい。
【0039】
また、精製水酸化リチウムを含む水溶液に二酸化炭素を導入する場合は、二酸化炭素を導入するに従ってpHが低下してゆくが、pHが8.35以下になると炭酸水素リチウムが生成してしまうため、二酸化炭素の導入量は反応計のpHが通常10以上、好ましくは8.5以上となるまでとすることが望ましい。
【0040】
反応温度は通常0〜100℃、好ましくは60〜80℃である。反応温度が該範囲内にあると高純度の炭酸リチウム(a)を高収率で得られるため好ましい。なお、反応系の温度は、通常、二酸化炭素の導入に従い上昇するが、上記温度の範囲内に保たれていることが好ましい。また、反応時間は、かかる反応は水酸化リチウムと二酸化炭素の接触により速やかに行われるため、特に制限されるものではない。第二工程は、常圧又は加圧下で行うことができる。
【0041】
第二工程は、バッチ式又は連続式のいずれの方法でも行うことができる。なお、バッチ式で反応を行うと、析出する炭酸リチウム(a)は、通常、微細な一次粒子同士が弱く結合した塊状の一次粒子集合体になる。また、連続式で反応を行うと、析出する炭酸リチウム(a)は、通常、微細な一次粒子になる。
【0042】
反応終了後、析出した炭酸リチウム(a)は、常法により濾過洗浄し、所望により乾燥して炭酸リチウム(a)を得る。なお、洗浄で用いる水として純水を用いると、洗浄水に由来する不純物の混入を防止し易く炭酸リチウム(a)を得易いため、好ましい。また、乾燥は、空気中からの不純物の混入を避けるため密閉系内で行うことが好ましい。具体的には、実験室レベルでは減圧下に乾燥する方法が好ましく、工業レベルではパドルドライヤー等の乾燥装置を用いて行う方法が好ましい。
【0043】
かくして得られる炭酸リチウム(a)は、バッチ式で反応させた場合には、微細な一次粒子同士が弱く結合した塊状の一次粒子集合体であり、一次粒子の平均粒径が通常1〜20μmで、一次粒子集合体の平均粒径が通常10〜150μm、好ましくは30〜100μmである。一方、連続式で反応させた場合には、得られる炭酸リチウム(a)は、微細な一次粒子であり、一次粒子の平均粒径が通常1〜100μm、好ましくは10〜60μmである。
【0044】
また、炭酸リチウム(a)は純度が通常99.00%以上、好ましくは99.99%以上であり、高純度である。
【0045】
さらに、炭酸リチウム(a)は、Na、Ca、Al、Si及びKのそれぞれの不純物含有量が、10ppm以下、好ましくは5ppm以下であり、高純度である。また、炭酸リチウム(a)は、Na、Ca、Al、Si及びKのそれぞれの不純物含有量が上記範囲内にある上で、さらにMg、Sr、Fe及びZnのそれぞれの不純物含有量が、10ppm以下、好ましくは5ppm以下であり、高純度である。
【0046】
(第三工程)
第三工程は、第二工程で得られた炭酸リチウム(a)を含む水性スラリーを調製し、該スラリーに二酸化炭素を導入して炭酸水素リチウムを含む水溶液を調製する工程である。
【0047】
第三工程では、まず、第二工程で得られた炭酸リチウム(a)を水に分散させて炭酸リチウム(a)を含む水性スラリーを調製する。
【0048】
炭酸リチウム(a)を分散する水は、粗製水酸化リチウムを溶解する水と同様のものを用いることができる。ただし、粗製水酸化リチウムを溶解する水と同様に、逆浸透膜、限外ろ過膜、イオン交換膜等を通過させて、Na、K、Ca、Cl、SO等のイオン性不純物を除去した純水を用いると、炭酸リチウム(a)を分散する水に由来する不純物の混入を防止できるため特に好ましい。
【0049】
炭酸リチウム(a)を含むスラリーにおける炭酸リチウム(a)の濃度は、二酸化炭素の導入により生成する炭酸水素リチウムの溶解度相当の濃度又はそれ以上とすることが好ましい。これは、高濃度の炭酸水素リチウムを含む水溶液を用いると炭酸リチウム(b)を高収率で得ることが可能であるため、生成する炭酸水素リチウムの溶解度が炭酸リチウムの溶解度に比べてはるかに高いことを考慮して、過剰の炭酸リチウム(a)を分散しておくと、炭酸リチウム(b)を高収率で得ることが可能であるからである。具体的には、炭酸リチウム(a)を含むスラリーにおける炭酸リチウム(a)の濃度は、通常1〜12重量%、好ましくは4〜8重量%である。
【0050】
次いで、前記炭酸リチウム(a)を含むスラリーに、二酸化炭素を導入し下記反応式(1)
【化1】
LiCO+CO+HO→ 2LiHCO (1)
に従って、炭酸水素リチウムを生成させて、該炭酸水素リチウムを含む水溶液を得る。
【0051】
第三工程で用いられる二酸化炭素としては、特に制限はないが、第二工程と同様に、予め、硫酸、硝酸等の酸溶液を通過させ、貯蔵タンク、調圧弁、配管等から混入する不純物を除いた二酸化炭素を用いると、高純度の炭酸リチウムを得易いため好ましい。
【0052】
二酸化炭素の導入量は、炭酸リチウム(a)に対するモル比で通常1以上、好ましくは1〜5である。なお、この反応の終点は、二酸化炭素の導入による炭酸リチウム(a)の可溶化反応、即ち、炭酸水素リチウムの生成反応が、上記式(1)のとおりの平衡反応であり、また二酸化炭素の導入量の変化に対する炭酸リチウム(a)の消費量の変化が小さいため、予め設定されたリチウム濃度に対して計算量の二酸化炭素を流量でコントロールして決定することが効率的である。
【0053】
反応温度は通常−40〜50℃、好ましくは0〜30℃であると溶液中の二酸化炭素を高濃度で保持することができ、また、生成した炭酸水素リチウムの分解もないため好ましい。また、かかる反応は炭酸リチウム(a)と二酸化炭素の接触により速やかに行われるため反応時間は特に制限されるものではない。
【0054】
上記反応は、高速攪拌等の効率的な気液接触設備を用いて二酸化炭素と炭酸リチウム(a)とを分散接触させると、これらの接触効率が高く、炭酸水素リチウムの生成効率が高いため好ましい。第三工程における上記反応は、常圧又は加圧下で行うことができる。
【0055】
上記反応終了後、得られる炭酸水素リチウムを含む水溶液は、通常はほとんど懸濁物がない透明なものとなる。ただし該水溶液が濁っている場合は、不溶分を除去するため精密濾過を行うことが好ましい。このように精密濾過を行い、得られる濾過液を次工程の第四工程に供すると、第四工程で高純度な炭酸リチウム(b)を得易いため好ましい。なお、精密濾過を行う方法は、前記の第一工程の精密濾過方法に従えばよい。
【0056】
(第四工程)
第四工程は、第三工程で得られた炭酸水素リチウムを含む水溶液を加熱分解して下記反応式(2)
【化2】
2LiHCO→LiCO+CO + HO (2)
に従って炭酸リチウム(b)を得る工程である。
【0057】
第四工程では、まず、前記炭酸水素リチウムを含む水溶液を通常40℃以上、好ましくは50℃以上、特に好ましくは70〜95℃で攪拌下に加温する。この加温に伴って前記水溶液中の炭酸水素リチウムの分解が促進される。炭酸水素リチウムの分解量は高温になるほど多くなるため、炭酸リチウム(b)の収率もまた温度の高さに伴い良くなる。なお、分解に要する時間は、特に制限されるものではない。即ち、前記水溶液を昇温する場合、上記温度範囲まで昇温し切らない状態でも実質的に加熱分解して炭酸リチウム(b)が生じるため、分解に要する時間は適宜定めればよいからである。この際、攪拌条件やその他分解条件を適宜変化させることにより炭酸リチウム(b)の粒子径をコントロールすることができる。なお、この反応で発生する二酸化炭素ガスは回収し、第三工程の原料の二酸化炭素として再利用することができる。
【0058】
第四工程では、次に、反応終了後、生成した炭酸リチウム(b)を固液分離し、洗浄、所望により乾燥、粉砕、分級して炭酸リチウム(b)を得る。洗浄に用いる水は、粗製水酸化リチウムを溶解する水と同様のものを用いることができる。ただし、粗製水酸化リチウムを溶解する水と同様に、逆浸透膜、限外ろ過膜、イオン交換膜等を通過させて、Na、K、Ca、Cl、SO等のイオン性不純物を除去した純水を用いると、洗浄水に由来する不純物の混入を防止できるため特に好ましい。
【0059】
かくして得られる炭酸リチウム(b)は、凝集のない柱状結晶の炭酸リチウム(b)であり、走査型電子顕微鏡写真(SEM)により求められる平均粒径が通常1〜150μm、好ましくは20〜100μmである。
【0060】
また、炭酸リチウム(b)は、純度が通常99.900%以上、好ましくは99.999%以上であり、高純度である。
【0061】
さらに、炭酸リチウム(b)は、Na、Ca、Al、Si及びKのそれぞれの不純物含有量が、1ppm以下、好ましくは0.8ppm以下であり、炭酸リチウム(a)よりもさらに高純度である。また、炭酸リチウム(b)は、Na、Ca、Al、Si及びKのそれぞれの不純物含有量が上記範囲内にある上で、さらにMg、Sr、Fe及びZnのそれぞれの不純物含有量が、1ppm以下、好ましくは0.8ppm以下であり、炭酸リチウム(a)よりもさらに高純度である。
【0062】
(第五工程)
第五工程は、第四工程で得られた炭酸リチウム(b)を所定温度で加熱処理して強熱減量の少ない高純度な炭酸リチウム(c)を得る工程である。
【0063】
加熱処理温度は、350〜600℃、好ましくは450〜550℃である。本工程においては、該範囲内で加熱処理を行うことにより、強熱減量の少ない高純度な炭酸リチウム(c)を得ることができる。一方、この加熱処理温度が350℃未満であると、強熱減量成分を充分に除去することができず、また、600℃を越えると炭酸リチウム(c)の分解を伴うため好ましくない。
【0064】
なお、本発明において強熱減量とは、重量Wの炭酸リチウム試料2gを加熱炉にて500℃で2時間加熱処理した時に減少した重量Wを求め、WをWで除した値を重量%で表したものである。
【0065】
加熱処理時間は、特に制限されるものではないが通常1〜8時間、好ましくは3〜6時間とすることが望ましい。また、加熱処理は、大気中又は酸素雰囲気中のいずれで行ってもよく、特に制限されるものではない。加熱処理終了後は、適宜冷却し、所望により粉砕、分級して炭酸リチウム(c)の製品とする。
【0066】
かくして得られる炭酸リチウム(c)は、柱状結晶であり、走査型電子顕微鏡写真(SEM)により求められる平均粒径が通常1〜150μm、好ましくは20〜100μmである。
【0067】
また、炭酸リチウム(c)は、純度が通常99.900%以上、好ましくは99.999%以上であり、高純度である。
【0068】
さらに、炭酸リチウム(c)は、Na、Ca、Al、Si及びKのそれぞれの不純物含有量が、1ppm以下、好ましくは0.8ppm以下であり、炭酸リチウム(a)よりもさらに高純度である。また、炭酸リチウム(c)は、Na、Ca、Al、Si及びKのそれぞれの不純物含有量が上記範囲内にある上で、さらにMg、Sr、Fe及びZnのそれぞれの不純物含有量が、1ppm以下、好ましくは0.8ppm以下であり、炭酸リチウム(a)よりもさらに高純度である。
【0069】
また、炭酸リチウム(c)は、強熱減量が通常0.1重量%以下、好ましくは0.05重量%以下である。
【0070】
なお、上記第一工程〜第五工程は、特に制限されるものではなく、通常の雰囲気で行ってもよいし、クリーンルームで行ってもよい。
【0071】
本発明に係る製造方法で得られる高純度な炭酸リチウム(c)は、電子材料や光工業材料の原料として好適に用いることができ、ニオブ酸リチウム単結晶、ニオブ酸リチウムカリウム単結晶、タンタル酸リチウム単結晶及びタンタル酸リチウムカリウム単結晶等の製造原料として好適に用いることができ、特に、ニオブ酸リチウム単結晶やタンタル酸リチウム単結晶の製造原料として好適に用いることができる。
【0072】
【実施例】
以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるものではない。
【0073】
なお、以下の実施例及び比較例において、粗製水酸化リチウムとして市販の水酸化リチウム1水塩を使用した。この水酸化リチウム試料中の不純物含有量を表1に示す。なお、この不純物量はICP発光分析法、ICP質量分析法及び比濁法によって求めた値である。
【0074】
【表1】

Figure 2004196606
【0075】
実施例1及び比較例1
<第一工程>
上記の粗製水酸化リチウム1水和物1062gを純水5000gに50℃で溶解し水溶液を調製した。なお、純水はイオン交換樹脂を備えた純水製造装置で処理した水を限外濾過モジュール(旭化学工業社製、分画分子量6000)で処理したものであり、以下の実施例で使用した純水も当該純水と同じ処理をしたものである。次いで、上記で調製した粗製水酸化リチウムを溶解した水溶液を40℃で孔径0.5μmのPTFE製メンブランフィルターを使用して濾過を行った。濾過後の濾過液を一部採取し、減圧下に乾燥を行って得られた水酸化リチウム試料中の不純物含有量を表2に示す。
【0076】
【表2】
Figure 2004196606
【0077】
次いで、95℃に加温し、減圧下に水分を抑留しながら4時間晶析を行った。なお、回収した水分は3300gであった。冷却後、常法により固液分離して析出した水酸化リチウムを回収し、精製水酸化リチウムを得た。 この回収したものを一部採取し、減圧下に乾燥を行って得られた水酸化リチウム試料中の不純物含有量を表3に示す。
【0078】
【表3】
Figure 2004196606
【0079】
<第二工程>
第一工程で得られた精製水酸化リチウムを含むLiOHとして10%水溶液2000gを反応容器に仕込んだ(温度40℃、pH12)。次に、30%硫酸水溶液300mlを入れた洗気ビン容量500ml、サイズ;たて7cm×横7cm×高さ15cmを通過させた二酸化炭素を反応系内に流量1500ml/minを常圧で1.5時間かけて導入し、二酸化炭素導入終了後、すぐに反応を終了した(温度75℃、pH9.5)。次に、静置後、反応液を除き、更に、純水300gを加えて洗浄処理を行った。次いで常法によりろ過後、更に純水300gで洗浄、120℃で12時間減圧下に乾燥し、次いでかるく粉砕して炭酸リチウム220g(収率71.3%)を得た。得られた炭酸リチウムの主物性を表4に示す。なお、この不純物含有量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、粒径は走査型電子顕微鏡写真(SEM)により求めた。また、重量Wの炭酸リチウム試料を加熱炉にて500℃で2時間加熱処理した時に減少した重量Wを求め、WをWで除した値を強熱減量とした。また、第二工程で得られた炭酸リチウムのTG曲線を図1に示す。
【0080】
【表4】
Figure 2004196606
【0081】
<第三工程>
第二工程で得られた炭酸リチウム150gを純水3000gに10℃で添加した炭酸リチウムを含むスラリーを調製した。次いで、常圧、高速攪拌下に、このスラリーに30%硫酸水溶液300mlを入れた洗気ビン(容量500ml、サイズ;たて7cm×横7cm×高さ15cm)を通過させた二酸化炭素を反応系内に流量1000ml/minで3時間かけて反応系内の温度を10℃に保持しながら導入した。導入後の反応液は透明であった。
【0082】
<第四工程>
次いで、第三工程で得られた透明液を95℃に加温し、1時間攪拌しながら加熱分解して炭酸リチウムを析出させた。冷却後、炭酸リチウムを常法により固液分離して炭酸リチウムを回収し、120℃で12時間減圧下に乾燥し、かるく粉砕して炭酸リチウム103g(収率68.7%)を得た。得られた炭酸リチウムの主物性を表5に示す。なお、この不純物含有量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、粒子径は走査型電子顕微鏡写真(SEM)により求め、更に上記と同様に強熱減量を測定した。また、第四工程で得られた炭酸リチウムのTG曲線を図2に示す。
【0083】
【表5】
Figure 2004196606
【0084】
<第五工程>
第四工程で得られた炭酸リチウムを各30g分取し、500℃(実施例1)、200℃(比較例1)で各試料を電気炉にて5時間加熱処理後、冷却して高純度炭酸リチウムを得た。得られた高純度炭酸リチウムの主物性を表6に示す。なお、この不純物含有量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、上記と同様に強熱減量を測定した。実施例1で得られた炭酸リチウムのTG曲線を図3に、また比較例1で得られた炭酸リチウムのTG曲線を図4示す。
【0085】
比較例2
実施例1と同様に第一工程〜第二工程を行い、次いで、得られた炭酸リチウムを500℃で5時間加熱処理して炭酸リチウムを得た。得られた炭酸リチウムの主物性を表6に示す。なお、この不純物含有量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、粒子径を電子顕微鏡写真(SEM)により求め、更に上記と同様に強熱減量を測定した。
【0086】
【表6】
Figure 2004196606
【0087】
実施例2
<第一工程>
実施例1と同様な条件で精密濾過、晶析を行った後、得られた水酸化リチウムを含むLiOHとして10%水溶液3000gを調製した(温度25℃)。また、イミノジ酢酸型型キレート樹脂(オルガノ(株)社製、アンバーライトIRC748)500mlをガラス製カラム(円筒サイズ;内径40mm、長さ640mm)に充填し、キレート樹脂を充填したカラムを調製した。上記で調製した水酸化リチウムを含む水溶液を空間速度(SV)=4hr−1で前記で調製したキレート樹脂を充填したカラムに送液した。キレート樹脂処理後の液を一部採取し、減圧下に乾燥を行って得られた水酸化リチウム試料中の不純物含有量を表7に示す。
【0088】
【表7】
Figure 2004196606
【0089】
<第二工程>
第一工程で得られた精製水酸化リチウムを含むLiOHとして10%水溶液2500gを反応容器に仕込んだ(温度40℃、pH12.1)。次に、30%硫酸水溶液300mlを入れた洗気ビン(容量500ml、サイズ;たて7cm×横7cm×高さ15cm)を通過させた二酸化炭素を反応系内に流量1500ml/min、常圧で2時間かけて導入し、二酸化炭素導入終了後、すぐに反応を終了した(温度75℃、pH9.3)。次に、静置後、反応液を除き、更に、純水300gを加えて洗浄処理を行い、常法によりろ過後、更に純水300gで洗浄後、120℃で12時間減圧下に乾燥し、かるく粉砕して炭酸リチウム283g(収率73.4%)を得た。得られた炭酸リチウムの主物性を表8に示す。なお、この不純物量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、一次粒子の粒径とニ次粒子の粒子径は走査型電子顕微鏡写真(SEM)により求めた。
【0090】
【表8】
Figure 2004196606
【0091】
<第三工程>
第二工程で得られた炭酸リチウム200gを純水4000gに10℃で添加した炭酸リチウムを含むスラリーを調製した。次いで、常圧、高速攪拌下に、このスラリーに30%硫酸水溶液300mlを入れた洗気ビン(容量500ml、サイズ;たて7cm×横7cm×高さ15cm)を通過させた二酸化炭素を反応系内に流量1000ml/minで3.5時間かけて温度を15℃に保持しながら導入した。導入後の反応液は透明であった。
【0092】
<第四工程>
次いで、第三工程で得られた透明液を95℃に加温し1.5時間攪拌しながら加熱分解して炭酸リチウムを析出させた。冷却後、炭酸リチウムを常法により固液分離して炭酸リチウムを回収し、更に純水100gで洗浄後、120℃で12時間減圧下に乾燥し、かるく粉砕して炭酸リチウム142g(収率71.0%)を得た。得られた炭酸リチウムの主物性を表9に示す。なお、この不純物含有量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、粒子径を走査型電子顕微鏡写真(SEM)により求め、更に上記と同様に強熱減量を測定した。
【0093】
【表9】
Figure 2004196606
【0094】
<第五工程>
第四工程で得られた炭酸リチウム30gを500℃で電気炉にて5時間加熱処理後、冷却し、粉砕して高純度炭酸リチウムを得た。得られた高純度炭酸リチウムの主物性を表10に示す。なお、この不純物含有量はICP発光分析法、ICP質量分析法及び比濁法により測定した。また、粒子径を走査型電子顕微鏡写真(SEM)により求め、更に上記と同様に強熱減量を測定した。
【0095】
【表10】
Figure 2004196606
【0096】
【発明の効果】
上記のとおり、本発明に係る高純度炭酸リチウムの製造方法によれば、不純物含有量が多い水酸化リチウムを反応原料として用いても、少なくともNa、K、Ca、Al及びSiの各元素の含有量が1ppm以下まで低減され、更に、強熱減量が0.05重量%以下の高純度炭酸リチウムを製造することができ、この高純度炭酸リチウムは、電子材料、光工業材料の原料、特にニオブ酸リチウム単結晶、ニオブ酸リチウムカリウム、タンタル酸リチウム及びタンタル酸リチウムカリウムの製造原料として有用である。
【図面の簡単な説明】
【図1】実施例1の第二工程で得られた炭酸リチウムのTG曲線を示したグラフである。
【図2】実施例1の第四工程で得られた炭酸リチウムのTG曲線を示したグラフである。
【図3】実施例1で得られた炭酸リチウムのTG曲線を示したグラフである。
【図4】比較例1で得られた炭酸リチウムのTG曲線を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is particularly useful for producing high-purity lithium carbonate useful as a raw material for electronic materials, optical industrial materials, particularly lithium tantalate single crystal, lithium potassium tantalate single crystal, lithium niobate single crystal and lithium potassium niobate single crystal. It is about the method.
[0002]
[Prior art]
Lithium carbonate is a compounding agent such as heat-resistant glass and optical glass, ceramic materials, raw materials for lithium secondary batteries used for batteries of mobile phones and notebook computers, materials for electrolytes, and lithium niobate used for semiconductor lasers. It is used for various purposes such as raw materials such as crystals and lithium tantalate single crystals.
[0003]
The characteristics required for lithium carbonate are diverse and differ depending on the application. For example, in the case where lithium carbonate is used as the electronic material or the optical industrial material described above, if the amount of impurities is large, the electrical characteristics and optical characteristics are degraded.
[0004]
In recent years, lithium niobate single crystal, lithium potassium niobate single crystal, lithium tantalate single crystal and lithium potassium tantalate single crystal obtained from lithium carbonate as a raw material have been used, for example, especially for blue light for semiconductor lasers. It is attracting attention as being useful for two-harmonic generation (SHG) devices. Since these single crystals generate light having a short wavelength of about 390 nm in the ultraviolet region, they can be applied to a wide range of applications such as optical disk memory, medical use, photochemistry, and various types of optical measurement. In addition, since these single crystals have a large electro-optic effect, they can be used as an optical storage element utilizing the photorefractive effect.
[0005]
However, when the single crystal is used for, for example, a second harmonic generation element, it is not preferable that the composition of the single crystal fluctuates even slightly, because the wavelength of the second harmonic oscillated from the element fluctuates. Such a variation in the composition of the single crystal is usually caused by the magnitude of the ignition loss of the raw material in many cases. That is, if the ignition loss of the raw material is large, the mixing ratio of the raw material is likely to deviate from the theoretical amount. Here, the ignition loss refers to a value obtained by heating a substance at 500 ° C. for a predetermined time to remove a volatile component from the substance and dividing the weight loss of the substance by the mass before the heat treatment. . When the raw material is lithium carbonate, the volatile component is usually water, an organic substance, unreacted hydrated lithium hydroxide, or the like.
[0006]
As described above, when lithium carbonate is used as a raw material for a single crystal, in addition to high purity as described above, it is required that the ignition loss is further reduced.
[0007]
Specifically, when lithium carbonate is used as an electronic material or an optical industrial material, it is required that the content of the foreign metal and other impurities be several ppm. In addition, when lithium carbonate is used as a raw material for producing lithium niobate single crystal, lithium potassium niobate single crystal, lithium tantalate single crystal, lithium potassium tantalate single crystal, etc., lithium carbonate contains these impurities. Is less than 1 ppm and the loss on ignition is less than 0.1% by weight.
[0008]
Conventionally, as a method for producing such a high-purity lithium carbonate, for example, after finely filtering an aqueous solution containing lithium bicarbonate obtained by reacting crude lithium carbonate and carbon dioxide, containing the lithium bicarbonate A method of precipitating lithium carbonate by heating an aqueous solution to be treated (Japanese Patent Laid-Open No. 62-252315), treating an aqueous solution containing lithium bicarbonate obtained by reacting crude lithium carbonate and carbon dioxide with an ion exchange module. Then, a method of heating the aqueous solution containing lithium bicarbonate to precipitate lithium carbonate (Japanese Patent Application Laid-Open No. 2002-505248) and the like have been proposed. According to these methods, lithium carbonate having a high degree of purity can be obtained.
[0009]
However, in the invention described in the above literature, the crude lithium carbonate as a raw material is produced using lithium hydroxide or the like containing a large amount of impurities such as Si, Al, Na, K and Ca. There are many. Therefore, even if high-purity lithium carbonate is produced from such crude lithium carbonate containing a large amount of impurities, there is a problem that the impurity content of the obtained lithium carbonate cannot be sufficiently reduced. In addition, the lithium carbonate thus produced has a problem that it is difficult to reduce the content of these impurities to 1 ppm or less even if the purification is performed later. Furthermore, even if the impurity content of lithium carbonate could be reduced to 1 ppm or less, there was a problem that the ignition loss at 500 ° C. was 0.4% by weight or more, and the ignition loss was high.
[0010]
[Patent Document 1]
JP-A-62-252315
[Patent Document 2]
JP 2002-505248 A
[0011]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to reduce the ignition loss at 500 ° C. when the content of each element of Na, K, Ca, Al and Si is 1 ppm or less even when lithium hydroxide having a high impurity content is used as a reaction raw material. Is to provide a production method capable of obtaining high-purity lithium carbonate having a content of 0.1% by weight or less.
[0012]
[Means for Solving the Problems]
In the present invention, as a result of intensive studies in view of such circumstances, as a result of producing lithium hydrogen carbonate using lithium carbonate obtained by reacting purified lithium hydroxide and carbon dioxide through a specific purification step, When lithium is thermally decomposed, high-purity lithium carbonate having at least the content of each element of Na, K, Ca, Al and Si reduced to 1 ppm or less is obtained. It has been found that a high-purity lithium carbonate having a reduced content can be obtained, and the present invention has been completed.
[0013]
That is, the present invention provides a first step in which an aqueous solution containing crude lithium hydroxide is subjected to microfiltration, followed by crystallization to obtain purified lithium hydroxide, and the purified lithium hydroxide and carbon dioxide are reacted in an aqueous solvent. A second step of recovering the precipitated lithium carbonate (a), preparing a slurry containing the lithium carbonate (a), and introducing carbon dioxide into the slurry to obtain an aqueous solution containing lithium hydrogen carbonate; A fourth step of thermally decomposing the aqueous solution containing lithium hydrogen carbonate to obtain lithium carbonate (b), and a fifth step of heating the lithium carbonate (b) at 350 to 600 ° C to obtain lithium carbonate (c). And a process for producing high-purity lithium carbonate.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0015]
(First step)
In the first step of the present invention, after fine filtration of the aqueous solution containing the crude lithium hydroxide, crystallization is performed, and at least the content of each element of Na, K, Ca, Al and Si is reduced to several ppm or less. This is a step of obtaining purified lithium hydroxide.
[0016]
In the first step, first, an aqueous solution containing crude lithium hydroxide is prepared. The aqueous solution can be prepared, for example, by dissolving crude lithium hydroxide in water. In the present invention, the crude lithium hydroxide refers to lithium hydroxide having a content of each element of Na, K, Ca, Al and Si exceeding 10 ppm. The crude lithium hydroxide used in the first step may be obtained by any production method, for example, crude lithium hydroxide obtained by the reaction of lithium carbonate and calcium hydroxide, and lithium sulfate and hydroxide. Examples include crude lithium hydroxide obtained by reaction with barium.
[0017]
The water for dissolving the crude lithium hydroxide is not particularly limited, but water having an impurity concentration as low as possible is used. Of these, Na, K, Ca, Cl, SO are passed through at least a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane and the like. 4 It is particularly preferable to use pure water from which ionic impurities such as the above have been removed, because it is possible to prevent impurities derived from water that dissolves crude lithium hydroxide from being mixed. As the water to be passed through a reverse osmosis membrane, an ultrafiltration membrane or an ion exchange resin, for example, raw water such as industrial water, city water, river water, etc. is treated by a coagulation filtration device and a pretreatment device comprising activated carbon and the like. Then, those obtained by removing most of the suspended matter and organic substances in the raw water, or those further processed by a pure water apparatus using an ion exchange resin are used.
[0018]
As the reverse osmosis membrane, a commercially available membrane module can be used. There are no particular restrictions on the operating conditions for producing pure water using the module, and any conventional method may be used. For example, as the reverse osmosis membrane, those having a cut-off molecular weight of usually 400 to 100,000, preferably 1,000 to 10,000 are mentioned. Specific materials of the membrane include, for example, a cellulose acetate polymer and a polyamide polymer. , A crosslinked polyamine polymer, a crosslinked polyether polymer, polysulfone, sulfonated polysulfone, polyvinyl alcohol, and the like. These may be appropriately selected and used. Further, the shape of the membrane may be any of a flat plate type, a spiral type, a hollow fiber type, a tubular type, a pleated type and the like.
[0019]
As the ultrafiltration membrane, a commercially available membrane module can be used. There are no particular restrictions on the operating conditions for producing pure water using the module, and any conventional method may be used. For example, as the ultrafiltration membrane, those having a cut-off molecular weight of usually 400 to 100,000, preferably 1,000 to 10,000 are mentioned, and specific materials of the membrane include, for example, regenerated cellulose, polyethersulfone, and polysulfone. , Polyacrylonitrile, polyvinyl alcohol, sintered metal, ceramic, carbon and the like are appropriately used. The shape of the membrane may be any of a flat plate type, a spiral type, a tubular type, a hollow fiber type, a pleated type and the like.
[0020]
The concentration of the crude lithium hydroxide in the aqueous solution containing the crude lithium hydroxide is not particularly limited as long as it is not more than the saturation solubility of lithium hydroxide. However, since the solubility of lithium hydroxide strongly depends on the dissolving temperature, for example, to dissolve at 80 ° C., the concentration converted to LiOH is usually 1 to 12% by weight, preferably 9 to 12% by weight.
[0021]
In the first step, next, the aqueous solution containing the crude lithium hydroxide is subjected to microfiltration to remove insolubles containing impurity components such as Si and Al.
[0022]
Microfiltration can be performed using a filtering material such as a microfiltration membrane. Examples of the microfiltration membrane that can be used in the first step include a screen filter having a surface filtration action, a depth filter having an internal filtration action, and the like, and a screen filter having a surface filtration action removes insolubles efficiently. It is preferable in that it can be used. The nominal pore size of the microfiltration membrane is usually 1 μm or less, preferably 0.2 to 0.5 μm. Further, the material of the microfiltration membrane is not particularly limited, for example, collodion, cellophane, acetylcellulose, polyacrylonitrile, polysulfone, polyolefin, polyamide, polyimide, a membrane of an organic substance such as polyvinylidene fluoride, or Examples include films of inorganic substances such as graphite, ceramics, and porous glass. When microfiltration is performed on a laboratory scale, a filtering material such as a PTFE membrane filter can be used. The type of the screen filter is not particularly limited, but a cartridge type is preferred because it is easy in operability.
[0023]
As a method for performing microfiltration, for example, a method of introducing the above-mentioned crude lithium hydroxide aqueous solution into a commercially available microfiltration device can be mentioned. The pressure condition of the microfiltration operation is not particularly limited, and it may be performed under reduced pressure or under increased pressure. ° C, preferably 20 to 80 ° C and a flow rate of usually 1 to 30 ml / min, preferably 5 to 15 ml / min, and introduced into the microfiltration apparatus, usually 0.1 to 0.5 MPa, preferably 0.2 to 0 It is preferable to filter at a pressure of 0.3 MPa. The microfiltration is preferably performed at a temperature at which lithium hydroxide does not precipitate from the aqueous solution.
[0024]
In the first step, after performing the microfiltration, a crystallization operation is performed on an aqueous solution containing crude lithium hydroxide to obtain purified lithium hydroxide. In the present invention, by performing a crystallization operation after performing the microfiltration, Si, Al, Na, Ca, K, Fe, Zn, Mg, Sr, and the like are further compared with the state after the microfiltration is performed. Impurities can be reduced.
[0025]
The crystallization operation used in the first step includes, for example, a method of cooling an aqueous solution containing the crude lithium hydroxide after the fine filtration to precipitate lithium hydroxide, or including the crude lithium hydroxide after the fine filtration. A method of heating an aqueous solution to evaporate water in the aqueous solution to precipitate lithium hydroxide. Among them, the latter method by heating is preferred because the recovery efficiency of purified lithium hydroxide is good.
[0026]
The latter method of heating, for example, after heating the aqueous solution containing the crude lithium hydroxide that has been subjected to the microfiltration as described above, usually to 80 ° C. or higher, preferably 90 to 100 ° C. % By weight, preferably 30 to 60% by weight, and then cooled to room temperature. By removing water within the above range from the aqueous solution containing crude lithium hydroxide, purified lithium hydroxide from which impurities have been efficiently removed can be obtained. Note that the crystallization operation by heating may be performed under reduced pressure.
[0027]
Before the crystallization operation, if necessary, the concentration of the aqueous solution of crude lithium hydroxide is adjusted so that LiOH is usually 1 to 13% by weight, preferably 9 to 11% by weight. This is preferable because lithium recovery efficiency is high.
[0028]
In addition, in the first step, in addition to the above-described microfiltration operation and crystallization operation, when a purification operation of lithium hydroxide using a chelating resin is performed, Ca, Zn, Mg, and Sr of lithium hydroxide are further added. This is preferable because impurities can be reduced. The purification operation using a chelate resin is preferably performed after the crystallization operation, particularly after the microfiltration and before the crystallization operation, because the operation is efficient because the liquid can be sent to the next step and the operation can be continued. .
[0029]
The type of the chelate resin that can be used for the purification operation using the chelate resin is not particularly limited, and examples thereof include iminodiacetate type and aminophosphate type chelate resins.
[0030]
The purification operation using a chelate resin is performed, for example, by converting the aqueous solution containing lithium hydroxide of the filtrate after the microfiltration and before the crystallization operation, or the aqueous solution containing lithium hydroxide after the crystallization operation, to a concentration converted to LiOH. Is usually adjusted to 1 to 13% by weight, preferably 9 to 11% by weight, and then contacting the aqueous solution with a chelate resin.
[0031]
In the purification operation using a chelate resin, the space velocity (SV) of the aqueous solution containing lithium hydroxide passing through the chelate resin is usually set to 1 to 20 hours. -1 , Preferably 3 to 8 hours -1 And By performing the purification operation using the chelate resin as described above, impurities such as Ca, Zn, Mg, and Sr in the purified lithium hydroxide can be reduced to the ppb level.
[0032]
The first step can be repeated as many times as necessary until the amount of impurities contained in the lithium hydroxide becomes equal to or less than a desired amount.
[0033]
(Second step)
The second step is a step of reacting the purified lithium hydroxide obtained in the first step with carbon dioxide in an aqueous solvent to recover the precipitated lithium carbonate (a).
[0034]
In the second step, first, purified lithium hydroxide and carbon dioxide are allowed to react in an aqueous solvent. Specifically, for example, there is a method of dissolving the purified lithium hydroxide in water to prepare an aqueous solution containing the purified lithium hydroxide. When the aqueous solution is prepared in this manner, it becomes possible to react purified lithium hydroxide with carbon dioxide in an aqueous solvent by introducing carbon dioxide into the aqueous solution.
[0035]
As the water for dissolving the purified lithium hydroxide, the same water as that for dissolving the crude lithium hydroxide can be used. However, as in the case of water for dissolving crude lithium hydroxide, Na, K, Ca, Cl, SO are passed through a reverse osmosis membrane, an ultrafiltration membrane, ion-exchanged water and the like. 4 It is particularly preferable to use pure water from which ionic impurities have been removed, since it is possible to prevent impurities derived from water in which purified lithium hydroxide is dissolved from being mixed.
[0036]
The concentration of purified lithium hydroxide in the aqueous solution containing purified lithium hydroxide is not particularly limited as long as it is less than the saturation solubility of lithium hydroxide. However, since the solubility of lithium hydroxide strongly depends on the temperature as described above, for example, when dissolving at 25 ° C., the concentration of purified lithium hydroxide in the aqueous solution in terms of LiOH is usually 1 to 10% by weight, Preferably, the content is 5 to 10% by weight, since the purified lithium hydroxide can be dissolved and the reaction efficiency with carbon dioxide is high.
[0037]
In the second step, next, for example, carbon dioxide is introduced into the aqueous solution containing the purified lithium hydroxide to cause the purified lithium hydroxide to react with the carbon dioxide in an aqueous solvent, thereby obtaining lithium carbonate (a). Is precipitated. There is no particular limitation on the carbon dioxide used in the second step, but it is preferable to use carbon dioxide that has been previously passed through an acid solution such as sulfuric acid or nitric acid and has impurities removed from a storage tank, a pressure regulating valve, piping, etc. Is preferred because high-purity lithium carbonate (a) is easily obtained.
[0038]
When the amount of carbon dioxide introduced is usually 0.5 to 2.5, preferably 0.5 to 0.8 in terms of molar ratio to purified lithium hydroxide, high purity lithium carbonate without side reaction to lithium hydrogen carbonate (A) is preferable because it can be obtained in a high yield.
[0039]
In addition, when carbon dioxide is introduced into an aqueous solution containing purified lithium hydroxide, the pH decreases as carbon dioxide is introduced. However, when the pH becomes 8.35 or less, lithium hydrogen carbonate is generated. It is desirable that the amount of carbon dioxide introduced be adjusted until the pH of the reactor becomes 10 or more, preferably 8.5 or more.
[0040]
The reaction temperature is generally 0-100 ° C, preferably 60-80 ° C. It is preferable that the reaction temperature is within the above range, since high-purity lithium carbonate (a) can be obtained in a high yield. The temperature of the reaction system usually rises with the introduction of carbon dioxide, but is preferably kept within the above temperature range. In addition, the reaction time is not particularly limited because such a reaction is promptly performed by contact of lithium hydroxide and carbon dioxide. The second step can be performed under normal pressure or under pressure.
[0041]
The second step can be performed by either a batch method or a continuous method. In addition, when the reaction is performed in a batch system, the precipitated lithium carbonate (a) usually becomes a massive primary particle aggregate in which fine primary particles are weakly bonded to each other. When the reaction is carried out in a continuous manner, the precipitated lithium carbonate (a) usually becomes fine primary particles.
[0042]
After completion of the reaction, the precipitated lithium carbonate (a) is filtered and washed by a conventional method, and dried if necessary to obtain lithium carbonate (a). Note that it is preferable to use pure water as the water to be used for washing, since it is easy to prevent impurities derived from the washing water from being mixed and lithium carbonate (a) is easily obtained. In addition, drying is preferably performed in a closed system in order to avoid contamination of impurities from the air. Specifically, a method of drying under reduced pressure is preferable at a laboratory level, and a method using a drying device such as a paddle dryer is preferable at an industrial level.
[0043]
When the lithium carbonate (a) thus obtained is reacted in a batch system, it is a massive primary particle aggregate in which fine primary particles are weakly bonded to each other. The average particle size of the primary particle aggregate is usually 10 to 150 μm, preferably 30 to 100 μm. On the other hand, when the reaction is performed in a continuous manner, the obtained lithium carbonate (a) is fine primary particles, and the average particle size of the primary particles is usually 1 to 100 µm, preferably 10 to 60 µm.
[0044]
Lithium carbonate (a) has a high purity of usually 99.00% or more, preferably 99.99% or more.
[0045]
Further, lithium carbonate (a) has a high purity in which the respective impurity contents of Na, Ca, Al, Si and K are 10 ppm or less, preferably 5 ppm or less. Lithium carbonate (a) has an impurity content of each of Na, Ca, Al, Si and K within the above range, and further has an impurity content of each of Mg, Sr, Fe and Zn of 10 ppm. Or less, preferably 5 ppm or less, and high purity.
[0046]
(Third step)
The third step is a step of preparing an aqueous slurry containing the lithium carbonate (a) obtained in the second step, and introducing carbon dioxide into the slurry to prepare an aqueous solution containing lithium hydrogen carbonate.
[0047]
In the third step, first, the lithium carbonate (a) obtained in the second step is dispersed in water to prepare an aqueous slurry containing lithium carbonate (a).
[0048]
As water for dispersing lithium carbonate (a), the same water as that for dissolving crude lithium hydroxide can be used. However, similarly to water for dissolving crude lithium hydroxide, Na, K, Ca, Cl, SO are passed through a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane and the like. 4 It is particularly preferable to use pure water from which ionic impurities such as lithium carbonate (a) have been removed because impurities derived from water in which lithium carbonate (a) is dispersed can be prevented.
[0049]
The concentration of lithium carbonate (a) in the slurry containing lithium carbonate (a) is preferably a concentration corresponding to the solubility of lithium hydrogen carbonate generated by the introduction of carbon dioxide or higher. This is because the use of an aqueous solution containing a high concentration of lithium bicarbonate makes it possible to obtain lithium carbonate (b) in a high yield. This is because, if the lithium carbonate (b) is dispersed in excess of lithium carbonate (b) in consideration of its high cost, lithium carbonate (b) can be obtained in a high yield. Specifically, the concentration of lithium carbonate (a) in the slurry containing lithium carbonate (a) is usually 1 to 12% by weight, preferably 4 to 8% by weight.
[0050]
Next, carbon dioxide is introduced into the slurry containing the lithium carbonate (a), and the following reaction formula (1)
Embedded image
Li 2 CO 3 + CO 2 + H 2 O → 2LiHCO 3 (1)
To produce an aqueous solution containing lithium hydrogen carbonate.
[0051]
There is no particular limitation on the carbon dioxide used in the third step, but, similarly to the second step, an acid solution such as sulfuric acid or nitric acid is passed in advance to remove impurities mixed in from a storage tank, a pressure regulating valve, piping, and the like. It is preferable to use the removed carbon dioxide because high-purity lithium carbonate is easily obtained.
[0052]
The amount of carbon dioxide introduced is usually 1 or more, preferably 1 to 5 in molar ratio to lithium carbonate (a). The end point of this reaction is a solubilization reaction of lithium carbonate (a) by the introduction of carbon dioxide, that is, a reaction of forming lithium hydrogen carbonate is an equilibrium reaction as shown in the above formula (1). Since the change in the consumption amount of lithium carbonate (a) with respect to the change in the introduced amount is small, it is efficient to control and determine the calculated amount of carbon dioxide based on the flow rate with respect to the preset lithium concentration.
[0053]
The reaction temperature is usually -40 to 50 ° C, preferably 0 to 30 ° C, because carbon dioxide in the solution can be maintained at a high concentration and the generated lithium hydrogen carbonate is not decomposed. The reaction time is not particularly limited because the reaction is promptly performed by contacting lithium carbonate (a) with carbon dioxide.
[0054]
The above reaction is preferable when carbon dioxide and lithium carbonate (a) are dispersed and contacted with each other using an efficient gas-liquid contacting device such as high-speed stirring because the contact efficiency between them and the production efficiency of lithium hydrogen carbonate are high. . The above reaction in the third step can be performed under normal pressure or under pressure.
[0055]
After the completion of the above reaction, the obtained aqueous solution containing lithium hydrogen carbonate is usually transparent with almost no suspension. However, when the aqueous solution is cloudy, it is preferable to perform microfiltration to remove insolubles. It is preferable to perform the microfiltration in this manner and to provide the resulting filtrate to the next step, the fourth step, because it is easy to obtain high-purity lithium carbonate (b) in the fourth step. The method for performing the microfiltration may be in accordance with the microfiltration method in the first step.
[0056]
(Fourth step)
In the fourth step, the aqueous solution containing lithium hydrogen carbonate obtained in the third step is thermally decomposed to give the following reaction formula (2)
Embedded image
2LiHCO 3 → Li 2 CO 3 + CO 2 + H 2 O (2)
Is a step of obtaining lithium carbonate (b) according to the following.
[0057]
In the fourth step, first, the aqueous solution containing lithium hydrogen carbonate is heated with stirring at usually 40 ° C. or more, preferably 50 ° C. or more, particularly preferably 70 to 95 ° C. The decomposition of lithium hydrogen carbonate in the aqueous solution is promoted with the heating. Since the decomposition amount of lithium hydrogen carbonate increases as the temperature increases, the yield of lithium carbonate (b) also improves with the temperature. Note that the time required for the decomposition is not particularly limited. That is, when the temperature of the aqueous solution is raised, even if the temperature is not completely raised to the above temperature range, the solution is substantially thermally decomposed to generate lithium carbonate (b), so that the time required for the decomposition may be appropriately determined. . At this time, the particle size of lithium carbonate (b) can be controlled by appropriately changing the stirring conditions and other decomposition conditions. The carbon dioxide gas generated in this reaction can be recovered and reused as carbon dioxide as a raw material in the third step.
[0058]
In the fourth step, after completion of the reaction, the produced lithium carbonate (b) is subjected to solid-liquid separation, washed, and, if desired, dried, pulverized and classified to obtain lithium carbonate (b). The same water as that used for dissolving the crude lithium hydroxide can be used for the washing. However, similarly to water for dissolving crude lithium hydroxide, Na, K, Ca, Cl, SO are passed through a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane and the like. 4 It is particularly preferable to use pure water from which ionic impurities such as the above have been removed because impurities derived from washing water can be prevented from being mixed.
[0059]
The lithium carbonate (b) thus obtained is columnar lithium carbonate (b) without aggregation, and has an average particle diameter determined by a scanning electron micrograph (SEM) of usually 1 to 150 μm, preferably 20 to 100 μm. is there.
[0060]
Lithium carbonate (b) has a high purity of usually 99.900% or more, preferably 99.999% or more.
[0061]
Further, lithium carbonate (b) has an impurity content of each of Na, Ca, Al, Si and K of 1 ppm or less, preferably 0.8 ppm or less, and is even higher in purity than lithium carbonate (a). . In addition, lithium carbonate (b) has an impurity content of each of Na, Ca, Al, Si and K within the above range, and further has an impurity content of each of Mg, Sr, Fe and Zn of 1 ppm. Or less, preferably 0.8 ppm or less, which is even higher in purity than lithium carbonate (a).
[0062]
(Fifth step)
The fifth step is a step of subjecting the lithium carbonate (b) obtained in the fourth step to heat treatment at a predetermined temperature to obtain high-purity lithium carbonate (c) with a small loss on ignition.
[0063]
The heat treatment temperature is 350 to 600C, preferably 450 to 550C. In this step, by performing the heat treatment within this range, high-purity lithium carbonate (c) with a small loss on ignition can be obtained. On the other hand, if the heat treatment temperature is lower than 350 ° C., the loss on ignition component cannot be sufficiently removed, and if it exceeds 600 ° C., decomposition of lithium carbonate (c) is accompanied, which is not preferable.
[0064]
In the present invention, the ignition loss means the weight W 0 Weight 2 W of a lithium carbonate sample of Example 2 was heated at 500 ° C. for 2 hours in a heating furnace. 4 And W 4 To W 0 Is expressed in weight%.
[0065]
The heat treatment time is not particularly limited, but is usually 1 to 8 hours, preferably 3 to 6 hours. The heat treatment may be performed in the air or in an oxygen atmosphere, and is not particularly limited. After the completion of the heat treatment, the mixture is appropriately cooled, pulverized and classified as required to obtain a lithium carbonate (c) product.
[0066]
The lithium carbonate (c) thus obtained is a columnar crystal, and has an average particle size determined by a scanning electron micrograph (SEM) of usually 1 to 150 μm, preferably 20 to 100 μm.
[0067]
Lithium carbonate (c) has a purity of usually at least 99.900%, preferably at least 99.999%, and is high in purity.
[0068]
Further, lithium carbonate (c) has an impurity content of each of Na, Ca, Al, Si and K of 1 ppm or less, preferably 0.8 ppm or less, and has a higher purity than lithium carbonate (a). . Lithium carbonate (c) has an impurity content of each of Na, Ca, Al, Si and K within the above range, and further has an impurity content of each of Mg, Sr, Fe and Zn of 1 ppm. Or less, preferably 0.8 ppm or less, which is even higher in purity than lithium carbonate (a).
[0069]
Lithium carbonate (c) has a loss on ignition of usually 0.1% by weight or less, preferably 0.05% by weight or less.
[0070]
The first to fifth steps are not particularly limited, and may be performed in a normal atmosphere or in a clean room.
[0071]
The high-purity lithium carbonate (c) obtained by the production method according to the present invention can be suitably used as a raw material for electronic materials and optical industrial materials, and includes lithium niobate single crystal, lithium potassium niobate single crystal, and tantalum acid. It can be suitably used as a raw material for producing a lithium single crystal, a lithium potassium tantalate single crystal or the like, and in particular, can be suitably used as a raw material for producing a lithium niobate single crystal or a lithium tantalate single crystal.
[0072]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0073]
In the following Examples and Comparative Examples, commercially available lithium hydroxide monohydrate was used as crude lithium hydroxide. Table 1 shows the content of impurities in the lithium hydroxide sample. In addition, this impurity amount is a value determined by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry.
[0074]
[Table 1]
Figure 2004196606
[0075]
Example 1 and Comparative Example 1
<First step>
An aqueous solution was prepared by dissolving 1062 g of the above crude lithium hydroxide monohydrate in 5000 g of pure water at 50 ° C. The pure water was obtained by treating water treated by a pure water producing apparatus equipped with an ion exchange resin with an ultrafiltration module (manufactured by Asahi Chemical Industry Co., Ltd., molecular weight cut off: 6000), and used in the following examples. Pure water has been subjected to the same treatment as the pure water. Next, the aqueous solution prepared by dissolving the crude lithium hydroxide prepared above was filtered at 40 ° C. using a PTFE membrane filter having a pore size of 0.5 μm. Table 2 shows the content of impurities in the lithium hydroxide sample obtained by partially collecting the filtrate after filtration and drying it under reduced pressure.
[0076]
[Table 2]
Figure 2004196606
[0077]
Next, the mixture was heated to 95 ° C., and crystallization was performed for 4 hours while keeping the water content under reduced pressure. In addition, the collected water was 3300 g. After cooling, the precipitated lithium hydroxide was recovered by solid-liquid separation by a conventional method, and purified lithium hydroxide was obtained. Table 3 shows the content of impurities in the lithium hydroxide sample obtained by partially collecting the recovered product and drying it under reduced pressure.
[0078]
[Table 3]
Figure 2004196606
[0079]
<Second step>
A reaction vessel was charged with 2000 g of a 10% aqueous solution as LiOH containing the purified lithium hydroxide obtained in the first step (temperature: 40 ° C., pH: 12). Next, 500 ml of an air-washing bottle containing 300 ml of 30% sulfuric acid aqueous solution and a size of 7 cm × 7 cm × 15 cm in height were introduced into the reaction system at a flow rate of 1500 ml / min at normal pressure. The reaction was introduced over 5 hours, and immediately after the introduction of carbon dioxide, the reaction was terminated (temperature: 75 ° C., pH: 9.5). Next, after standing, the reaction solution was removed, and 300 g of pure water was further added to perform a washing treatment. Then, after filtration by a conventional method, the resultant was further washed with 300 g of pure water, dried under reduced pressure at 120 ° C. for 12 hours, and then slightly ground to obtain 220 g of lithium carbonate (yield: 71.3%). Table 4 shows the main physical properties of the obtained lithium carbonate. In addition, this impurity content was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. The particle size was determined by a scanning electron microscope photograph (SEM). Also, the weight W 0 Weight W when the lithium carbonate sample was heated at 500 ° C. for 2 hours in a heating furnace. 4 And W 4 To W 0 The value obtained by dividing by I was defined as the ignition loss. FIG. 1 shows a TG curve of the lithium carbonate obtained in the second step.
[0080]
[Table 4]
Figure 2004196606
[0081]
<Third step>
A slurry containing lithium carbonate was prepared by adding 150 g of the lithium carbonate obtained in the second step to 3000 g of pure water at 10 ° C. Then, under normal pressure and high-speed stirring, the slurry was charged with carbon dioxide that had passed through an air-washing bottle (capacity: 500 ml, size: 7 cm x 7 cm x 15 cm in height) containing 300 ml of 30% sulfuric acid aqueous solution. The reaction system was introduced at a flow rate of 1000 ml / min over 3 hours while maintaining the temperature in the reaction system at 10 ° C. The reaction solution after the introduction was transparent.
[0082]
<Fourth step>
Next, the transparent liquid obtained in the third step was heated to 95 ° C., and heated and decomposed with stirring for 1 hour to precipitate lithium carbonate. After cooling, lithium carbonate was separated by solid-liquid separation by a conventional method to recover lithium carbonate, dried under reduced pressure at 120 ° C. for 12 hours, and pulverized lightly to obtain 103 g (yield: 68.7%) of lithium carbonate. Table 5 shows the main physical properties of the obtained lithium carbonate. In addition, this impurity content was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. The particle size was determined by a scanning electron micrograph (SEM), and the ignition loss was measured in the same manner as described above. FIG. 2 shows a TG curve of the lithium carbonate obtained in the fourth step.
[0083]
[Table 5]
Figure 2004196606
[0084]
<Fifth process>
30 g of each lithium carbonate obtained in the fourth step was sampled, and each sample was heated at 500 ° C. (Example 1) and 200 ° C. (Comparative Example 1) in an electric furnace for 5 hours, and then cooled to obtain high purity. Lithium carbonate was obtained. Table 6 shows the main physical properties of the obtained high-purity lithium carbonate. In addition, this impurity content was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. Further, the ignition loss was measured in the same manner as described above. FIG. 3 shows a TG curve of the lithium carbonate obtained in Example 1, and FIG. 4 shows a TG curve of the lithium carbonate obtained in Comparative Example 1.
[0085]
Comparative Example 2
The first and second steps were performed in the same manner as in Example 1, and then the obtained lithium carbonate was heated at 500 ° C. for 5 hours to obtain lithium carbonate. Table 6 shows the main physical properties of the obtained lithium carbonate. In addition, this impurity content was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. The particle size was determined by an electron micrograph (SEM), and the ignition loss was measured in the same manner as described above.
[0086]
[Table 6]
Figure 2004196606
[0087]
Example 2
<First step>
After microfiltration and crystallization under the same conditions as in Example 1, 3000 g of a 10% aqueous solution was prepared as LiOH containing lithium hydroxide (temperature: 25 ° C.). In addition, a glass column (cylindrical size; inner diameter 40 mm, length 640 mm) was filled with 500 ml of iminodiacetic acid type chelate resin (Amberlite IRC748, manufactured by Organo Corporation) to prepare a column filled with the chelate resin. The aqueous solution containing lithium hydroxide prepared above was subjected to space velocity (SV) = 4 hr. -1 Was sent to a column filled with the chelate resin prepared above. Table 7 shows the impurity content in the lithium hydroxide sample obtained by partially collecting the liquid after the chelate resin treatment and drying it under reduced pressure.
[0088]
[Table 7]
Figure 2004196606
[0089]
<Second step>
A reaction vessel was charged with 2500 g of a 10% aqueous solution of LiOH containing the purified lithium hydroxide obtained in the first step (temperature: 40 ° C., pH: 12.1). Next, carbon dioxide passed through an air-washing bottle (capacity: 500 ml, size: 7 cm × 7 cm × 15 cm in height) containing 300 ml of 30% sulfuric acid aqueous solution was introduced into the reaction system at a flow rate of 1500 ml / min at normal pressure. The reaction was introduced over 2 hours, and immediately after the introduction of carbon dioxide was completed, the reaction was terminated (temperature: 75 ° C., pH: 9.3). Next, after standing still, the reaction solution was removed, and washing treatment was performed by further adding 300 g of pure water. After filtration by a conventional method, further washing with 300 g of pure water, drying under reduced pressure at 120 ° C. for 12 hours, The mixture was slightly ground to obtain 283 g of lithium carbonate (yield: 73.4%). Table 8 shows the main physical properties of the obtained lithium carbonate. In addition, this impurity amount was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. Further, the particle diameter of the primary particles and the particle diameter of the secondary particles were determined by a scanning electron micrograph (SEM).
[0090]
[Table 8]
Figure 2004196606
[0091]
<Third step>
A slurry containing lithium carbonate was prepared by adding 200 g of lithium carbonate obtained in the second step to 4000 g of pure water at 10 ° C. Then, under normal pressure and high-speed stirring, the slurry was charged with carbon dioxide that had passed through an air-washing bottle (capacity: 500 ml, size: 7 cm x 7 cm x 15 cm in height) containing 300 ml of 30% sulfuric acid aqueous solution. It was introduced at a flow rate of 1000 ml / min over 3.5 hours while maintaining the temperature at 15 ° C. The reaction solution after the introduction was transparent.
[0092]
<Fourth step>
Next, the transparent liquid obtained in the third step was heated to 95 ° C. and thermally decomposed with stirring for 1.5 hours to precipitate lithium carbonate. After cooling, the lithium carbonate was solid-liquid separated by a conventional method to recover the lithium carbonate, washed with 100 g of pure water, dried under reduced pressure at 120 ° C. for 12 hours, pulverized lightly, and 142 g of lithium carbonate (yield 71%). .0%). Table 9 shows the main physical properties of the obtained lithium carbonate. In addition, this impurity content was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. The particle size was determined by a scanning electron micrograph (SEM), and the ignition loss was measured in the same manner as described above.
[0093]
[Table 9]
Figure 2004196606
[0094]
<Fifth process>
After heating 30 g of the lithium carbonate obtained in the fourth step at 500 ° C. in an electric furnace for 5 hours, it was cooled and pulverized to obtain high-purity lithium carbonate. Table 10 shows the main physical properties of the obtained high-purity lithium carbonate. In addition, this impurity content was measured by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. The particle size was determined by a scanning electron micrograph (SEM), and the ignition loss was measured in the same manner as described above.
[0095]
[Table 10]
Figure 2004196606
[0096]
【The invention's effect】
As described above, according to the method for producing high-purity lithium carbonate according to the present invention, even if lithium hydroxide having a high impurity content is used as a reaction raw material, at least the content of each element of Na, K, Ca, Al and Si is reduced. In addition, high-purity lithium carbonate having an amount reduced to 1 ppm or less and ignition loss of 0.05% by weight or less can be produced. This high-purity lithium carbonate is a raw material for electronic materials and optical industrial materials, particularly niobium. It is useful as a raw material for producing lithium oxide single crystal, lithium potassium niobate, lithium tantalate and lithium potassium tantalate.
[Brief description of the drawings]
FIG. 1 is a graph showing a TG curve of lithium carbonate obtained in a second step of Example 1.
FIG. 2 is a graph showing a TG curve of lithium carbonate obtained in a fourth step of Example 1.
FIG. 3 is a graph showing a TG curve of lithium carbonate obtained in Example 1.
FIG. 4 is a graph showing a TG curve of lithium carbonate obtained in Comparative Example 1.

Claims (6)

粗製水酸化リチウムを含む水溶液を精密濾過した後、晶析を行って精製水酸化リチウムを得る第一工程、該精製水酸化リチウムと二酸化炭素とを水溶媒中で反応させて析出させた炭酸リチウム(a)を回収する第二工程、該炭酸リチウム(a)を含むスラリーを調製し、該スラリーに二酸化炭素を導入して炭酸水素リチウムを含む水溶液を得る第三工程、該炭酸水素リチウムを含む水溶液を加熱分解して炭酸リチウム(b)を得る第四工程、及び該炭酸リチウム(b)を350〜600℃で加熱処理して炭酸リチウム(c)を得る第五工程を含むことを特徴とする高純度炭酸リチウムの製造方法。The first step of finely filtering an aqueous solution containing crude lithium hydroxide and then performing crystallization to obtain purified lithium hydroxide, lithium carbonate precipitated by reacting the purified lithium hydroxide with carbon dioxide in an aqueous solvent A second step of recovering (a), a third step of preparing a slurry containing the lithium carbonate (a), and introducing carbon dioxide into the slurry to obtain an aqueous solution containing lithium hydrogen carbonate; A fourth step of thermally decomposing the aqueous solution to obtain lithium carbonate (b) and a fifth step of heat-treating the lithium carbonate (b) at 350 to 600 ° C to obtain lithium carbonate (c). Method for producing high-purity lithium carbonate. 前記第一工程の精密濾過が、孔径1μm以下の濾過材を用いて行うものであることを特徴とする請求項1記載の高純度炭酸リチウムの製造方法。The method for producing high-purity lithium carbonate according to claim 1, wherein the microfiltration in the first step is performed using a filtering material having a pore size of 1 µm or less. 前記第一工程の晶析が、前記精密濾過後の粗製水酸化リチウムを含む水溶液を加熱して該水溶液中の水分を蒸発させることにより水酸化リチウムを析出させるものであることを特徴とする請求項1又は2記載の高純度炭酸リチウムの製造方法。The crystallization in the first step, wherein the lithium hydroxide is precipitated by heating an aqueous solution containing the crude lithium hydroxide after the microfiltration and evaporating water in the aqueous solution. Item 3. The method for producing high-purity lithium carbonate according to Item 1 or 2. 前記第一工程は、前記精密濾過後且つ晶析操作前の水酸化リチウムを含む水溶液又は晶析操作後の水酸化リチウムを含む水溶液を、更にキレート樹脂を用いて精製するものであることを特徴とする請求項1〜3のいずれか1項記載の高純度炭酸リチウムの製造方法。The first step is characterized in that an aqueous solution containing lithium hydroxide after the microfiltration and before the crystallization operation or an aqueous solution containing lithium hydroxide after the crystallization operation is further purified using a chelate resin. The method for producing high-purity lithium carbonate according to any one of claims 1 to 3. 前記炭酸リチウム(b)を350〜600℃で加熱処理して炭酸リチウム(c)を得る第五工程を含むことを特徴とする高純度炭酸リチウムの製造方法。A method for producing high-purity lithium carbonate, comprising a fifth step of subjecting the lithium carbonate (b) to heat treatment at 350 to 600 ° C. to obtain lithium carbonate (c). 前記炭酸リチウム(b)は、平均粒径1〜150μm、純度99.900%以上、Na、Ca、Al、Si及びKのそれぞれが1ppm以下の炭酸リチウムであることを特徴とする請求項5記載の高純度炭酸リチウムの製造方法。The lithium carbonate (b) is lithium carbonate having an average particle diameter of 1 to 150 m, a purity of 99.900% or more, and each of Na, Ca, Al, Si and K being 1 ppm or less. Production method of high purity lithium carbonate.
JP2002368379A 2002-12-19 2002-12-19 Method for manufacturing high purity lithium carbonate Pending JP2004196606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368379A JP2004196606A (en) 2002-12-19 2002-12-19 Method for manufacturing high purity lithium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368379A JP2004196606A (en) 2002-12-19 2002-12-19 Method for manufacturing high purity lithium carbonate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008274104A Division JP4896108B2 (en) 2008-10-24 2008-10-24 Method for producing high purity lithium carbonate

Publications (1)

Publication Number Publication Date
JP2004196606A true JP2004196606A (en) 2004-07-15

Family

ID=32764968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368379A Pending JP2004196606A (en) 2002-12-19 2002-12-19 Method for manufacturing high purity lithium carbonate

Country Status (1)

Country Link
JP (1) JP2004196606A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131664A1 (en) * 2009-05-15 2010-11-18 日本化学工業株式会社 High purity lithium carbonate and method for producing same
CN102267707A (en) * 2011-07-01 2011-12-07 清华大学 Process for preparing nanometer lithium carbonate particle by precipitation
JP2015171995A (en) * 2010-02-17 2015-10-01 シンボル インコーポレイテッド Process for preparing highly pure lithium carbonate and other highly pure lithium containing compound
CN109809440A (en) * 2017-11-20 2019-05-28 深圳市美凯特科技有限公司 The method for preparing high-purity lithium chloride, high-purity lithium formate and high-purity lithium carbonate
CN110336016A (en) * 2019-07-16 2019-10-15 中钢集团南京新材料研究院有限公司 A kind of preparation method for mixing aluminium LiMn2O4
CN111589278A (en) * 2020-04-27 2020-08-28 湖南凯地众能科技有限公司 System and method for recycling water of recovered waste lithium ion battery
CN112678849A (en) * 2021-01-04 2021-04-20 江西云锂材料股份有限公司 Method for preparing high-purity lithium carbonate by using lithium hydroxide
CN113072081A (en) * 2021-03-25 2021-07-06 四川恩特普环保科技有限公司 Impurity removal process for lithium sulfate purification completion liquid

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131664A1 (en) * 2009-05-15 2010-11-18 日本化学工業株式会社 High purity lithium carbonate and method for producing same
JP2010265142A (en) * 2009-05-15 2010-11-25 Nippon Chem Ind Co Ltd High-purity lithium carbonate and production method thereof
JP2015171995A (en) * 2010-02-17 2015-10-01 シンボル インコーポレイテッド Process for preparing highly pure lithium carbonate and other highly pure lithium containing compound
EP3594382A3 (en) * 2010-02-17 2020-03-18 All American Lithium LLC Processes for preparing highly pure lithium carbonate
CN102267707A (en) * 2011-07-01 2011-12-07 清华大学 Process for preparing nanometer lithium carbonate particle by precipitation
CN109809440A (en) * 2017-11-20 2019-05-28 深圳市美凯特科技有限公司 The method for preparing high-purity lithium chloride, high-purity lithium formate and high-purity lithium carbonate
CN109809440B (en) * 2017-11-20 2021-05-25 深圳市美凯特科技有限公司 Method for preparing high-purity lithium chloride, high-purity lithium formate and high-purity lithium carbonate
CN110336016A (en) * 2019-07-16 2019-10-15 中钢集团南京新材料研究院有限公司 A kind of preparation method for mixing aluminium LiMn2O4
CN111589278A (en) * 2020-04-27 2020-08-28 湖南凯地众能科技有限公司 System and method for recycling water of recovered waste lithium ion battery
CN111589278B (en) * 2020-04-27 2022-03-22 湖南凯地众能科技有限公司 System and method for recycling water of recovered waste lithium ion battery
CN112678849A (en) * 2021-01-04 2021-04-20 江西云锂材料股份有限公司 Method for preparing high-purity lithium carbonate by using lithium hydroxide
CN113072081A (en) * 2021-03-25 2021-07-06 四川恩特普环保科技有限公司 Impurity removal process for lithium sulfate purification completion liquid

Similar Documents

Publication Publication Date Title
JP4896108B2 (en) Method for producing high purity lithium carbonate
JP4896109B2 (en) Method for producing high purity lithium carbonate
JP5431019B2 (en) Method for producing high purity lithium carbonate
JP3883491B2 (en) Method for producing lithium concentrate from aqueous solution containing lithium
JP5495472B2 (en) Lithium sulfide powder and inorganic solid electrolyte
US6747065B1 (en) System and method for producing high purity colloidal silica and potassium hydroxide
JP2005060219A (en) Silica sol and manufacturing method therefor
WO2018124117A1 (en) Silica particle dispersion and method for producing same
JP4043014B2 (en) Method for producing high purity barium nitrate
JP2004196606A (en) Method for manufacturing high purity lithium carbonate
JP2004196607A (en) Method for manufacturing high purity lithium carbonate
JP5016201B2 (en) Method for producing high purity phosphoric acid
JPH11310414A (en) Production of highly pure lithium carbonate
JP4833539B2 (en) Lithium sulfide particle powder, method for producing the same, and inorganic solid electrolyte
JP2008254944A (en) Porous iron oxide and its manufacturing method, and method for processing water to be treated
JP7345728B2 (en) How to purify lithium carbonate
JP4043013B2 (en) Method for producing high purity barium carbonate
JP5318437B2 (en) Method for purifying metal fluorides
CN104399448A (en) Catalyst zinc oxide and preparation method thereof
JPH1135305A (en) Production of purified aqueous hydrogen peroxide solution
JPH11310413A (en) Production of highly pure lithium carbonate
EP0518727B1 (en) Process for purifying an aqueous alkali meta chloride solution by removing ammonium and iodine
CN113443658B (en) Method for producing metal hydroxide crystals
KR0128122B1 (en) Method of processing the iron chloride liquid
WO2022211128A1 (en) Method for producing lithium compound and apparatus for producing lithium compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080605

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081002

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090119