JP2004192855A - Separator for fuel cell - Google Patents

Separator for fuel cell Download PDF

Info

Publication number
JP2004192855A
JP2004192855A JP2002356815A JP2002356815A JP2004192855A JP 2004192855 A JP2004192855 A JP 2004192855A JP 2002356815 A JP2002356815 A JP 2002356815A JP 2002356815 A JP2002356815 A JP 2002356815A JP 2004192855 A JP2004192855 A JP 2004192855A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
layer
conductive
low electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356815A
Other languages
Japanese (ja)
Inventor
Michinari Miyagawa
倫成 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002356815A priority Critical patent/JP2004192855A/en
Publication of JP2004192855A publication Critical patent/JP2004192855A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a fuel cell with excellent conductivity, and especially, small contact resistance with an electrode, excellent in corrosion resistance and heat resistance. <P>SOLUTION: The separator for the fuel cell is made of a mixture of a conductive carbon material and a polymer material, and is provided with a low-resistance layer at an outermost layer of at least one side of a conductive base material layer, with a sheet resistivity value of the low-resistance layer at a load of 1 MPa of 1/5 or less of that of the conductive base material layer at a load of 1 MPa. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用セパレータに係り、特に成形性、強度、耐蝕性に優れた燃料電池用セパレータに関する。
【0002】
【従来の技術】
単セルを複数積層(スタック)して構成する燃料電池、特に固体高分子形燃料電池において使用される燃料電池用セパレータは、固体電解質膜を両側から挟持する各電極に接触して配置され、該電極との間に燃料ガス、酸化剤ガス等の供給ガス通路を形成するものであり、電極と接触して電流を導出する集電性能に優れたものが要求される。
【0003】
一般に燃料電池用セパレータとしては、基材として強度、導電性に優れた緻密カーボングラファイト、導電性炭素材料と耐蝕性樹脂の混合物またはステンレス鋼(SUS)、チタン、アルミニウム等の金属材料で構成されている。
【0004】
通常、上記セパレータの電極に対向する面にはガス流路を形成するための多数の突起部、溝部等が形成される。
従って、上記の緻密カーボングラファイトにて構成されるセパレータでは、電気伝導性が高く、かつ長期間の使用によっても高い集電性能が維持されるが、非常に脆い材料であることからセパレータの表面に多数の突起部や溝部を形成すべく切削加工等の機械加工を施すことは容易ではなく加工コストが高くなるとともに量産が困難であるという問題がある。
【0005】
一方、上記金属材料にて構成されるセパレータにおいては、緻密カーボングラファイトに比較して強度、延性に優れていることからガス流路を形成するための多数の突起部、溝部等の形成はプレス加工が可能であって加工コストが安価で量産も容易であるという利点がある。
しかしながら、金属材料はセパレータの使用環境下では、その表面に腐蝕による酸化膜が生成され易く、生成された酸化膜と電極との接触抵抗が大きくなり、セパレータの集電性能を低下させるという問題がある。
【0006】
そこで、黒鉛粉等の導電性炭素材料と耐蝕性樹脂を混合してなるセパレータが多数提案されている(例えば特許文献1、特許文献2)。このような導電性炭素材料と耐蝕性樹脂の混合物は、耐酸性に優れており、また導電性炭素材料を耐蝕性樹脂に対して大量に混合することで、セパレータ自体の体積抵抗を小さくすることができる。
【0007】
しかしながら、このような材料は、導電性炭素材料が大量に混合されているため、セパレータが脆くなり、厚みを薄く出来ず軽量化が図れないという問題がある。
更に、十分な強度と導電性を有した燃料電池用セパレータとして、セパレータ内部に比して外表面に多くの導電剤が含有されている、射出成形可能なセパレータが提案されている(特許文献3)。
しかしながら、このようなセパレータは芯材部の導電剤量が10重量%未満と少ないため、燃料電池としてスタックする際に生じる荷重時の面積抵抗値が高く、燃料電池セパレータとして充分な導電性が得られないという問題があった。
【0008】
【特許文献1】
特開2000−40517号公報
【特許文献2】
特開2000−348740号公報
【特許文献3】
特開2000−323150号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、導電性、耐熱性、耐蝕性に優れ、更には成形性及び量産性に優れた燃料電池用セパレータを提供することにある。
【0010】
【課題を解決するための手段】
本発明は上述の問題点を解消できる燃料電池用セパレータを見出したものであり、その要旨とするところは、
導電性炭素材料と高分子材料との混合物からなる燃料電池用セパレータにおいて、導電性を有する基材層の少なくとも片面の最外層に低電気抵抗層を設けてなることを特徴とする燃料電池用セパレータにある。
【0011】
前記低電気抵抗層における1MPa荷重時の面積抵抗値が、前記導電性基材層の1MPa荷重時の面積抵抗値の1/5以下であること、前記高分子材料が熱可塑性樹脂であること、前記低電気抵抗層の厚みが5〜100μmの範囲であることが好ましく、さらには導電性炭素材料としては、黒鉛粉、膨張黒鉛、カーボンブラック、カーボン繊維、及びカーボンナノファイバーから選ばれる材料の使用が好ましい。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の燃料電池用セパレータに使用する、高分子材料は熱可塑性樹脂の使用が好ましく、エチレン、プロピレン、ブテン等の単独重合体又は共重合体等のポリオレフィン(PO)系樹脂又はエラストマー、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリスチレン(PS)、ABS、SBS等のポリスチレン系樹脂又は水素添加されたスチレンエラストマー、ポリ塩化ビニル(PVC)樹脂、ポリ塩化ビニリデン(PVDC)樹脂、ポリメチルメタクリレート(PMMA)、共重合アクリル等のアクリル系樹脂、ポリウレタン(PU)系樹脂、エポキシ系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレン−2,6−ナフタレート(PEN)等のポリエステル系樹脂、
【0013】
ナイロン6、ナイロン12、共重合ナイロン等のポリアミド(PA)系樹脂、ポリビニルアルコール(PVA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラール(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PCTFE)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、四フッ化エチレン−パーフルオロアルコキシエチレン共重合体(PFA)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン−パーフロロプロピレン−パーフロロビニルエーテル三元共重合体(EPE)等のフッ素系樹脂、(メタ)アクリレート系樹脂などが挙げられる。
【0014】
上記熱可塑性樹脂の中でも、耐酸性の点からポリオレフィン(PO)系樹脂又はエラストマー、SBS等のポリスチレン系樹脂の水素添加されたスチレンエラストマー、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、フッ素系樹脂からなる少なくとも1種類以上の熱可塑性樹脂が好ましい。
【0015】
高分子材料に混合する導電性炭素材料としては、天然黒鉛、熱分解黒鉛、キッシュ黒鉛等の黒鉛粉、酸性溶液に前述した黒鉛を浸漬させた後、加熱して膨張させた膨張黒鉛、ケッチェンブラック、アセチレンブラックやファーネス法等で作られたカーボンブラック、PAN系、ピッチ系等の炭素繊維、アーク放電法、レーザ蒸着法、気相成長法等で作られたカーボンナノファイバーが挙げられる。
【0016】
本発明のセパレータは導電性基材層の少なくとも片側の最外層に低電気抵抗層を有しており、前記低電気抵抗層における一定荷重時の面積抵抗値を前記導電性基材層より小さくすることで、電極材との接触抵抗が大幅に低減できる。更には、低電気抵抗層を設けることで電極材との接触抵抗が小さくなるため、導電性基材層中の導電剤量を比較的少量にすることが可能となり、セパレータが割れ難くなる。
前記低電気抵抗層の1MPa荷重時の面積抵抗値は、前記導電性基材層の1MPa荷重時の面積抵抗値の1/5以下、好ましくは1/8以下にするのが良く、低電気抵抗層の1MPa時の面積抵抗値が、前記導電性基材層の面積抵抗値1/5を超えると、セパレータ材と電極材との接触抵抗が大きくなり易く、またセパレータ強度も低下するため、割れ易くなるという問題がある。
【0017】
前記導電性基材層の導電性炭素材料と高分子材料の体積比率は、特に制限はないが、導電性炭素材料が黒鉛粉や膨張黒鉛、炭素繊維の場合は、80/20〜40/60、の範囲が良く、導電性炭素材料がカーボンブラック又はカーボンナノファイバーの場合は、40/60〜5/95、の範囲が良い。導電性炭素材料と高分子材料の体積比率が80/20(導電性炭素材料が黒鉛粉や膨張黒鉛、炭素繊維の場合)又は40/60(導電性炭素材料がカーボンブラック又はカーボンナノファイバーの場合)を越えると、導電性炭素材料の体積比率が大きくなり、セパレータが脆くなやすく、薄くできないという問題がある。また、導電性炭素材料と高分子材料の体積比率が40/60(導電性炭素材料が黒鉛粉や膨張黒鉛、炭素繊維の場合)又は5/95(導電性炭素材料がカーボンブラック又はカーボンナノファイバーの場合)未満では、導電性炭素材料の体積比率少ないため、セパレータの内部抵抗が大きくなり、燃料電池の性能が悪くなるという問題が生じ易い。
【0018】
また前記低電気抵抗層の導電性炭素材料と高分子材料の体積比率は、1MPa荷重時の導電性基材層の面積抵抗値の1/5以下になるように適意決めればよいが、高分子材料の割合が少ないと、導電性炭素材料が固着できなくなるという問題が生じやすく、逆に高分子材料の割合が多いと、電極との接触抵抗が大きくなり燃料電池の性能が悪くなるという問題が生じ易い。
【0019】
また、低電気抵抗層の厚みは、5〜100μm、好ましくは10〜80μmの範囲が好適であり、厚みが5μm未満では厚みが薄いために低電気抵抗層にピンホールができ、セパレータの抵抗値が大きくなる部位ができ易い。また、低電気抵抗層の厚みが100μmを越えると、セパレータが割れ易くなるという問題が発生し易い。
【0020】
本発明の燃料電池用セパレータの製造方法は特に限定されないが、通常の工業的な混合方法である、ニーダー、ミキサー、押出混練等で高分子材料と導電性炭素材料を混合分散することができる。
燃料電池用セパレータには酸化ガスや燃料ガスの供給溝を設ける必要があるが、例えば、用いる金型の上型/下型(又はオス型、、メス型)の少なくとも一方に設けたいガス供給溝に対応した凹型を作成し、この金型を用いて射出成形法、トランスファー成形法又熱プレス成形法等により成形すれば良い。
【0021】
例えば熱プレス成形法の場合、予め高分子材料と導電剤を2軸押出機等で混合した後、押出成形、ロール成形法により、高分子樹脂シートを製膜する。低電気抵抗層の製膜が困難で有れば、高分子材料を溶剤に溶解し、導電剤を混合して塗料を作製し、剥離可能な基材上に塗布し、乾燥させて製膜しても良い。
次いでセパレータ形状の彫り込まれたプレス金型の雄金型と雌金型の間に、低電気抵抗層−導電性基材層−低電気抵抗層の順にシートを載置し、熱プレス法で突起部や溝部を形成すればよい。
熱プレス法の条件は、圧力2.9×10Pa〜14.7×10Pa(30kgf/cm〜150kgf/cm)程度にて行なえばよい。
【0022】
以下、実施例について説明するが、本発明はこれに限定されるものではない。
【実施例】
<導電性基材層の作製>
ポリオレフィンエラストマー(出光興産(株)製 「T310E」 比重0.88)35体積%と導電性炭素材料(人造黒鉛粉 昭和電工(株)製 「UFG−30」 比重2.2)65体積%を2軸押出機(押出機温度230℃)にて混合した。
作成した混合物を、単軸押出機(押出機温度230℃)にて口金から押出して導電シート(導電性基材層)を作成した。
得られた導電シートの厚みは380μmで、荷重1MPa時の面積抵抗値は77mΩcmであった。
【0023】
<低電気抵抗層の作製>
SEBS(旭化成(株)製「タフテックH1041」 比重0.91)と微細な炭素繊維(昭和電工(株)製 気相法炭素繊維「VGCF」 比重2)を体積比で60/40の割合で、固形分濃度20重量%になるように、それぞれTHF(テトラヒドロフラン)に分散させて分散液を作製した。
使用した微細な炭素繊維は、繊維径150nm、繊維長10〜20μm、嵩比重0.035g/ml、真比重2.0g/mlのものを使用した。
この分散液を基材フィルム(ポリエチレンテレフタレート、三菱化学ポリエステル(株)製:厚み50μm)上にバーコータ(松尾産業製#70番)で塗布し、80℃で乾燥し、基材フィルム−低電気抵抗層複合体を得た。
乾燥後の、低電気抵抗層の厚みは、30μmであった。
【0024】
つぎに2対の基材フィルム−低電気抵抗層複合体を低電気抵抗層が互いに向き合うように重ね合わせ、熱プレス法により2対の基材フィルム−低電気抵抗層複合体を貼り合わせた後、双方の基材フィルムを剥離し、低電気抵抗層シートを得た。
熱プレスの条件は、温度150℃、圧力2.9×10Paにて行った。更に、上記と同じ方法にて計2枚の低電気抵抗層シートを作製した。
得られた2枚の低電気抵抗層シートの厚みはいずれも50μmで、荷重1MPa時の面積抵抗値は1.2mΩcmであった。
【0025】
<燃料電池用セパレータの作製>
上記方法にて得られた導電シート2枚(厚み各380μm)と低電気抵抗層シート2枚(厚み各50μm)を低電気抵抗層シート1枚/導電シート2枚/低電気抵抗層シート1枚の順に、セパレータ形状が彫り込まれたプレス金型の雄金型と雌金型の間に載置し熱プレス法にて燃料電池用セパレータを作成した。
熱プレス法の条件は、加熱温度180℃、圧力9.7×10Pa(100kgf/cm)であった。
得られた燃料電池用セパレータの最大厚みは850μm、最小厚みは250μmであり、荷重1MPa時の面積抵抗値を表1に示した。
【0026】
実施例1で作製した導電シート、低電気抵抗層シート及びこれらを熱プレスして得られたセパレータの面積抵抗は以下のように行った。
1. 測定装置
抵抗計:YMR−3型((株)山崎精機研究所社製)
負荷装置:YSR−8型((株)山崎精機研究所社製)
電極:真鍮製平板2枚(面積1平方インチ、鏡面仕上げ)
2. 測定条件
方法:4端子法
印加電流:10mA(交流、287Hz)
開放端子電圧:20mVピーク以下
荷重:1.0MPa
カーボンペーパー:東レ(株)製「TGP−H−090」(厚み0.28mm)
3.測定方法
図1に示した測定装置により測定した。
【0027】
[比較例1]
ポリオレフィンエラストマー(出光興産(株)製 「T310E」 比重0.88)30体積%と導電性炭素材料(人造黒鉛粉 昭和電工(株)製 「UFG−30」 比重2.2)70体積%を2軸押出機(押出機温度230℃)にて混合した。
作成した混合物を、単軸押出機(押出機温度230℃)にて口金から押出し導電樹脂シートを作成した。
得られた導電樹脂シートの厚みは430μmであった。
上記導電樹脂シート(厚み430μm)2枚をセパレータ形状が彫り込まれたプレス金型の雄金型と雌金型の間に載置し熱プレス法にて燃料電池用セパレータを作成した。
熱プレス法の条件は、加熱温度180℃、圧力9.7×10Pa(100kgf/cm)であった。
得られた燃料電池用セパレータの最大厚みは850μm、最小厚みは250μmであり、荷重1MPa時の面積抵抗値を表1に示した。
【0028】
【表1】

Figure 2004192855
【0029】
表1に示す通り、本発明の低電気抵抗層を有した実施例1作製のセパレータは、低電気抵抗層が無い比較例1作製のセパレータに比べ、1MPa荷重時の面積抵抗値が格段に小さくなることが分かる。
【0030】
【発明の効果】
上述したように、本発明の燃料電池用セパレータは、導電性が高く、耐熱性と耐蝕性を兼ね備えた高分子材料である。特に、電極との接触抵抗が小さく、耐蝕性に優れ、比較的低コストで生産可能なことから、長時間の運転が可能な燃料電池用としての利用性が大きい。
【図面の簡単な説明】
【図1】面積抵抗値の測定方法を示す装置の概略図。
【符号の説明】
21:真鍮製電極
22:カーボンペーパー
23:セパレータ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell separator, and more particularly to a fuel cell separator excellent in moldability, strength, and corrosion resistance.
[0002]
[Prior art]
A fuel cell configured by stacking a plurality of single cells (stack), particularly a fuel cell separator used in a polymer electrolyte fuel cell, is disposed in contact with each electrode sandwiching a solid electrolyte membrane from both sides. It is required to form a supply gas passage for a fuel gas, an oxidizing gas, or the like between the electrode and the electrode, and to have an excellent current collection performance for contacting the electrode and extracting a current.
[0003]
Generally, a fuel cell separator is made of dense carbon graphite having excellent strength and conductivity as a base material, a mixture of a conductive carbon material and a corrosion-resistant resin, or a metal material such as stainless steel (SUS), titanium, and aluminum. I have.
[0004]
Usually, a large number of projections, grooves and the like for forming a gas flow path are formed on the surface of the separator facing the electrode.
Therefore, in the separator composed of the dense carbon graphite, the electrical conductivity is high, and the high current collection performance is maintained even after long-term use, but since the separator is a very brittle material, the separator surface is It is not easy to perform machining such as cutting in order to form a large number of projections and grooves, which increases the processing cost and makes mass production difficult.
[0005]
On the other hand, in the separator made of the above metal material, the strength and ductility are superior to that of the dense carbon graphite, so that a large number of projections, grooves, and the like for forming the gas flow path are formed by press working. It is advantageous in that processing cost is low and mass production is easy.
However, in the use environment of a metal material, an oxide film due to corrosion is easily formed on the surface of the separator, and the contact resistance between the generated oxide film and the electrode increases, thereby deteriorating the current collecting performance of the separator. is there.
[0006]
In view of this, a large number of separators made by mixing a conductive carbon material such as graphite powder and a corrosion-resistant resin have been proposed (for example, Patent Documents 1 and 2). Such a mixture of a conductive carbon material and a corrosion-resistant resin is excellent in acid resistance, and by mixing a large amount of the conductive carbon material with the corrosion-resistant resin, the volume resistance of the separator itself can be reduced. Can be.
[0007]
However, since such a material contains a large amount of a conductive carbon material, there is a problem that the separator becomes brittle, cannot be reduced in thickness, and cannot be reduced in weight.
Further, as a fuel cell separator having sufficient strength and conductivity, an injection moldable separator having a larger amount of a conductive agent on the outer surface than in the separator has been proposed (Patent Document 3). ).
However, since such a separator has a small amount of the conductive agent in the core material portion of less than 10% by weight, the sheet resistance under load generated when stacking as a fuel cell is high, and sufficient conductivity as a fuel cell separator is obtained. There was a problem that can not be.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-40517 [Patent Document 2]
JP 2000-348740 A [Patent Document 3]
JP 2000-323150 A
[Problems to be solved by the invention]
An object of the present invention is to provide a fuel cell separator having excellent conductivity, heat resistance, and corrosion resistance, and further having excellent moldability and mass productivity.
[0010]
[Means for Solving the Problems]
The present invention has found a fuel cell separator that can solve the above-mentioned problems, and the gist of the invention is to
A fuel cell separator comprising a mixture of a conductive carbon material and a polymer material, wherein a low electric resistance layer is provided on at least one outermost layer of a conductive base material layer. It is in.
[0011]
The sheet resistance of the low electric resistance layer at a load of 1 MPa is 1/5 or less of the sheet resistance of the conductive base material layer at a load of 1 MPa, and the polymer material is a thermoplastic resin. The thickness of the low electric resistance layer is preferably in the range of 5 to 100 μm, and further, as the conductive carbon material, use of a material selected from graphite powder, expanded graphite, carbon black, carbon fiber, and carbon nanofiber Is preferred.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The polymer material used for the fuel cell separator of the present invention is preferably a thermoplastic resin, and a polyolefin (PO) -based resin or elastomer such as a homopolymer or a copolymer such as ethylene, propylene or butene, or a cyclic polyolefin. Amorphous polyolefin resin (APO), polystyrene (PS), polystyrene resin such as ABS, SBS or hydrogenated styrene elastomer, polyvinyl chloride (PVC) resin, polyvinylidene chloride (PVDC) resin, polymethyl Acrylic resins such as methacrylate (PMMA) and copolymerized acrylic; polyurethane (PU) resins; epoxy resins; polyester resins such as polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN);
[0013]
Polyamide (PA) resin such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, polyvinyl alcohol resin such as ethylene-vinyl alcohol copolymer (EVOH), polyimide (PI) resin, polyether Imide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyamide imide (PAI) resin, polyetheretherketone (PEEK) resin, polycarbonate (PC) resin, polyvinyl butyral (PVB) resin, Polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene trifluoride ethylene chloride (PCTFE), ethylene tetrafluoride-propylene hexafluoride copolymer (FEP), ethylene tetrafluoride Perfluoroalkoxy ethylene Fluorinated resins such as unified (PFA), vinylidene fluoride (PVDF), vinyl fluoride (PVF), perfluoroethylene-perfluoropropylene-perfluorovinylether terpolymer (EPE), and (meth) acrylate-based resins And the like.
[0014]
Among the above thermoplastic resins, polyolefin (PO) resins or elastomers from the viewpoint of acid resistance, styrene elastomers obtained by hydrogenating polystyrene resins such as SBS, polyimide (PI) resins, polyetherimide (PEI) resins, polysulfone At least one kind of thermoplastic resin composed of (PS) resin, polyethersulfone (PES) resin, polyamideimide (PAI) resin, polyetheretherketone (PEEK) resin, and fluorine resin is preferable.
[0015]
Examples of the conductive carbon material to be mixed with the polymer material include graphite powder such as natural graphite, pyrolytic graphite, and quiche graphite; expanded graphite obtained by immersing the above-described graphite in an acidic solution and then expanding by heating; Examples include carbon black produced by black, acetylene black, furnace method, etc., carbon fiber such as PAN type and pitch type, and carbon nanofiber produced by arc discharge method, laser vapor deposition method, vapor phase growth method and the like.
[0016]
The separator of the present invention has a low electric resistance layer on at least one outermost layer of the conductive base material layer, and makes the area resistance under a constant load in the low electric resistance layer smaller than that of the conductive base material layer. This can significantly reduce the contact resistance with the electrode material. Furthermore, since the contact resistance with the electrode material is reduced by providing the low electric resistance layer, the amount of the conductive agent in the conductive base material layer can be made relatively small, and the separator is less likely to crack.
The sheet resistance of the low electric resistance layer at a load of 1 MPa is preferably 5 or less, more preferably 1 / or less of the sheet resistance of the conductive base material layer at a load of 1 MPa. If the area resistance of the layer at 1 MPa exceeds 1/5 of the area resistance of the conductive base material layer, the contact resistance between the separator material and the electrode material is likely to increase, and the separator strength is also reduced. There is a problem that it becomes easier.
[0017]
The volume ratio of the conductive carbon material to the polymer material in the conductive base material layer is not particularly limited, but is 80/20 to 40/60 when the conductive carbon material is graphite powder, expanded graphite, or carbon fiber. When the conductive carbon material is carbon black or carbon nanofiber, the range is preferably 40/60 to 5/95. When the volume ratio of the conductive carbon material to the polymer material is 80/20 (when the conductive carbon material is graphite powder, expanded graphite, or carbon fiber) or 40/60 (when the conductive carbon material is carbon black or carbon nanofiber) When the ratio exceeds ()), the volume ratio of the conductive carbon material becomes large, and there is a problem that the separator is easily brittle and cannot be thin. Further, the volume ratio of the conductive carbon material to the polymer material is 40/60 (when the conductive carbon material is graphite powder, expanded graphite, or carbon fiber) or 5/95 (when the conductive carbon material is carbon black or carbon nanofiber). In the case of less than (2), since the volume ratio of the conductive carbon material is small, the internal resistance of the separator becomes large, and the problem that the performance of the fuel cell deteriorates easily occurs.
[0018]
The volume ratio between the conductive carbon material and the polymer material in the low electric resistance layer may be appropriately determined so as to be 1/5 or less of the sheet resistance value of the conductive base material layer under a load of 1 MPa. When the proportion of the material is small, the problem that the conductive carbon material cannot be fixed tends to occur. Conversely, when the proportion of the polymer material is large, the contact resistance with the electrode increases, and the performance of the fuel cell deteriorates. Easy to occur.
[0019]
The thickness of the low electric resistance layer is preferably in the range of 5 to 100 μm, and more preferably 10 to 80 μm. When the thickness is less than 5 μm, a pinhole is formed in the low electric resistance layer because the thickness is small. Is likely to be formed in a region where the size becomes larger. On the other hand, if the thickness of the low electric resistance layer exceeds 100 μm, a problem that the separator is easily broken is likely to occur.
[0020]
The method for producing the fuel cell separator of the present invention is not particularly limited, but the polymer material and the conductive carbon material can be mixed and dispersed by a usual industrial mixing method such as a kneader, a mixer, or an extrusion kneader.
It is necessary to provide an oxidizing gas or fuel gas supply groove in the fuel cell separator. For example, a gas supply groove to be provided in at least one of an upper mold and a lower mold (or a male mold or a female mold) to be used is used. May be formed by using an injection molding method, a transfer molding method, a hot press molding method, or the like.
[0021]
For example, in the case of the hot press molding method, after a polymer material and a conductive agent are mixed in advance by a twin screw extruder or the like, a polymer resin sheet is formed by extrusion molding and roll molding. If it is difficult to form a low electric resistance layer, dissolve the polymer material in a solvent, mix a conductive agent to make a paint, apply it on a peelable substrate, and dry it to form a film. May be.
Next, a sheet is placed in the order of the low electric resistance layer, the conductive base material layer, and the low electric resistance layer between the male mold and the female mold of the stamping-shaped engraved press mold, and the protrusion is formed by a hot press method. What is necessary is just to form a part and a groove part.
Conditions of thermal press method may be performed at a pressure 2.9 × 10 6 Pa~14.7 × 10 6 Pa (30kgf / cm 2 ~150kgf / cm 2) approximately.
[0022]
Hereinafter, although an Example is described, the present invention is not limited to this.
【Example】
<Preparation of conductive base material layer>
35 volume% of polyolefin elastomer ("T310E", specific gravity 0.88, manufactured by Idemitsu Kosan Co., Ltd.) and 65 volume% of conductive carbon material ("UFG-30", specific gravity 2.2, manufactured by Showa Denko KK) are used. The mixture was mixed by a screw extruder (extruder temperature: 230 ° C.).
The prepared mixture was extruded from a die with a single screw extruder (extruder temperature: 230 ° C.) to form a conductive sheet (conductive base material layer).
The thickness of the obtained conductive sheet was 380 μm, and the sheet resistance under a load of 1 MPa was 77 mΩcm 2 .
[0023]
<Preparation of low electric resistance layer>
SEBS (Asahi Kasei Corporation's “Toughtec H1041” specific gravity 0.91) and fine carbon fiber (Showa Denko Corporation's vapor-phase carbon fiber “VGCF” specific gravity 2) at a volume ratio of 60/40, Each was dispersed in THF (tetrahydrofuran) so as to have a solid concentration of 20% by weight to prepare a dispersion.
The fine carbon fibers used had a fiber diameter of 150 nm, a fiber length of 10 to 20 μm, a bulk specific gravity of 0.035 g / ml, and a true specific gravity of 2.0 g / ml.
This dispersion was applied on a base film (polyethylene terephthalate, manufactured by Mitsubishi Chemical Polyester, Ltd .: thickness 50 μm) using a bar coater (# 70 manufactured by Matsuo Sangyo), dried at 80 ° C., and dried at 80 ° C. A layer composite was obtained.
After drying, the thickness of the low electric resistance layer was 30 μm.
[0024]
Next, the two pairs of the base film and the low electric resistance layer composite are overlapped so that the low electric resistance layers face each other, and the two pairs of the base film and the low electric resistance layer composite are bonded by a hot press method. Then, both base films were peeled off to obtain a low electric resistance layer sheet.
The hot pressing was performed at a temperature of 150 ° C. and a pressure of 2.9 × 10 6 Pa. Further, two low electric resistance layer sheets were produced in the same manner as described above.
The thickness of each of the obtained two sheets of the low electric resistance layer was 50 μm, and the sheet resistance under a load of 1 MPa was 1.2 mΩcm 2 .
[0025]
<Preparation of fuel cell separator>
The two conductive sheets (thickness: 380 μm each) and the two low electrical resistance layer sheets (thickness: 50 μm each) obtained by the above method were converted into one low electrical resistance layer sheet / two conductive sheets / one low electrical resistance layer sheet. Was placed between a male mold and a female mold of a press mold in which the shape of the separator was engraved, and a fuel cell separator was prepared by a hot press method.
The conditions of the hot press method were a heating temperature of 180 ° C. and a pressure of 9.7 × 10 6 Pa (100 kgf / cm 2 ).
The maximum thickness of the obtained fuel cell separator was 850 μm, the minimum thickness was 250 μm, and the sheet resistance under a load of 1 MPa was shown in Table 1.
[0026]
The sheet resistance of the conductive sheet, the low electric resistance layer sheet, and the separator obtained by hot pressing these sheets prepared in Example 1 were as follows.
1. Measuring device Resistance meter: YMR-3 type (Yamazaki Seiki Laboratory Co., Ltd.)
Load device: YSR-8 type (manufactured by Yamazaki Seiki Laboratory Co., Ltd.)
Electrode: 2 brass flat plates (1 square inch area, mirror finish)
2. Measurement condition method: 4-terminal method Applied current: 10 mA (AC, 287 Hz)
Open terminal voltage: 20 mV peak or less Load: 1.0 MPa
Carbon paper: “TGP-H-090” manufactured by Toray Industries, Inc. (0.28 mm thick)
3. Measuring method It was measured by the measuring device shown in FIG.
[0027]
[Comparative Example 1]
30% by volume of a polyolefin elastomer ("T310E", specific gravity 0.88, manufactured by Idemitsu Kosan Co., Ltd.) and 70% by volume of conductive carbon material ("UFG-30", specific gravity 2.2, manufactured by Showa Denko KK) The mixture was mixed by a screw extruder (extruder temperature: 230 ° C.).
The prepared mixture was extruded from a die with a single screw extruder (extruder temperature: 230 ° C.) to produce a conductive resin sheet.
The thickness of the obtained conductive resin sheet was 430 μm.
Two conductive resin sheets (430 μm in thickness) were placed between a male die and a female die of a press die engraved with a separator shape, and a separator for a fuel cell was prepared by a hot press method.
The conditions of the hot press method were a heating temperature of 180 ° C. and a pressure of 9.7 × 10 6 Pa (100 kgf / cm 2 ).
The maximum thickness of the obtained fuel cell separator was 850 μm, the minimum thickness was 250 μm, and the sheet resistance under a load of 1 MPa was shown in Table 1.
[0028]
[Table 1]
Figure 2004192855
[0029]
As shown in Table 1, the separator of Example 1 having the low electric resistance layer of the present invention has a much smaller sheet resistance under a 1 MPa load than the separator of Comparative Example 1 without the low electric resistance layer. It turns out that it becomes.
[0030]
【The invention's effect】
As described above, the fuel cell separator of the present invention is a polymer material having high conductivity and having both heat resistance and corrosion resistance. In particular, since it has low contact resistance with electrodes, has excellent corrosion resistance, and can be produced at relatively low cost, it has great utility as a fuel cell that can be operated for a long time.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus showing a method of measuring a sheet resistance value.
[Explanation of symbols]
21: Brass electrode 22: Carbon paper 23: Separator

Claims (5)

導電性炭素材料と高分子材料との混合物からなる燃料電池用セパレータにおいて、導電性を有する基材層の少なくとも片面の最外層に低電気抵抗層を設けてなることを特徴とする燃料電池用セパレータ。A fuel cell separator comprising a mixture of a conductive carbon material and a polymer material, wherein a low electric resistance layer is provided on at least one outermost layer of a conductive base material layer. . 前記低電気抵抗層における1MPa荷重時の面積抵抗値が、前記導電性基材層の1MPa荷重時の面積抵抗値の1/5以下であることを特徴とする請求項1記載の燃料電池用セパレータ。2. The fuel cell separator according to claim 1, wherein an area resistance value of the low electric resistance layer at a load of 1 MPa is 1/5 or less of an area resistance value of the conductive base layer under a load of 1 MPa. 3. . 上記高分子材料が熱可塑性樹脂であることを特徴とする請求項1又は2記載の燃料電池用セパレータ。3. The fuel cell separator according to claim 1, wherein the polymer material is a thermoplastic resin. 前記低電気抵抗層の厚みが5〜100μmの範囲であることを特徴とする請求項1乃至3のいずれか1項記載の燃料電池用セパレータ。4. The fuel cell separator according to claim 1, wherein the low electric resistance layer has a thickness in a range of 5 to 100 μm. 5. 前記導電性炭素材料が、黒鉛粉、膨張黒鉛、カーボンブラック、カーボン繊維、及びカーボンナノファイバーから選ばれてなることを特徴とする請求項1乃至4のいずれか1項記載の燃料電池用セパレータ。The fuel cell separator according to any one of claims 1 to 4, wherein the conductive carbon material is selected from graphite powder, expanded graphite, carbon black, carbon fiber, and carbon nanofiber.
JP2002356815A 2002-12-09 2002-12-09 Separator for fuel cell Pending JP2004192855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356815A JP2004192855A (en) 2002-12-09 2002-12-09 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356815A JP2004192855A (en) 2002-12-09 2002-12-09 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2004192855A true JP2004192855A (en) 2004-07-08

Family

ID=32757043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356815A Pending JP2004192855A (en) 2002-12-09 2002-12-09 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2004192855A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095821A1 (en) * 2005-03-10 2006-09-14 Bridgestone Corporation Thermoplastic resin composition and thermoplastic resin molded article
JP2007317412A (en) * 2006-05-24 2007-12-06 Tokuyama Corp Proton conductivity imparting agent solution for electrode catalyst layer
JP2013093334A (en) * 2011-05-30 2013-05-16 Showa Denko Kk Fuel cell separator
WO2015163253A1 (en) * 2014-04-24 2015-10-29 昭和電工株式会社 Carbon current collector and fuel cell provided with same
JP2020145014A (en) * 2019-03-05 2020-09-10 信越ポリマー株式会社 Fuel cell separator and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095821A1 (en) * 2005-03-10 2006-09-14 Bridgestone Corporation Thermoplastic resin composition and thermoplastic resin molded article
JP2007317412A (en) * 2006-05-24 2007-12-06 Tokuyama Corp Proton conductivity imparting agent solution for electrode catalyst layer
JP2013093334A (en) * 2011-05-30 2013-05-16 Showa Denko Kk Fuel cell separator
WO2015163253A1 (en) * 2014-04-24 2015-10-29 昭和電工株式会社 Carbon current collector and fuel cell provided with same
JP2020145014A (en) * 2019-03-05 2020-09-10 信越ポリマー株式会社 Fuel cell separator and manufacturing method thereof
JP7178294B2 (en) 2019-03-05 2022-11-25 信越ポリマー株式会社 METHOD FOR MANUFACTURING FUEL CELL SEPARATOR

Similar Documents

Publication Publication Date Title
JP4818486B2 (en) Gas diffusion layer, method for producing the same, and fuel cell
JP4633626B2 (en) Fuel cell separator
JP4975262B2 (en) Fuel cell separator and method for producing the same
US7514021B2 (en) Conductive resin film, collector and production methods therefore
TW201143191A (en) Bipolar plate for redox flow battery
JP2007324146A (en) Fuel cell separator
JP4072371B2 (en) Fuel cell separator
JP4469541B2 (en) Fuel cell separator and method for producing the same
JP4458877B2 (en) Manufacturing method of fuel cell separator
JP2004192855A (en) Separator for fuel cell
US20100035125A1 (en) Layered electrode for electrochemical cells
JP5153993B2 (en) Conductive thermoplastic resin film
WO2004070864A2 (en) Flow field
JP2004014272A (en) Separator for fuel cell
JP4082484B2 (en) Fuel cell separator
JP4349793B2 (en) Conductive resin laminated film and method for producing the same
JP2002015750A (en) Fuel cell separator
CN101188150B (en) Electric resin thin film, current collector and preparation method thereof
JP2003109618A (en) Separator for fuel cell
JP4179759B2 (en) Fuel cell separator
JP2005238534A (en) Conductive thermoplastic resin film
JP2002190304A (en) Fuel cell separator
JP2006286215A (en) Method of processing resin coated metal plate
JP2005281403A (en) Electroconductive thermoplastic resin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027