JP2004192890A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2004192890A
JP2004192890A JP2002357716A JP2002357716A JP2004192890A JP 2004192890 A JP2004192890 A JP 2004192890A JP 2002357716 A JP2002357716 A JP 2002357716A JP 2002357716 A JP2002357716 A JP 2002357716A JP 2004192890 A JP2004192890 A JP 2004192890A
Authority
JP
Japan
Prior art keywords
layer
organic
light
organic electroluminescent
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002357716A
Other languages
Japanese (ja)
Inventor
Takanobu Shibazaki
孝宜 芝崎
Koji Hanawa
幸治 花輪
Seiichi Yokoyama
誠一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002357716A priority Critical patent/JP2004192890A/en
Publication of JP2004192890A publication Critical patent/JP2004192890A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element capable of preventing a short circuit between electrodes, and having good light extraction efficiency. <P>SOLUTION: The organic electroluminescent element 1 comprises: a lower electrode 3 formed on a substrate 2; an organic layer 4 formed on the lower electrode 3; and a light-transmitting upper electrode 5 formed on the organic electrode 4. The organic electroluminescent element is characterized by that the lower electrode 3 comprises: a reflecting layer 3a formed of a metal material; and a buffer layer 3b on top of it; and the buffer layer 3b is formed of ITO, IZO, SnO<SB>2</SB>, ZnO, CdO, TiO<SB>2</SB>or a transparent conductive material similar to them. When the buffer layer is formed of ITO, its film thickness is set to 2 to 30 nm. The reflecting layer 3a is preferably formed of silver or an alloy containing silver as a main constituent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は有機電界発光素子に関し、特には下部電極と光透過性の上部電極との間に有機層を狭持してなる有機電界発光素子に関する。
【0002】
【従来の技術】
フラットパネルディスプレイ用の表示素子として、有機電界発光素子(以下、有機EL素子と記す)の実用化を目指した研究開発が精力的に行われている。その中でも、基板と逆方向に発光光を取り出す上面発光型の有機EL素子は、基板側に画素駆動用のTFTを形成するアクティブマトリックス型のディスプレイにおいて、基板側に発光光を取り出す透過型と比較して開孔率を大きく出来るために、高輝度あるいは高解像度の有機ELディスプレイを製造する上で有利であ
る。
【0003】
上面発光型の有機EL素子を作製するためには、まず基板上に、抵抗加熱による真空蒸着法・スパッタ法などの中から適宜選択された方法で金属薄膜を成膜し、これをパターニングすることで反射層を兼ねた下部電極を形成する。次いで、素子分離するための絶縁層を成膜して下部電極を露出開口させるようにパターニングした後に、下部電極上に重ねて有機層および上部電極をこの順に形成する。
【0004】
ところで、このようにして得られた有機EL素子においては、下部電極の表面に存在する凹凸によって、有機層の膜厚が局部的に薄くなるため、下部電極−上部電極間に短絡が生じやすいことが問題の一つとなっている。これを解決するための手段として、下記特許文献1では、下部電極上に当該下部電極を構成する金属材料の酸化物からなる緩衝薄膜層を設けた構成が提案されている。
【0005】
【特許文献1】
特開2002−216976号公報
【0006】
【発明が解決しようとする課題】
しかしながら、緩衝薄膜層を構成する金属酸化物は、ある程度の光透過性を有するものの、可視光領域に光吸収を持つ。このため、有機層で発生させた発光光は、緩衝薄膜層を通過する際に吸収され、光取り出し効率の低下を招く。このような光取り出し効率の低下は、有機EL素子を用いたディスプレイの消費電力を増大させ、また寿命特性を低下させる要因となっている。
【0007】
本発明は、かかる点に対処してなされたもので、高効率で素子短絡などの生じない、高信頼性をもつ上面発光型の有機EL素子を実現することを目的とする。
【0008】
【課題を解決するための手段】
このような目的を達成するための本発明は、基板上に設けられた下部電極と、この下部電極上に設けられた有機層と、この有機層上に設けられた光透過性の上部電極とからなる有機EL素子において、下部電極が、金属材料からなる反射層とこの上部の緩衝層とで構成されており、このうち特に緩衝層がITO、IZO、SnO、ZnO、CdO、TiOおよびこれらに類する透明導電性材料のうちの少なくとも1つからなることを特徴としている。
【0009】
このような構成の有機EL素子では、下部電極の下層となる反射層が、可視領域の光に対する反射性が良好な金属材料で構成され、この反射層を覆う緩衝層が、ITO、IZO、SnO、ZnO、CdO、TiOおよびこれらに類する透明導電性材料で構成される。これらの透明導電性材料は、金属材料よりも表面粗さが小さくなるように成膜可能なだけではなく、可視領域光に対する光吸収性が極めて小さく光透過性が良好である。このため、この緩衝層によって、反射層の表面粗さが緩和され下部電極の表面平坦性が良好となり、この下部電極上に有機層を介して積層された光透過性の上部電極と、当該下部電極との間隔の面内均一性が確保され、電極間の短絡の発生が防止されるようになる。しかも、有機層においての発光光が、緩衝層を通過することによる光損失が最小限に抑えられる。
【0010】
【発明の実施の形態】
以下、本発明の有機EL素子の実施の形態を、図1の断面構成図に基づいて詳細に説明する。
【0011】
この図に示す有機EL素子1は、基板2上に、下部電極3、有機層4及び光透過性の上部電極5を順次積層してなり、この素子で発光した発光光hを上部電極5側から取り出す、いわゆる上面発光型として構成されている。以下、さらに詳しい構成を、基板2、本発明に特有の構成である下部電極3、上部電極5、および有機層4の順に説明する。
【0012】
先ず、基板2は、ガラス、シリコン、プラスチック基板、さらにはTFT(thin film transistor)が形成されたTFT基板などからなる。
【0013】
そして、下部電極3は、陽極または陰極として用いられるものである一方、上部電極5は、下部電極3が陽極である場合には陰極として用いられ、下部電極3が陰極である場合には陽極として用いられる。
【0014】
ここで、下部電極3は、有機EL素子1の駆動方式によって適する形状にパターニングされていることとする。例えば、この有機EL素子1を用いた表示装置の駆動方式が単純マトリックス型である場合には、この下部電極3は例えばストライプ状に形成される。また、表示装置の駆動方式が画素毎にTFTを備えたアクティブマトリックス型である場合には、下部電極3は複数配列された各画素に対応させてパターン形成され、同様に各画素に設けられたTFTに対して、これらのTFTを覆う層間絶縁膜に形成されたコンタクトホール(図示省略)を介してそれぞれが接続される状態で形成されることとする。そして、下部電極3は、発光領域7aのみを露出開口させる形状の絶縁膜7によって、その周縁が覆われている。
【0015】
一方、上部電極5は、この有機EL素子1を用いた表示装置が、単純マトリックス型である場合には、下部電極3のストライプと交差するストライプ状に形成され、これらが交差して積層された部分が有機EL素子1となる。また、この表示装置が、アクティブマトリックス型である場合には、この上部電極5は、基板2上の一面を覆う状態で成膜されたベタ膜状に形成され、各画素に共通の電極として用いられることとする。尚、表示装置の駆動方式としてアクティブマトリックス型を採用する場合には、本発明が適用される上面発光型の有機EL素子1を用いることで素子の開口率の向上が図られる。
【0016】
そして、本発明に特徴的な構成である下部電極3は、反射層3aおよびこの上部に積層された緩衝層3bとの積層構造で構成されている。
【0017】
このうち反射層3aは、金属材料、特には可視領域の光に対する反射性の良好なCr(クロム)、Al(アルミニウム)、Ag(銀)およびこれらを主成分とする合金を用いて構成され、特には好ましく光反射性およびプロセスの安定性に優れたAg(銀)およびAgを主成分とする合金を用いて構成されることとする。
【0018】
また、緩衝層3bは、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SnO、ZnO、CdOおよびTiOおよびこれらに類する透明導電性材料のうちの少なくとも1つからなることとする。特に、緩衝層3bがITOからなる場合には、2nmより厚く30nmより薄く、好ましくは5nm〜20nmの範囲で緩衝層3bを構成することが好ましい。
【0019】
尚、下部電極3が陽極、陰極のどちらとして用いられるかは、緩衝層3bを構成する材料の仕事関数と緩衝層3bとの界面に配置される有機層4の材料によって決定される。例えば下部電極3を陽極として用いる場合には、緩衝層3bはITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SnO、ZnO、CdOおよびTiOが用いられ、例えば陰極として用いる場合には、緩衝層3bは上記透明導電性材料の上に例えばLiOやMg、Li、Ca等のアルカリ金属とその酸化物、弗化物、窒化物などの低仕事関数材料を1nm以下積層する必要がある。
【0020】
一方、光透過性の上部電極5は、光透過性に優れた導電性材料のうちから、当該上部電極5が陽極、陰極のどちらとなるかによって適宜選択して用いられる。例えば、上部電極5が陰極となる場合、Mg(マグネシウム)とAg(銀)との共蒸着層が用いられる。一方、上部電極5が陽極となる場合、例えばITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SnO、ZnO、CdOおよびTiOが用いられる。
【0021】
そして、有機層4は、陽極側(図面においては一例として下部電極3側)から順に、正孔注入層4a、正孔輸送層4b、電子輸送性発光層4cをこの順に積層してなる。尚、有機層4の構成はこのような構成に限定されることはなく、正孔輸送層と電子輸送層との間に発光層を設けた構成や、電子輸送層と陰極との間に電子注入層を設けた構成であっても良く、必要に応じた積層構造として良い。
【0022】
尚、光透過性の上部電極5と反射層3aとは、電子輸送性発光層4cで発生した光hを共振させる共振器の共振部を構成していることとする。
【0023】
この場合、反射層3a及び光透過性の上部電極5で生じる反射光の位相シフトをΦ、反射層3aと光透過性の上部電極5との光学的距離をL、光透過性の上部電極5の側から取り出す光hのスペクトルのピーク波長をλとすると、光学的距離Lは、下記式(1)を満たす正の最小値となっていることとする。
【数2】

Figure 2004192890
【0024】
以上のように構成された有機EL素子では、下部電極3の下層となる反射層3aが、可視領域の光に対する反射性が良好な金属材料で構成され、この反射層3aを覆う緩衝層3bが、ITO、IZO、SnO、ZnO、CdO、TiO及びこれらに類する透明導電性材料で構成される。これらの透明導電性材料は、金属材料よりも表面粗さが小さくなるように成膜可能なだけではなく、可視領域光に対する光吸収性が極めて小さく、光透過性が良好である。
【0025】
中でも、ITOは、その膜厚を2nmより厚く30nmより薄く、さらに好ましくは5nm〜20nmの範囲とすることで、ITO膜自体の凹凸を発現させることなく下地となる反射層3aの凹凸を緩和可能である。またIZOは、もともと非結晶性の材料であるため、このIZOを緩衝膜3bとして形成することで下地となる反射層3aの凹凸を緩和可能である。
【0026】
以上のように、緩衝層3bによって、反射層3aの表面粗さが緩和され下部電極の表面平坦性が良好となり、この下部電極3上に有機層4を介して積層された上部電極5と、下部電極3との間隔の面内均一性が確保される。しかも、有機層4において生じた発光光hが、緩衝層3bを通過することによる光損失を最小限に抑えることが可能になる。
【0027】
この結果、本構成の有機EL素子によれば、下部電極3−上部電極5間の短絡の発生なく高信頼性を維持でき、しかも光取り出し効率の向上によって消費電力の低下と寿命特性の向上とを実現することが可能になる。
【0028】
【実施例】
以下、本発明の具体的な実施例1とこの実施例1に対する比較例の有機EL素子の製造手順を図1に基づいて説明し、さらに実施例1と比較例とについて行った評価結果を説明する。またその後、実施例2とその評価結果を説明する。
【0029】
<実施例1>
まず、ガラス板からなる基板2上に、Cr(膜厚約150nm)をスパッタ法によって成膜し、さらに成膜装置の真空状態を維持したまま連続してITOを10nmの膜厚に成膜した。その後、通常のリソグラフィー法によって形成したレジストパターンをマスクに用いたエッチングによって、Crからなる反射層3a上にITOからなる緩衝層3bを積層してなる下部電極3を陽極としてパターン形成した。
【0030】
次いで、CVD法によって、SiO膜からなる絶縁膜7を600nmの膜厚で形成してこれをパターニングし、下部電極3表面の2mm×2mmの発光領域7aを露出開口させてそれ以外を絶縁膜7でマスクした有機EL素子用のセルを作製した。
【0031】
次に、純水洗浄を行った後、下部電極3をOプラズマに晒す前処理を行った。これに引き続き、基板2を大気暴露することなく有機層4を成膜するための成膜チャンバ内に搬送した。
【0032】
次いで、発光領域7aよりも一回り大きい開口部を有するメタルマスク(図示省略)を所定の位置にアライメントした状態で、10−4Pa以上の真空度で、正孔注入層4a、正孔輸送層4b、および電子輸送性発光層4cを順次成膜した。尚、正孔輸送層4aとして膜厚30nmのMTDATAを成膜し、正孔輸送層4bとして膜厚20nmのα−NPDを成膜し、電子輸送性発光層4cとして膜厚50nmのAlq3を成膜した。これらの各層4a−4cは、それぞれ蒸着用ボートに0.2g程度ずつ充填し、蒸着用ボートの両端に電圧を印加することで蒸着成膜した。
【0033】
そしてさらに、成膜チャンバ内の真空状態を保持したままで、上部電極5用のマスクを所定の位置にアライメントし、10−4Pa以上の真空度で、陰極となる上部電極5としてMg(マグネシウム)とAg(銀)との共蒸着層[Mg:Ag=10:1(体積比)]を10nmの膜厚で形成した。
【0034】
その後、さらに成膜チャンバ内の真空状態を保持したままで、保護膜用のマスクを所定の位置にアライメントし、保護膜(図示省略)としてSiNをCVD法により1μmの膜厚で形成した。
【0035】
以上により、実施例の有機EL素子を作製した。
【0036】
<実施例2>
本実施例2においては、陽極となる下部電極3の反射層3aとして、膜厚150nmのAg(銀)を形成したこと以外は、実施例1と同様の手順で有機EL素子を作製した。
【0037】
<比較例>
比較例においては、陽極となる下部電極3の緩衝層3bとして、膜厚10nmのCrOを形成したこと以外は、実施例1と同様の手順で有機EL素子を作製した。
【0038】
―評価結果―
以上の様にして作製した各40個の実施例1、実施例2および比較例の有機EL素子について、上部電極3−下部電極5間の▲1▼短絡発生数(個)、8.0Vの電圧を印加した場合の▲2▼電流密度および▲3▼発光輝度を計測した。この結果を表1に示す。
【0039】
【表1】
Figure 2004192890
【0040】
表1に示されるように、実施例1、実施例2、比較例の有機EL素子ともに、▲1▼短絡発生数は0[個]、▲2▼電流密度も20[mA/cm]であった。一方、▲3▼発光輝度に関しては、比較例の有機EL素子の値に対して、本発明を適用した実施例1の有機EL素子の値が1.2倍程度高く、また本発明を適用した実施例2の有機EL素子の値が2.1倍以上高く、発光効率を上昇させる効果が確認できた。
【0041】
尚、本実施例2と同様の手順において、ITOからなる緩衝層3bの膜厚がそれぞれ異なる各有機EL素子をそれぞれ40個づつ作製し、これらの有機EL素子に関して上部電極3−下部電極5間の短絡発生数(個)を計測した。この結果を図2のグラフに示す。
【0042】
このグラフに示したように、ITOからなる緩衝層3bについては、その膜厚が2nm〜30nmの範囲であれば、有機EL素子の短絡個数を2/40[個]以下に抑えられる効果が確認できた。これは、従来の技術において、示した特許文献1第6頁に示される発光素子▲2▼と同等の結果である。したがって、ITOからなる緩衝膜3bの膜厚が2nmよりも厚く、30nmよりも薄い範囲であれば、この結果を超える効果が得られることなる。さらに、ITOからなる緩衝層3bの膜厚が5nm〜20nmの範囲であれば、有機EL素子の短絡個数を1/40[個]以下に抑えられる効果が確認できた。またさらに、ITOからなる緩衝層3bの膜厚が10nmであれば、有機EL素子の短絡個数を0/40[個]に抑えられる効果が確認できた。
【0043】
【発明の効果】
以上説明したように本発明の有機EL素子によれば、金属材料からなる反射層上に、ITO、IZO、SnO、ZnO、CdO及びTiO等の可視領域光に対する光吸収性が極めて小さい透明導性材料からなる緩衝層を設けた下部電極構成とすることで、上部電極−下部電極間の面内均一性を確保しつつも、緩衝層を通過することによる光損失を最小限に抑えることが可能になる。この結果、下部電極−上部電極間の短絡を防止して高信頼性を維持でき、しかも光取り出し効率の向上によって消費電力の低下と寿命特性の向上とを実現することが可能になる。
【図面の簡単な説明】
【図1】実施形態の有機EL素子の断面構成図である。
【図2】実施例2で作製した各40個の有機EL素子の短絡発生個数のグラフである。
【符号の説明】
1…有機EL素子(有機電界発光素子)、2…基板、3a…反射層、3b…緩衝層、3…下部電極、5…有機層、6…上部電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic electroluminescent device, and more particularly, to an organic electroluminescent device having an organic layer sandwiched between a lower electrode and a light-transmitting upper electrode.
[0002]
[Prior art]
Research and development for the practical use of organic electroluminescent elements (hereinafter, referred to as organic EL elements) as display elements for flat panel displays are being vigorously conducted. Among them, the top emission type organic EL element that emits emitted light in the direction opposite to the substrate is compared with the transmission type that emits emitted light to the substrate side in an active matrix type display in which TFTs for driving pixels are formed on the substrate side. In this case, the aperture ratio can be increased, which is advantageous in manufacturing a high-brightness or high-resolution organic EL display.
[0003]
In order to manufacture a top emission type organic EL element, first, a metal thin film is formed on a substrate by a method appropriately selected from a vacuum deposition method, a sputtering method, or the like by resistance heating, and is patterned. To form a lower electrode also serving as a reflective layer. Next, after an insulating layer for element isolation is formed and patterned so as to expose and expose the lower electrode, an organic layer and an upper electrode are formed in this order on the lower electrode.
[0004]
By the way, in the organic EL element thus obtained, the thickness of the organic layer is locally reduced due to the unevenness existing on the surface of the lower electrode, so that a short circuit is likely to occur between the lower electrode and the upper electrode. Is one of the problems. As a means for solving this problem, Japanese Patent Application Laid-Open No. H11-163,073 proposes a configuration in which a buffer thin film layer made of an oxide of a metal material constituting the lower electrode is provided on the lower electrode.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-216976
[Problems to be solved by the invention]
However, although the metal oxide constituting the buffer thin film layer has a certain degree of light transmittance, it has light absorption in the visible light region. For this reason, the emitted light generated in the organic layer is absorbed when passing through the buffer thin film layer, resulting in a decrease in light extraction efficiency. Such a decrease in light extraction efficiency causes an increase in power consumption of a display using an organic EL element and a decrease in life characteristics.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to realize a highly reliable top emission type organic EL element which is highly efficient and does not cause element short-circuiting.
[0008]
[Means for Solving the Problems]
The present invention for achieving such an object includes a lower electrode provided on a substrate, an organic layer provided on the lower electrode, and a light-transmitting upper electrode provided on the organic layer. The lower electrode is composed of a reflective layer made of a metal material and a buffer layer thereabove, and particularly the buffer layer is made of ITO, IZO, SnO 2 , ZnO, CdO, TiO 2 and It is characterized by being made of at least one of transparent conductive materials similar to these.
[0009]
In the organic EL element having such a configuration, the reflective layer, which is the lower layer of the lower electrode, is made of a metal material having good reflectivity to light in the visible region, and the buffer layer covering this reflective layer is made of ITO, IZO, SnO. 2 , ZnO, CdO, TiO 2 and similar transparent conductive materials. These transparent conductive materials can not only be formed into a film so as to have a smaller surface roughness than a metal material, but also have a very low light absorption for visible region light and a good light transmission. Therefore, the buffer layer reduces the surface roughness of the reflective layer and improves the surface flatness of the lower electrode. The light-transmitting upper electrode laminated on the lower electrode via the organic layer, In-plane uniformity of the interval between the electrodes is ensured, and the occurrence of a short circuit between the electrodes is prevented. In addition, light loss due to light emitted from the organic layer passing through the buffer layer can be minimized.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the organic EL device of the present invention will be described in detail with reference to the cross-sectional configuration diagram of FIG.
[0011]
The organic EL device 1 shown in FIG. 1 has a lower electrode 3, an organic layer 4, and a light-transmissive upper electrode 5 sequentially laminated on a substrate 2, and emits light h emitted by this device on the upper electrode 5 side. So-called top emission type. Hereinafter, a more detailed configuration will be described in the order of the substrate 2, the lower electrode 3, the upper electrode 5, and the organic layer 4, which are configurations specific to the present invention.
[0012]
First, the substrate 2 includes a glass, silicon, plastic substrate, and a TFT substrate on which a thin film transistor (TFT) is formed.
[0013]
The lower electrode 3 is used as an anode or a cathode, while the upper electrode 5 is used as a cathode when the lower electrode 3 is an anode, and as an anode when the lower electrode 3 is a cathode. Used.
[0014]
Here, it is assumed that the lower electrode 3 is patterned into an appropriate shape according to the driving method of the organic EL element 1. For example, when the driving method of the display device using the organic EL element 1 is a simple matrix type, the lower electrode 3 is formed in a stripe shape, for example. When the driving method of the display device is an active matrix type having a TFT for each pixel, the lower electrode 3 is formed in a pattern corresponding to each of a plurality of arranged pixels, and is similarly provided for each pixel. The TFTs are formed to be connected to each other via contact holes (not shown) formed in an interlayer insulating film covering these TFTs. The periphery of the lower electrode 3 is covered with an insulating film 7 having a shape exposing only the light emitting region 7a.
[0015]
On the other hand, when the display device using the organic EL element 1 is of a simple matrix type, the upper electrode 5 is formed in a stripe shape that intersects with the stripe of the lower electrode 3, and these are intersected and stacked. The portion becomes the organic EL element 1. When the display device is of an active matrix type, the upper electrode 5 is formed as a solid film formed so as to cover one surface of the substrate 2 and is used as an electrode common to each pixel. Shall be In the case where the active matrix type is adopted as the driving method of the display device, the aperture ratio of the element is improved by using the top emission type organic EL element 1 to which the present invention is applied.
[0016]
The lower electrode 3, which is a characteristic feature of the present invention, has a laminated structure of a reflective layer 3a and a buffer layer 3b laminated thereon.
[0017]
The reflective layer 3a is made of a metal material, in particular, Cr (chromium), Al (aluminum), Ag (silver), and an alloy containing these as main components, which have good reflectivity to light in the visible region. Particularly, it is preferable to use Ag (silver) and an alloy containing Ag as a main component, which are preferably excellent in light reflectivity and process stability.
[0018]
The buffer layer 3b is made of at least one of ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), SnO 2 , ZnO, CdO, TiO 2 and a transparent conductive material similar thereto. In particular, when the buffer layer 3b is made of ITO, it is preferable that the buffer layer 3b be configured to be thicker than 2 nm and thinner than 30 nm, preferably in the range of 5 nm to 20 nm.
[0019]
Whether the lower electrode 3 is used as an anode or a cathode is determined by the work function of the material forming the buffer layer 3b and the material of the organic layer 4 disposed at the interface between the buffer layer 3b. For example, when the lower electrode 3 is used as an anode, the buffer layer 3b is made of ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), SnO 2 , ZnO, CdO, and TiO 2. For the buffer layer 3b, it is necessary to laminate, for example, an alkali metal such as Li 2 O, Mg, Li, or Ca and a low work function material such as an oxide, a fluoride, or a nitride of 1 nm or less on the transparent conductive material. is there.
[0020]
On the other hand, the light transmissive upper electrode 5 is appropriately selected and used from conductive materials having excellent light transmissivity depending on whether the upper electrode 5 is an anode or a cathode. For example, when the upper electrode 5 serves as a cathode, a co-deposited layer of Mg (magnesium) and Ag (silver) is used. On the other hand, when the upper electrode 5 serves as an anode, for example, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), SnO 2 , ZnO, CdO, and TiO 2 are used.
[0021]
The organic layer 4 is formed by laminating a hole injection layer 4a, a hole transport layer 4b, and an electron transport light emitting layer 4c in this order from the anode side (in the drawing, the lower electrode 3 side as an example). Note that the configuration of the organic layer 4 is not limited to such a configuration, and a configuration in which a light emitting layer is provided between a hole transport layer and an electron transport layer, or an electron between the electron transport layer and a cathode. A configuration in which an injection layer is provided may be used, and a stacked structure may be used as needed.
[0022]
Note that the light-transmissive upper electrode 5 and the reflective layer 3a constitute a resonator of a resonator that resonates the light h generated in the electron transporting light emitting layer 4c.
[0023]
In this case, the phase shift of the reflected light generated by the reflection layer 3a and the light-transmitting upper electrode 5 is Φ, the optical distance between the reflection layer 3a and the light-transmitting upper electrode 5 is L, and the light-transmitting upper electrode 5 Let λ be the peak wavelength of the spectrum of the light h extracted from the side of, and the optical distance L is a positive minimum value satisfying the following equation (1).
(Equation 2)
Figure 2004192890
[0024]
In the organic EL element configured as described above, the reflective layer 3a, which is the lower layer of the lower electrode 3, is made of a metal material having good reflectivity to light in the visible region, and the buffer layer 3b that covers the reflective layer 3a is formed. , ITO, IZO, SnO 2 , ZnO, CdO, TiO 2 and similar transparent conductive materials. These transparent conductive materials can not only be formed into a film having a surface roughness smaller than that of a metal material, but also have a very low light absorption for visible region light and a good light transmission.
[0025]
Above all, the thickness of ITO is more than 2 nm and less than 30 nm, more preferably 5 nm to 20 nm, so that the unevenness of the underlying reflective layer 3 a can be reduced without causing the unevenness of the ITO film itself. It is. In addition, since IZO is originally a non-crystalline material, forming this IZO as the buffer film 3b can alleviate the unevenness of the underlying reflective layer 3a.
[0026]
As described above, the buffer layer 3b reduces the surface roughness of the reflective layer 3a and improves the surface flatness of the lower electrode, and the upper electrode 5 laminated on the lower electrode 3 with the organic layer 4 interposed therebetween. In-plane uniformity of the gap with the lower electrode 3 is ensured. Moreover, it is possible to minimize the light loss caused by the emission light h generated in the organic layer 4 passing through the buffer layer 3b.
[0027]
As a result, according to the organic EL element of this configuration, high reliability can be maintained without occurrence of a short circuit between the lower electrode 3 and the upper electrode 5, and the power consumption is reduced and the life characteristics are improved by improving the light extraction efficiency. Can be realized.
[0028]
【Example】
Hereinafter, a specific example 1 of the present invention and a manufacturing procedure of an organic EL element of a comparative example with respect to the example 1 will be described with reference to FIG. 1, and evaluation results performed on the example 1 and the comparative example will be described. I do. Then, Example 2 and its evaluation result will be described.
[0029]
<Example 1>
First, Cr (thickness: about 150 nm) was deposited on a substrate 2 made of a glass plate by a sputtering method, and further, ITO was deposited to a thickness of 10 nm continuously while the vacuum state of the deposition apparatus was maintained. . Thereafter, a pattern was formed by etching using a resist pattern formed by ordinary lithography as a mask, with the lower electrode 3 formed by laminating the buffer layer 3b made of ITO on the reflective layer 3a made of Cr as an anode.
[0030]
Next, an insulating film 7 made of a SiO 2 film is formed to a thickness of 600 nm by a CVD method, and is patterned to expose a 2 mm × 2 mm light emitting region 7 a on the surface of the lower electrode 3. The cell for the organic EL element masked with 7 was produced.
[0031]
Next, after performing pure water cleaning, a pretreatment of exposing the lower electrode 3 to O 2 plasma was performed. Subsequently, the substrate 2 was transferred into a film forming chamber for forming an organic layer 4 without exposing the substrate 2 to the atmosphere.
[0032]
Next, a hole injection layer 4a and a hole transport layer are formed at a degree of vacuum of 10 −4 Pa or more with a metal mask (not shown) having an opening slightly larger than the light emitting region 7a aligned at a predetermined position. 4b and an electron transporting light emitting layer 4c were sequentially formed. Here, a 30-nm-thick MTDATA film is formed as the hole-transporting layer 4a, a 20-nm-thick α-NPD is formed as the hole-transporting layer 4b, and a 50-nm-thick Alq3 film is formed as the electron-transporting luminescent layer 4c. Filmed. Each of these layers 4a to 4c was filled into a vapor deposition boat by about 0.2 g, and was deposited by applying a voltage to both ends of the vapor deposition boat.
[0033]
Further, while maintaining the vacuum state in the film forming chamber, the mask for the upper electrode 5 is aligned at a predetermined position, and a vacuum of 10 −4 Pa or more is used as the upper electrode 5 serving as a cathode. ) And Ag (silver) to form a co-evaporated layer [Mg: Ag = 10: 1 (volume ratio)] with a thickness of 10 nm.
[0034]
Thereafter, while maintaining the vacuum state in the film forming chamber, a mask for a protective film was aligned at a predetermined position, and SiN x was formed as a protective film (not shown) to a thickness of 1 μm by a CVD method.
[0035]
Thus, the organic EL device of the example was manufactured.
[0036]
<Example 2>
In Example 2, an organic EL device was manufactured in the same procedure as in Example 1, except that Ag (silver) having a thickness of 150 nm was formed as the reflective layer 3a of the lower electrode 3 serving as an anode.
[0037]
<Comparative example>
In the comparative example, an organic EL element was manufactured in the same procedure as in Example 1, except that a 10 nm-thick CrO 2 was formed as the buffer layer 3b of the lower electrode 3 serving as an anode.
[0038]
-Evaluation results-
For each of the 40 organic EL devices of Example 1, Example 2 and Comparative Example manufactured as described above, {circle around (1)} (number) When a voltage was applied, (2) current density and (3) emission luminance were measured. Table 1 shows the results.
[0039]
[Table 1]
Figure 2004192890
[0040]
As shown in Table 1, in each of the organic EL devices of Example 1, Example 2, and Comparative Example, (1) the number of occurrences of short-circuit was 0 [number], and (2) the current density was 20 [mA / cm 2 ]. there were. On the other hand, with respect to (3) emission luminance, the value of the organic EL element of Example 1 to which the present invention was applied was about 1.2 times higher than the value of the organic EL element of the comparative example, and the present invention was applied. The value of the organic EL device of Example 2 was 2.1 times or more higher, and the effect of increasing the luminous efficiency was confirmed.
[0041]
In the same procedure as in the second embodiment, forty organic EL elements each having a different thickness of the buffer layer 3b made of ITO were manufactured, and the upper electrode 3 and the lower electrode 5 were formed with respect to these organic EL elements. The number (number) of occurrences of short circuits was measured. The results are shown in the graph of FIG.
[0042]
As shown in this graph, with respect to the buffer layer 3b made of ITO, if the film thickness is in the range of 2 nm to 30 nm, the effect of suppressing the number of short-circuited organic EL elements to 2/40 or less was confirmed. did it. This is a result equivalent to that of the light emitting element (2) shown on page 6 of Patent Document 1 shown in the prior art. Therefore, if the thickness of the buffer film 3b made of ITO is more than 2 nm and less than 30 nm, an effect exceeding this result can be obtained. Furthermore, when the thickness of the buffer layer 3b made of ITO is in the range of 5 nm to 20 nm, the effect of suppressing the number of short-circuited organic EL elements to 1/40 [number] or less was confirmed. Furthermore, when the thickness of the buffer layer 3b made of ITO was 10 nm, the effect of suppressing the number of short-circuits of the organic EL elements to 0/40 [pieces] was confirmed.
[0043]
【The invention's effect】
As described above, according to the organic EL device of the present invention, a transparent layer having a very small light absorption for visible region light such as ITO, IZO, SnO 2 , ZnO, CdO, and TiO 2 is formed on a reflective layer made of a metal material. By using a lower electrode configuration provided with a buffer layer made of a conductive material, it is possible to ensure in-plane uniformity between the upper electrode and the lower electrode while minimizing light loss caused by passing through the buffer layer. Becomes possible. As a result, high reliability can be maintained by preventing a short circuit between the lower electrode and the upper electrode, and a reduction in power consumption and an improvement in the life characteristics can be realized by improving the light extraction efficiency.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of an organic EL element according to an embodiment.
FIG. 2 is a graph showing the number of short circuits occurring in each of 40 organic EL elements manufactured in Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Organic EL element (organic electroluminescent element), 2 ... Substrate, 3a ... Reflection layer, 3b ... Buffer layer, 3 ... Lower electrode, 5 ... Organic layer, 6 ... Upper electrode

Claims (5)

基板上に設けられた下部電極と、当該下部電極上に設けられた発光層を含む1層以上の有機層と、当該有機層上に設けられた光透過性の上部電極とからなる有機電界発光素子において、
前記下部電極が、金属材料からなる反射層とこの上部の緩衝層とで構成され、
前記緩衝層は、ITO、IZO、SnO、ZnO、CdO、TiOおよびこれらに類する透明導電性材料のうちの少なくとも1つからなる
ことを特徴とする有機電界発光素子。
Organic electroluminescence comprising a lower electrode provided on a substrate, one or more organic layers including a light emitting layer provided on the lower electrode, and a light-transmitting upper electrode provided on the organic layer. In the element
The lower electrode includes a reflective layer made of a metal material and a buffer layer on the reflective layer,
The buffer layer, ITO, IZO, SnO 2, ZnO, CdO, TiO 2 and the organic electroluminescent device, characterized in that of at least one of the transparent conductive material similar thereto.
請求項1記載の有機電界発光素子において、
前記緩衝層は、30nmよりも薄く2nmよりも厚い膜厚のITOからなる
ことを特徴とする有機電界発光素子。
The organic electroluminescent device according to claim 1,
The organic electroluminescent device according to claim 1, wherein the buffer layer is made of ITO having a thickness smaller than 30 nm and larger than 2 nm.
請求項1記載の有機電界発光素子において、
前記反射層は、銀を主成分として含む
ことを特徴とする有機電界発光素子。
The organic electroluminescent device according to claim 1,
The organic electroluminescent device, wherein the reflection layer contains silver as a main component.
請求項1記載の有機電界発光素子において、
前記光透過性の上部電極と前記反射層とは、前記発光層で発生した光を共振させる共振器の共振部を構成している
ことを特徴とする請求項1記載の有機電界発光素子。
The organic electroluminescent device according to claim 1,
The organic electroluminescent device according to claim 1, wherein the light-transmitting upper electrode and the reflective layer constitute a resonator of a resonator that resonates light generated in the light emitting layer.
請求項4記載の有機電界発光素子において、
前記反射層及び前記光透過性の上部電極で生じる反射光の位相シフトをΦ、前記反射層と前記光透過性の上部電極との光学的距離をL、前記光透過性の上部電極の側から取り出す光のスペクトルのピーク波長をλとすると、
前記光学的距離Lは、下記式(1)を満たす正の最小値であることを特徴とする有機電界発光素子。
Figure 2004192890
The organic electroluminescent device according to claim 4,
The phase shift of the reflected light generated in the reflective layer and the light-transmissive upper electrode is Φ, the optical distance between the reflective layer and the light-transmissive upper electrode is L, from the side of the light-transmissive upper electrode. If the peak wavelength of the spectrum of the light to be extracted is λ,
The organic electroluminescent device, wherein the optical distance L is a positive minimum value satisfying the following equation (1).
Figure 2004192890
JP2002357716A 2002-12-10 2002-12-10 Organic electroluminescent element Pending JP2004192890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357716A JP2004192890A (en) 2002-12-10 2002-12-10 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357716A JP2004192890A (en) 2002-12-10 2002-12-10 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2004192890A true JP2004192890A (en) 2004-07-08

Family

ID=32757640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357716A Pending JP2004192890A (en) 2002-12-10 2002-12-10 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2004192890A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104256A1 (en) * 2005-03-31 2006-10-05 Pioneer Corporation Organic el device and method for manufacturing same
JP2006303463A (en) * 2005-03-25 2006-11-02 Semiconductor Energy Lab Co Ltd Light emitting device
JP2007035432A (en) * 2005-07-27 2007-02-08 Fuji Electric Holdings Co Ltd Organic el element and its manufacturing method
KR100762676B1 (en) * 2005-08-04 2007-10-01 삼성에스디아이 주식회사 Organic Light-Emitting Device and Method for Preparing the Same
KR100857472B1 (en) 2007-05-29 2008-09-08 한국전자통신연구원 Organic light emitting device and method for fabricating the same
US7687986B2 (en) 2005-05-27 2010-03-30 Fujifilm Corporation Organic EL device having hole-injection layer doped with metallic oxide
JP2010161185A (en) * 2009-01-08 2010-07-22 Ulvac Japan Ltd Organic el display device and method of manufacturing the same
US8008857B2 (en) 2006-06-12 2011-08-30 Samsung Mobile Display Co., Ltd. Organic light emitting display with reflective electrode
JP2011181508A (en) * 2005-03-25 2011-09-15 Semiconductor Energy Lab Co Ltd Light emitting device
JP2012069530A (en) * 2004-10-01 2012-04-05 Semiconductor Energy Lab Co Ltd Light-emitting device and manufacturing method therefor
KR20120127225A (en) * 2011-05-11 2012-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting module, light-emmiting panel, and light-emitting device
US8519425B2 (en) 2010-02-22 2013-08-27 Panasonic Corporation Light-emitting device and manufacturing method thereof
KR20140014685A (en) * 2012-07-25 2014-02-06 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
KR20140014684A (en) * 2012-07-25 2014-02-06 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8963415B2 (en) 2010-11-15 2015-02-24 Panasonic Corporation Organic EL element, display panel, and display device
JP2016157144A (en) * 2016-05-03 2016-09-01 株式会社半導体エネルギー研究所 Display device
JP2017102462A (en) * 2016-12-22 2017-06-08 株式会社半導体エネルギー研究所 Light-emitting device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054230B2 (en) 2004-10-01 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
US9887294B2 (en) 2004-10-01 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
US10333003B2 (en) 2004-10-01 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
JP2012069530A (en) * 2004-10-01 2012-04-05 Semiconductor Energy Lab Co Ltd Light-emitting device and manufacturing method therefor
US8357021B2 (en) 2004-10-01 2013-01-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method of the same
JP2006303463A (en) * 2005-03-25 2006-11-02 Semiconductor Energy Lab Co Ltd Light emitting device
US9246056B2 (en) 2005-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8362688B2 (en) 2005-03-25 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2015057792A (en) * 2005-03-25 2015-03-26 株式会社半導体エネルギー研究所 Light emitting device
JP2011181508A (en) * 2005-03-25 2011-09-15 Semiconductor Energy Lab Co Ltd Light emitting device
JP2013020986A (en) * 2005-03-25 2013-01-31 Semiconductor Energy Lab Co Ltd Light emitting device
WO2006104256A1 (en) * 2005-03-31 2006-10-05 Pioneer Corporation Organic el device and method for manufacturing same
US7687986B2 (en) 2005-05-27 2010-03-30 Fujifilm Corporation Organic EL device having hole-injection layer doped with metallic oxide
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US9391128B2 (en) 2005-06-30 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
JP2007035432A (en) * 2005-07-27 2007-02-08 Fuji Electric Holdings Co Ltd Organic el element and its manufacturing method
KR100762676B1 (en) * 2005-08-04 2007-10-01 삼성에스디아이 주식회사 Organic Light-Emitting Device and Method for Preparing the Same
US8008857B2 (en) 2006-06-12 2011-08-30 Samsung Mobile Display Co., Ltd. Organic light emitting display with reflective electrode
KR100857472B1 (en) 2007-05-29 2008-09-08 한국전자통신연구원 Organic light emitting device and method for fabricating the same
JP2010161185A (en) * 2009-01-08 2010-07-22 Ulvac Japan Ltd Organic el display device and method of manufacturing the same
US8519425B2 (en) 2010-02-22 2013-08-27 Panasonic Corporation Light-emitting device and manufacturing method thereof
US8963415B2 (en) 2010-11-15 2015-02-24 Panasonic Corporation Organic EL element, display panel, and display device
KR20180122578A (en) * 2011-05-11 2018-11-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting module, light-emmiting panel, and light-emitting device
JP2012253013A (en) * 2011-05-11 2012-12-20 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting module, light emitting panel, and light emitting device
KR102048837B1 (en) 2011-05-11 2019-11-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting module, light-emmiting panel, and light-emitting device
KR20120127225A (en) * 2011-05-11 2012-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting module, light-emmiting panel, and light-emitting device
KR101917752B1 (en) * 2011-05-11 2018-11-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, light-emitting module, light-emmiting panel, and light-emitting device
KR20140014685A (en) * 2012-07-25 2014-02-06 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
KR101934787B1 (en) * 2012-07-25 2019-03-19 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
KR101975309B1 (en) * 2012-07-25 2019-09-11 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
KR20140014684A (en) * 2012-07-25 2014-02-06 삼성디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
JP2016157144A (en) * 2016-05-03 2016-09-01 株式会社半導体エネルギー研究所 Display device
JP2017102462A (en) * 2016-12-22 2017-06-08 株式会社半導体エネルギー研究所 Light-emitting device

Similar Documents

Publication Publication Date Title
JP5109303B2 (en) Organic light emitting device and display device
JP4382381B2 (en) Organic electroluminescence device
TWI448195B (en) Organic electroluminescence device, display device including the same, and method of manufacturing an organic electroluminescence device
US8664677B2 (en) Light-emitting element and organic electroluminescent display device
JP2004192890A (en) Organic electroluminescent element
US20060181204A1 (en) Flexible organic light emitting devices
KR20110016402A (en) Light emitting device
US6774561B2 (en) Light-emitting device and process for production thereof having an emission laser held between electrodes
JP4637831B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
US20050035710A1 (en) Electroluminescence element and electroluminescence panel
US20060138942A1 (en) Organic electroluminescence display device and method for fabricating thereof
JP2011014870A (en) Organic electroluminescent display and method of fabricating the same
JP4755728B2 (en) Anode structure used for organic EL device, method for producing the same, and organic EL device
US6781293B2 (en) Organic EL device with high contrast ratio and method for manufacturing the same
KR20050039014A (en) Electrode for organic light emitting device and organic light emitting device comprising the same
JP4254668B2 (en) Organic electroluminescence device and display device
JP4644938B2 (en) Organic electroluminescence device
JP5735535B2 (en) Organic EL element, display panel and display device
JP2008108533A (en) Organic el display device
JP2003115393A (en) Organic electroluminescence element and its manufacturing method, image display equipment
JP4186101B2 (en) Organic EL display device
JP2004152738A (en) Organic el panel, its manufacturing method, and electro-optic panel and electronic device using the same
JP3893386B2 (en) Method for manufacturing organic electroluminescence display device
JP2005183048A (en) Light-emitting element substrate and light-emitting element using the same
JP2005259469A (en) Organic electroluminescence display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106