JP2004194484A - Dc−dcコンバータの制御装置 - Google Patents

Dc−dcコンバータの制御装置 Download PDF

Info

Publication number
JP2004194484A
JP2004194484A JP2002362731A JP2002362731A JP2004194484A JP 2004194484 A JP2004194484 A JP 2004194484A JP 2002362731 A JP2002362731 A JP 2002362731A JP 2002362731 A JP2002362731 A JP 2002362731A JP 2004194484 A JP2004194484 A JP 2004194484A
Authority
JP
Japan
Prior art keywords
signal
switching frequency
converter
cpu
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002362731A
Other languages
English (en)
Inventor
光昭 ▲高▼阪
Mitsuaki Kosaka
Noboru Chin
登 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2002362731A priority Critical patent/JP2004194484A/ja
Publication of JP2004194484A publication Critical patent/JP2004194484A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】低コストのCPUを使用しつつも、高分解能のPFM信号を出力することの可能な、DC−DCコンバータの制御装置を提供すること。
【解決手段】スイッチング周波数を変化させるPFM信号生成回路12において、CPU30に5MHzの基準クロックを入力して演算部31を動作可能にする。また、CPU30の内部カウンタ32は基準クロックをカウントすることによって、スイッチング周波数によって規定される周期のN倍をカウントし、そのカウント動作の終了に伴ってスイッチング周波数の1/Nの周波数成分を有する信号を生成する。そして逓倍器40においてカウンタ出力信号を逓倍することにより、スイッチング周波数成分を有するPFM信号を生成するように構成する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、DC−DCコンバータ(直流変換器)の制御装置に関し、特に制御用の信号生成技術に関するものである。
【0002】
【従来の技術】
従来、DC−DCコンバータの制御装置は、スイッチング損失を低減するために、電圧共振を利用したゼロ電圧スイッチング方式や、電流共振を利用したゼロ電流スイッチング方式を採用する。これらのDC−DCコンバータにおいては、半導体スイッチング素子のオン時間を一定にし、スイッチング周波数を変化させることで出力電圧を制御する方法が一般的である(例えば、特許文献1及び2)。
【0003】
このようなスイッチング周波数の制御をCPUを用いて行う場合、CPUの内部カウンタで基準クロックをカウントするように構成され、出力電圧に応じたカウント値を計数した時点で制御用のパルスを発生させるようになっている。これにより、CPUは出力電圧に応じて周波数を変調したパルス信号(パルス周波数変調信号:PFM信号)を生成することになり、DC−DCコンバータの出力電圧が一定の状態に制御される。
【0004】
例えば、図4に示すように、CPU100がクロック110から入力する5MHzの基準クロックを入力して内部動作を行うように構成され、出力電圧に応じたスイッチング周波数を決定するように構成される。また、CPU100には内部カウンタ102が設けられており、内部カウンタ102はCPU100に入力する基準クロックをカウントし、CPU100の演算処理によって決定されるスイッチング周波数に適合した周期のPFM信号を出力するように構成される。
【0005】
ここで仮に、CPU100から出力されるPFM信号の周波数が62kHz〜185kHzの範囲で変調されるとする。この場合、図5に示すように、5MHzの基準クロックの1周期が0.2μsであるため、内部カウンタ102は基準クロックを27〜80パルスカウントすることとなり、そのカウント結果に応じて1周期が5.4μs〜16μsとなるPFM信号を出力する。
【0006】
【特許文献1】
特開2002−58240号公報
【特許文献2】
特開2002−209377号公報
【0007】
【発明が解決しようとする課題】
しかしながら、DC−DCコンバータを制御するために低コストの8ビットCPUを使用する場合、一般にCPUの内部動作が高速クロックに追従できないため、CPU動作のために低速クロックを使用せざるを得ず、内部カウンタのカウント用クロックも低速クロックをカウントすることになる。このため、従来の制御装置で低コストのCPUを使用すると、PFM信号の分解能が低く、微小な出力電圧の変動に対して追従できないという問題があった。そのためPFM信号の周波数変動幅が粗くなるため、DC−DCコンバータの出力電圧も不安定なものとなっていた。
【0008】
一方、CPUの内部動作(特に演算処理等)を高速クロックに追従できるように構成すると、CPUの単価が上昇し、制御装置がコストアップする点で問題がある。
【0009】
そこで、本発明は、上記課題に鑑みてなされたものであって、低コストのCPUを使用しつつも、高分解能のPFM信号を出力することの可能な、DC−DCコンバータの制御装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、スイッチング周波数を変化させることによってDC−DCコンバータの出力電圧を制御する制御装置であって、基準クロックに基づいて内部動作を行うように構成され、前記出力電圧に基づいて前記スイッチング周波数を決定する演算手段と、前記基準クロックをカウントすることにより、前記スイッチング周波数によって規定される周期のN倍(ただし、Nは任意の正数)をカウントし、カウント動作の終了に伴って前記スイッチング周波数の1/Nの周波数成分を有する信号を生成するカウント手段と、前記スイッチング周波数の1/Nの周波数を有する信号を逓倍することによって前記スイッチング周波数成分を有する信号を生成する逓倍手段と、を備えて構成される。
【0011】
請求項2に記載の発明は、請求項1に記載のDC−DCコンバータの制御装置において、前記カウント手段と前記演算手段とが1チップ集積回路で構成されることを特徴としている。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
【0013】
図1は、本実施形態にかかるDC−DCコンバータ回路1と、その制御装置10とを示す回路ブロック図である。DC−DCコンバータ回路1は降圧型DC−DCコンバータの一例を示すものであり、入力端子4,5間に印加される直流電源8の入力電圧Viより低い直流出力電圧Voを生成して出力端子6,7に接続される負荷9に印加するように構成され、全波形ゼロ電流スイッチング方式により制御される。
【0014】
DC−DCコンバータ回路1は、スイッチング素子Q1と、スイッチング素子Q1と逆並列に接続され、電流を逆方向に流すためのダイオード(FETの場合、寄生ダイオード)D1と、スイッチング素子Q1に直列接続された共振用リアクトルL1と、共振用コンデンサC1と、出力電圧Voの脈動を抑制するための低域通過フィルタを形成するリアクトルL2及びコンデンサC2と、スイッチング素子Q1がオフしたときにリアクトルL2に蓄積されたエネルギーを放出するための還流用ダイオードD2とを備えて構成される。スイッチング素子Q1は入力電圧Viをチョッピングするためのものであり、スイッチング素子Q1のオンオフ動作は制御装置10によって制御される。
【0015】
また、DC−DCコンバータ回路1にはリアクトルL1に流れる共振電流Iを検出するための電流検出回路3が設けられ、電流検出回路3で検出された電流値は制御装置10に与えられる。さらに、DC−DCコンバータ回路1の出力電圧Voも制御装置10に与えられる。
【0016】
制御装置10は、スイッチング素子Q1のオン時間を一定にし、オンオフ動作の周期(すなわち、スイッチング周波数)を出力電圧Voに応じて調整することにより、出力電圧Voを一定状態に制御する。制御装置10は、出力電圧の設定値Vsを生成する設定値生成回路11と、スイッチング周波数を規定するPFM信号を生成するPFM信号生成回路12と、スイッチング素子Q1のオンタイミング及びオフタイミングを指示する制御回路13と、スイッチング素子Q1をオンオフ動作させるための駆動信号(パルス信号)を生成する駆動回路14とを備えて構成される。
【0017】
PFM信号生成回路12は出力電圧Voと設定値生成回路11で生成される設定値Vsとを比較し、出力電圧Voが行って位置に維持されるようなスイッチング周波数を決定し、そのスイッチング周波数成分を有するパルス信号(PFM信号)を生成する。PFM信号生成回路12にて生成されるPFM信号は制御回路13に与えられる。
【0018】
制御回路13は、PFM信号生成回路12から入力するPFM信号に応答して駆動回路14にスイッチング素子Q1をオンさせるためのオン信号を送出するとともに、スイッチング損失を抑制するために、電流検出回路3から入力する共振電流Iに基づいてオン信号送出から一定時間経過後にスイッチング素子Q1をオフさせるためのオフ信号を送出するように構成される。なお、このような制御回路は例えば特開2002−58240号公報に開示されるものを利用することができる。
【0019】
駆動回路14は、スイッチング素子Q1にスイッチング動作を行わせるための駆動信号を生成するものであり、制御回路13からオン信号を入力したタイミングでターンオンし、オフ信号を入力したタイミングでターンオフするパルス信号をスイッチング素子Q1に与えるように構成される。
【0020】
このような制御装置10のPFM信号生成回路12は、高分解能のPFM信号を生成するために以下のように構成される。
【0021】
図2は、本実施形態におけるPFM信号生成回路12の詳細構成を示すブロック図である。PFM信号生成回路12は、クロック20とCPU30と逓倍器40とを備えて構成される。CPU30は8ビットマイコンのような低コストの1チップ集積回路で実現され、その内部機能として、入力する基準クロックに基づいて演算動作を行う演算部31と、基準クロックのパルスをカウントする内部カウンタ32とを備えて構成される。なお、ここではCPU30が5MHzの基準クロックに基づいて内部動作を行う場合を例示する。
【0022】
クロック20は例えば水晶発振素子等によって構成され、CPU30に入力する5MHzの基準クロックを発生させるように構成される。この5MHzのクロック信号はCPU30のクロック端子に入力し、演算部31の内部動作に供されるとともに、内部カウンタ32に対してカウント用クロックとして入力する。
【0023】
CPU30の演算部31は5MHzの基準クロック信号に基づいて動作し、設定値生成回路11から入力する設定値VsとDC−DCコンバータ回路1の出力電圧Voとを比較してスイッチング素子Q1のスイッチング周波数fを決定する。そして演算部31は内部カウンタ32に対し、スイッチング周波数fに応じたカウント設定値を指示する。
【0024】
このカウント設定値は、スイッチング周波数fによって規定される周期(つまり、スイッチング周波数fによって規定される1周期分をカウントするための値)のN倍(ただし、Nは任意の正数)の値に設定される。例えば、スイッチング周波数fが100kHzに決定された場合、1周期が10μsであるので、5MHzの基準クロックパルス(0.2μs)を50個カウントすればスイッチング周波数fによって規定される1周期分のカウント動作を行うことができるが、本実施形態においては、カウント設定値として50×Nが設定されることになる。
【0025】
カウンタ32は5MHzの基準クロック信号を入力し、パルスのカウント動作を行うとともに、カウント値が演算部31によって指示されたカウント設定値に達すると、その時点でカウント値をリセットするとともに、カウンタ出力信号をターンオンさせる。なお、カウンタ出力信号をターンオフさせるタイミングは任意であるが、例えばカウンタ出力信号のデューティ比がほぼ50%になるように、ターンオン時から所定時間経過後にターンオフするように設定しておくことが好ましい。この結果、カウンタ32は、カウント値をリセットするごとに、スイッチング周波数fの1/N倍の周波数成分を有するカウンタ出力信号を出力することになる。
【0026】
逓倍器40はカウンタ32から入力するカウンタ出力信号の周波数を増大させるものであり、1/Nの周波数成分を有するカウンタ出力信号を逓倍(N倍)することによってスイッチング周波数fに一致する周波数成分を有し、かつ、デューティ比が50%となるPFM信号を生成する。そしてPFM信号が制御回路13(図1参照)に出力される。
【0027】
このように本実施形態では、CPU30に内蔵される演算部31及び内部カウンタ32が比較的低速の基準クロックに基づいて動作を行うように構成されており、CPU30の内部カウンタ32は、基準クロックのパルス波形をカウントする際に、スイッチング周波数fによって規定される周期のN倍のカウント値をカウントし、スイッチング周波数fの1/Nの周波数成分を有する信号を生成するように構成される。そしてCPU30の外部に設けられた逓倍器40においてカウンタ出力が逓倍(N倍)されることにより、スイッチング周波数成分を有するPFM信号が生成されるようになっている。
【0028】
図3は本実施形態におけるPFM信号生成回路12の動作を示すタイミングチャートである。ただし、以下の説明では、カウント設定値がスイッチング周波数fによって規定される周期の4倍に設定され、逓倍器40がカウンタ出力信号の周波数を4倍に増大させる場合を例示する。
【0029】
ここで仮に、制御装置10が、スイッチング周波数fを62kHz〜185kHzの範囲内で変動させるとすると、5MHzの基準クロック信号の1周期が0.2μsであるので、演算部31は出力電圧Voに基づいてカウント設定値を108〜320パルスの範囲内で設定する。これにより、カウント設定値は従来の4倍の値に設定される。そしてカウンタ32はこのカウント設定値に基づいて5MHzのクロック信号をカウントすることになる。このため、カウンタ32は基準クロックを108〜320パルスカウントし、そのカウント結果に応じて1周期T1が21.6μs〜64μsのカウンタ出力信号を送出する。
【0030】
逓倍器40はこのカウンタ出力信号を入力すると周波数を4倍に増加させるとともに、デューティ比50%のPFM信号を生成する。このためPFM信号の1周期T2は5.4μs〜16μsとなり、その周波数は演算部31において決定されたスイッチング周波数fに一致するように制御される。
【0031】
したがって、本実施形態では1周期が5.4μs〜16μsのPFM信号を生成するために、カウンタ32におけるカウント数が従来のN倍になるとともに、カウント設定値の変動幅を大きくすることができる。すなわち、本実施形態では、出力電圧Voに応じてスイッチング周波数fを変化させる場合に、PFM信号の1周期を高分解能で決定することが可能になるので、微小な出力電圧Voの変動に対して追従することが可能になり、DC−DCコンバータ回路1の出力電圧Voの安定化を図ることができる。
【0032】
また、CPU30の演算部31における内部動作のために従来と同様の低速クロック(5MHz等)を用いることができるため、CPU30は8ビットマイコン等の比較的低コストのものを使用することができる。
【0033】
そして制御回路13が、このPFM信号のターンオンタイミングで、若しくはターンオンタイミングから所定時間遅延させたタイミングで、スイッチング素子Q1をオンさせるためのオン信号を送出することにより、スイッチング素子Q1のスイッチング周波数が制御される。
【0034】
以上のように、制御装置10はスイッチング素子Q1のスイッチング周波数を変化させることによってDC−DCコンバータ回路1の出力電圧Voを制御するように構成されており、スイッチング周波数を規定するためのPFM信号を高分解能で生成することができるように構成されている。
【0035】
そしてPFM信号生成回路12は、従来と同様の低コストのCPU30を用いることができ、CPU30の内部に、基準クロックに基づいて内部動作を行う演算部31と、基準クロックをカウントするカウンタ32とが設けられて1チップ集積回路を構成している。このため、従来の構成と比較すると、逓倍器40を設けるだけで高分解能のPFM信号を生成することが可能であり、簡単かつ低コストに、高分解能のPFM信号を得るためのDC−DCコンバータの制御装置を実現することができる。
【0036】
以上、本発明の実施の形態について説明したが、本発明は上記説明した内容のものに限定されるものではない。
【0037】
例えば、上記においては、CPU30が5MHzの基準クロックで動作する場合を示したが、これに限定されるものではない。
【0038】
また、上記においては、PFM信号の周波数が62kHz〜185kHzの範囲内で定められる場合を例示したが、これに限定されるものでもない。そのためカウント設定値も上述した値に限定されるものではない。
【0039】
また、上記においては、DC−DCコンバータ回路1が電流共振型である場合を例示したが、これに限定されるものでもなく、電圧共振型であっても本発明の構成を適用することは可能である。
【0040】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、演算手段の内部動作のために生成される基準クロックをカウントすることによって、スイッチング周波数によって規定される周期のN倍をカウントし、そのカウント動作の終了に伴ってスイッチング周波数の1/Nの周波数成分を有する信号を生成するように構成されており、逓倍手段がその信号を逓倍することによってスイッチング周波数成分を有する信号を生成するので、演算手段は基準クロックに基づいて内部動作が可能であるとともに、スイッチング周波数の周波数成分を有する高分解能の信号を生成することが可能である。よって、低コストのCPUを使用しつつも、高分解能の信号を出力することが可能になり、信号の周波数変動幅を微小な単位で調整することができる。この結果、DC−DCコンバータの出力電圧の微小な変動に追従させて、出力電圧の安定化が図られる。
【0041】
また、請求項2に記載の発明によれば、カウント手段と演算手段とが1チップ集積回路で構成されるので、より簡単かつ低コストに、高分解能の信号を得ることができる。
【図面の簡単な説明】
【図1】DC−DCコンバータ回路とその制御装置とを示す回路ブロック図である。
【図2】PFM信号生成回路の詳細構成を示すブロック図である。
【図3】PFM信号生成回路の動作を示すタイミングチャートである。
【図4】従来のPFM信号生成回路を示す図である。
【図5】従来のPFM信号生成回路の動作を示すタイミングチャートである。
【符号の説明】
1 DC−DCコンバータ回路
10 制御装置
11 設定値生成回路
12 PFM信号生成回路
13 制御回路
14 駆動回路
20 クロック
30 CPU
31 演算部(演算手段)
32 カウンタ(カウント手段)
40 逓倍器(逓倍手段)

Claims (2)

  1. スイッチング周波数を変化させることによってDC−DCコンバータの出力電圧を制御する制御装置であって、
    基準クロックに基づいて内部動作を行うように構成され、前記出力電圧に基づいて前記スイッチング周波数を決定する演算手段と、
    前記基準クロックをカウントすることにより、前記スイッチング周波数によって規定される周期のN倍(ただし、Nは任意の正数)をカウントし、カウント動作の終了に伴って前記スイッチング周波数の1/Nの周波数成分を有する信号を生成するカウント手段と、
    前記スイッチング周波数の1/Nの周波数を有する信号を逓倍することによって前記スイッチング周波数成分を有する信号を生成する逓倍手段と、
    を備える、DC−DCコンバータの制御装置。
  2. 請求項1に記載のDC−DCコンバータの制御装置において、
    前記カウント手段と前記演算手段とが1チップ集積回路で構成されることを特徴とする、DC−DCコンバータの制御装置。
JP2002362731A 2002-12-13 2002-12-13 Dc−dcコンバータの制御装置 Pending JP2004194484A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362731A JP2004194484A (ja) 2002-12-13 2002-12-13 Dc−dcコンバータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362731A JP2004194484A (ja) 2002-12-13 2002-12-13 Dc−dcコンバータの制御装置

Publications (1)

Publication Number Publication Date
JP2004194484A true JP2004194484A (ja) 2004-07-08

Family

ID=32761092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362731A Pending JP2004194484A (ja) 2002-12-13 2002-12-13 Dc−dcコンバータの制御装置

Country Status (1)

Country Link
JP (1) JP2004194484A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496907B2 (en) 2007-09-27 2016-11-15 Intel Deutschland Gmbh Circuit arrangement for processing a radio-frequency signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496907B2 (en) 2007-09-27 2016-11-15 Intel Deutschland Gmbh Circuit arrangement for processing a radio-frequency signal

Similar Documents

Publication Publication Date Title
CN100481691C (zh) 直流-直流转换器
JP2707465B2 (ja) インバータ装置
US6737843B2 (en) PWM switching regulator and electronic apparatus
JP2006042597A (ja) 出力レギュレータ
JP5038841B2 (ja) スイッチング電源装置
TWI390832B (zh) 定電流供應型切換調整器
JP2012110201A (ja) 入力電圧検出回路を備えたデジタル制御スイッチング電源装置
JP2000123970A (ja) 電界発光ランプ駆動装置の出力電圧を間接的に制御する回路及び方法
JP2004040856A (ja) スイッチング電源装置
JP5366029B2 (ja) 電源装置及び発光素子駆動装置
JP2003324944A (ja) 電源回路
JP2011087394A (ja) スイッチング素子駆動用制御回路およびスイッチング電源装置
KR20060117377A (ko) 하이브리드 디지털-아날로그 스위치드 파워 서플라이
US7208926B2 (en) Switching signal modulation circuit
JP5727189B2 (ja) 同期整流型電源回路
JP2004194484A (ja) Dc−dcコンバータの制御装置
JP2677215B2 (ja) ゼロボルトスイッチパルス幅変調型スイッチングレギュレータの制御回路
JP2004194483A (ja) Dc−dcコンバータの制御装置
JP4551155B2 (ja) 制御回路、その制御回路を用いた電源装置および電子機器
JP2003125582A (ja) 電源装置
JP3828304B2 (ja) 電源装置
JP3138660B2 (ja) 電源装置
US20080258699A1 (en) Converter Circuit with Improved Efficiency
JP4711258B2 (ja) 多相交流電源
JP5516683B2 (ja) 電源装置