JP4458877B2 - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP4458877B2
JP4458877B2 JP2004050031A JP2004050031A JP4458877B2 JP 4458877 B2 JP4458877 B2 JP 4458877B2 JP 2004050031 A JP2004050031 A JP 2004050031A JP 2004050031 A JP2004050031 A JP 2004050031A JP 4458877 B2 JP4458877 B2 JP 4458877B2
Authority
JP
Japan
Prior art keywords
fuel cell
metal
melting point
resin layer
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050031A
Other languages
Japanese (ja)
Other versions
JP2005243354A (en
Inventor
倫成 宮川
芳男 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2004050031A priority Critical patent/JP4458877B2/en
Publication of JP2005243354A publication Critical patent/JP2005243354A/en
Application granted granted Critical
Publication of JP4458877B2 publication Critical patent/JP4458877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は燃料電池用セパレータの製造方法に係り、詳しくは単セルを複数積層して構成する燃料電池において隣接する単セル間に設けられ、電極との間で燃料ガス流路及び酸化ガス流路を形成すると共に燃料ガスと酸化ガスとを隔てる燃料電池用セパレータであって、特に成形後の、耐食性、導電性に優れた燃料電池用セパレータの製造方法に関する。   The present invention relates to a method for manufacturing a separator for a fuel cell, and more specifically, a fuel cell configured by stacking a plurality of single cells, provided between adjacent single cells, and a fuel gas channel and an oxidizing gas channel between electrodes. It is related with the manufacturing method of the separator for fuel cells which forms fuel cell, and separates fuel gas and oxidizing gas, and was excellent in corrosion resistance and conductivity especially after fabrication.

燃料電池、特に固体高分子型燃料電池を構成するセパレータは、固体電解質膜を両側から挟持する各電極に接触して配置されて、該電極との間に燃料ガス、酸化剤ガス等の供給ガス通路を形成するものであり、電極と接触して電流を導出する集電性能に優れたものが要求される。
一般に燃料電池用セパレータとしては、基材として強度、導電性に優れた緻密カーボングラファイト、またはステンレス鋼(SUS)、チタン、アルミニウム等の金属材料で構成されている。
A separator constituting a fuel cell, particularly a polymer electrolyte fuel cell, is disposed in contact with each electrode sandwiching a solid electrolyte membrane from both sides, and a supply gas such as a fuel gas or an oxidant gas is provided between the electrodes. It is necessary to form a passage and to be excellent in current collecting performance for deriving current in contact with an electrode.
In general, a separator for a fuel cell is composed of a dense carbon graphite having excellent strength and conductivity as a base material, or a metal material such as stainless steel (SUS), titanium, or aluminum.

通常、上記セパレータの電極に対向する面にはガス流路を形成するための多数の突起部、溝部等が形成される。
従って、上記の緻密カーボングラファイトにて構成されるセパレータでは、電気伝導性が高く、かつ長期間の使用によっても高い集電性能が維持されるが、非常に脆い材料であることからセパレータの表面に多数の突起部や溝部を形成すべく切削加工等の機械加工を施すことは容易ではなく加工コストが高くなるとともに量産が困難であるという問題がある。
Usually, a large number of protrusions, grooves, and the like are formed on the surface of the separator that faces the electrodes.
Therefore, the separator composed of the above-mentioned dense carbon graphite has high electrical conductivity and high current collecting performance is maintained even after long-term use. It is not easy to perform machining such as cutting so as to form a large number of protrusions and grooves, and there is a problem that the processing cost increases and mass production is difficult.

一方、上記金属材料にて構成されるセパレータにおいては、緻密カーボングラファイトに比較して強度、延性に優れていることからガス流路を形成するための多数の突起部、溝部等の形成はプレス加工が可能であって加工コストが安価で量産も容易であるという利点がある。
しかしながら、金属材料はセパレータの使用環境下では、その表面に腐食による酸化膜が生成され易く、生成された酸化膜と電極との接触抵抗が大きくなり、セパレータの集電性能を低下させるという問題がある。
そこで、セパレータの構成材料として加工性に優れた金属材料の表面に、耐食性に優れた金等の貴金属材料をコーティングした材料が検討されている。しかしながら、このような材料は極めて高価なために汎用性に欠けるという問題がある。
On the other hand, the separator made of the above metal material has excellent strength and ductility compared to dense carbon graphite, so the formation of a large number of protrusions and grooves for forming a gas flow path is a press process. There is an advantage that the processing cost is low and mass production is easy.
However, a metal material has a problem that an oxide film due to corrosion tends to be generated on the surface of the separator in an environment where the separator is used, and the contact resistance between the generated oxide film and the electrode is increased, thereby reducing the current collecting performance of the separator. is there.
Therefore, a material in which a surface of a metal material excellent in workability is coated with a noble metal material such as gold excellent in corrosion resistance as a constituent material of the separator has been studied. However, since such a material is extremely expensive, there is a problem that it lacks versatility.

そこで、金属基板の少なくとも片面に導電性粒子を混合した樹脂層を被覆した燃料電池用セパレータが提案されている。しかし、高い導電性を維持するには、樹脂層に導電剤を高充填する必要があり、その結果樹脂層が脆くなり、プレス加工によってガス流路を形成するための多数の突起部、溝部等を形成しようとすると、樹脂層にピンホールやボイド、ミクロクラックが発生し、燃料電池セパレータとして長期に使用すると金属基板が錆びて抵抗値が増加するという問題があった。   Therefore, a fuel cell separator in which at least one surface of a metal substrate is coated with a resin layer in which conductive particles are mixed has been proposed. However, in order to maintain high conductivity, it is necessary to highly fill the resin layer with a conductive agent. As a result, the resin layer becomes brittle, and a large number of protrusions, grooves, etc. for forming a gas flow path by pressing When the metal layer is formed, pinholes, voids, and microcracks are generated in the resin layer, and when used as a fuel cell separator for a long time, the metal substrate rusts and the resistance value increases.

特開2002−15750号公報JP 2002-15750 A 特開2002−343375号公報JP 2002-343375 A

本発明の目的は、耐食性に優れ、比較的低コストで生産可能な金属基板を主体とした燃料電池用セパレータの製造方法であって、更にプレス加工によってガス流路を形成するための多数の突起部、溝部等を形成して、樹脂層にピンホールやボイド、ミクロクラック等が発生したとしても、これらを修復させて樹脂が本来有する耐食性を引き出すことができる、燃料電池用セパレータを提供することにある。   An object of the present invention is a method of manufacturing a separator for a fuel cell mainly composed of a metal substrate that has excellent corrosion resistance and can be produced at a relatively low cost, and further includes a number of protrusions for forming a gas flow path by pressing. Even if pinholes, voids, microcracks, etc. are generated in the resin layer by forming a portion, a groove, etc., a fuel cell separator is provided that can restore these and extract the inherent corrosion resistance of the resin It is in.

本発明は上述の問題点を解消できる燃料電池用セパレータの製造方法を見出したものであり、その要旨とするところは、
金属基板の少なくとも片面に導電性フィラーを混合した熱可塑性樹脂層を積層し、その後プレス加工によって燃料ガスの流路を形成する燃料電池用セパレータにおいて、プレス加工によって燃料ガスの流路を形成した後、上記樹脂の融点以上、(融点温度+80℃)以下で、熱処理をすることを特徴とする燃料電池セパレータの製造方法にある。
さらには、前記熱可塑性樹脂層がフッ素樹脂及びフッ素系エラストマー、ポリオレフィン樹脂ならびにポリオレフィンエラストマーから選ばれてなること、前記金属基板がステンレス鋼、チタン、アルミニウム、銅、ニッケル、及び鋼から選ばれてなること、前記導電性フィラーが、カーボン、カーボンナノファイバー、金属炭化物、金属酸化物、金属窒化物、金属繊維及び金属粉末から選ばれてなることが含まれている。
また、他の要旨としては、金属基板の少なくとも片面に15体積%〜40体積%の混合比率で導電性フィラーを混合した熱可塑性樹脂層を積層し、その後プレス加工によって燃料ガスの流路を形成する燃料電池用セパレータの製造方法において、プレス加工によって燃料ガスの流路を形成した後、上記樹脂の融点以上、(融点+80℃)以下で、熱処理をすることによって、樹脂層に発生したピンホールやボイド、ミクロクラックを修復することを特徴とする燃料電池セパレータの製造方法により得られたセパレータを組み入れてなる燃料電池である。
The present invention has found a method for producing a fuel cell separator capable of solving the above-mentioned problems, and the gist thereof is as follows:
In a fuel cell separator in which a thermoplastic resin layer mixed with a conductive filler is laminated on at least one surface of a metal substrate and then a fuel gas channel is formed by pressing, after the fuel gas channel is formed by pressing In the method for producing a fuel cell separator, the heat treatment is performed at a temperature not lower than the melting point of the resin and not higher than (melting point temperature + 80 ° C.).
Furthermore, the thermoplastic resin layer is selected from a fluororesin and a fluorine-based elastomer, a polyolefin resin and a polyolefin elastomer, and the metal substrate is selected from stainless steel, titanium, aluminum, copper, nickel, and steel. In addition, it is included that the conductive filler is selected from carbon, carbon nanofiber, metal carbide, metal oxide, metal nitride, metal fiber, and metal powder.
As another gist, a thermoplastic resin layer mixed with a conductive filler in a mixing ratio of 15% to 40% by volume is laminated on at least one surface of a metal substrate, and then a fuel gas flow path is formed by pressing. In the manufacturing method of a separator for a fuel cell, a pinhole generated in a resin layer by forming a fuel gas flow path by pressing and then heat-treating the resin at a melting point or higher and (melting point + 80 ° C.) or lower. This is a fuel cell incorporating a separator obtained by a method for producing a fuel cell separator characterized by repairing voids, voids, and microcracks.

本発明によれば、電気伝導性が高く、耐食性に優れ、比較的低コストで生産可能な金属基板を主体とした燃料電池用セパレータが得られ、さらにプレス加工によってガス流路を形成するための多数の突起部、溝部等を形成しても、樹脂層に切れやクラック等が発生することがない、金属基板に導電性フィラーを混合した樹脂層を被覆した燃料電池用セパレータが得られるため、長時間の運転が可能な燃料電池が提供できる。   According to the present invention, a fuel cell separator mainly composed of a metal substrate that has high electrical conductivity, excellent corrosion resistance, and can be produced at a relatively low cost is obtained, and further, a gas flow path is formed by pressing. Even if a large number of protrusions, grooves, etc. are formed, the resin layer will not be cut or cracked, and a fuel cell separator coated with a resin layer mixed with a conductive filler on a metal substrate can be obtained. A fuel cell that can be operated for a long time can be provided.

以下、本発明を詳しく説明する。
本発明のセパレータで使用する金属基板としては、ステンレス鋼、チタン、アルミニウム、銅、ニッケル、鋼などをシ−ト状、及びコイル状にしたもの、箔状のもの、およびそれらに表面処理を施したものなどが挙げられる。金属板の厚さは特に限定はしないが、成形性と軽量化の双方をバランスよく満足させるには、0.05〜0.5mmの範囲にすることが好ましい。
また、金属板は、耐食性、プレス加工性、樹脂との密着性の面から、各種の金属メッキ、例えば、錫めっき、ニッケルめっき、亜鉛めっき等やこれらの複層化めっき、合金化めっき等、或いはリン酸塩処理等、樹脂層との接着性を改良する目的でエッチング層や研磨層を設けてもよい。
The present invention will be described in detail below.
As the metal substrate used in the separator of the present invention, stainless steel, titanium, aluminum, copper, nickel, steel, etc. made into a sheet shape and a coil shape, a foil shape, and surface treatment are applied to them. And the like. The thickness of the metal plate is not particularly limited, but is preferably in the range of 0.05 to 0.5 mm in order to satisfy both formability and weight reduction in a balanced manner.
In addition, the metal plate has various metal platings, for example, tin plating, nickel plating, galvanization, etc., multi-layered plating, alloying plating, etc., in terms of corrosion resistance, press workability, and adhesion to the resin. Or you may provide an etching layer and a grinding | polishing layer in order to improve adhesiveness with a resin layer, such as a phosphate process.

樹脂層に使用するものとしては耐食性から、フッ素樹脂及びフッ素系エラストマー、ポリオレフィン樹脂ならびにポリオレフィンエラストマーが使用できる。フッ素樹脂及びフッ素系エラストマーの場合、具体的には、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、EPE(テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体)、ETFE(テトラフルオロエチレン−エチレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、ECTFE(クロロトリフルオロエチレン−エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリビニルフルオライド)、THV(テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体)、VDF−HFP(フッ化ビニリデン−ヘキサフルオロプロピレン共重合体)、TFE−P(フッ化ビニリデン−プロピレン共重合体)、含フッ素シリコーン系ゴム、含フッ素ビニルエーテル系ゴム、含フッ素フォスファゼン系ゴム、含フッ素熱可塑性エラストマーから成る少なくとも1種類以上のフッ素樹脂及びフッ素ゴムが使用できる。
上記例示した樹脂では、成形性の点から特にフッ化ビニリデンを含むPVDF、THV、VDF−HFP及びTFE−Pが好ましい。
As the resin layer, a fluororesin and a fluoroelastomer, a polyolefin resin and a polyolefin elastomer can be used because of corrosion resistance. In the case of fluororesin and fluoroelastomer, specifically, PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer) , EPE (tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer), ETFE (tetrafluoroethylene-ethylene copolymer), PCTFE (polychlorotrifluoroethylene), ECTFE (chlorotrifluoroethylene-ethylene copolymer) Polymer), PVDF (polyvinylidene fluoride), PVF (polyvinyl fluoride), THV (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer), VDF- FP (vinylidene fluoride-hexafluoropropylene copolymer), TFE-P (vinylidene fluoride-propylene copolymer), fluorine-containing silicone rubber, fluorine-containing vinyl ether rubber, fluorine-containing phosphazene rubber, fluorine-containing thermoplastic At least one fluororesin and fluororubber made of elastomer can be used.
Among the resins exemplified above, PVDF, THV, VDF-HFP and TFE-P containing vinylidene fluoride are particularly preferable from the viewpoint of moldability.

また、ポリオレフィン樹脂ならびにポリオレフィンエラストマーの場合、具体的には、ポリエチレン、ポリプロピレン、ポリブテン、ポリ4メチル1ペンテン、ポリヘキセン、ポリオクテン、からなる少なくとも1種類以上のポリオレフィン及びポリオレフィンエラストマーが使用できる。
上記例示した樹脂では、耐熱性、成形性の点から特にポリプロピレンの含まれるエラストマーが好ましい。
In the case of polyolefin resin and polyolefin elastomer, specifically, at least one kind of polyolefin and polyolefin elastomer composed of polyethylene, polypropylene, polybutene, poly-4-methyl 1-pentene, polyhexene, polyoctene can be used.
Among the resins exemplified above, an elastomer containing polypropylene is particularly preferable from the viewpoint of heat resistance and moldability.

樹脂層には導電性フィラーを混合する必要があり、導電性粒子としては、カーボン、カーボンナノファイバー、金属炭化物、金属酸化物、金属窒化物、金属繊維及び金属粉末が好適に使用できる。
カーボンとしては黒鉛、カーボンブラック、膨張黒鉛、カーボン繊維など、カーボンナノファイバーとしては、アーク放電法、気相成長法、レーザー蒸着法、有機溶媒燃焼法などから生成した、炭素のチューブ構造が単一チューブであるシングル型、二重チューブであるダブル型、三重以上となっているマルチ型構造を含み、更に、チューブの少なくとも一方の端が閉じているナノホーン型、底の無いカップ形状をなす炭素網層が多数積層されたカップ型等の形状も含まれる。
また、金属炭化物としてはタングステンカーバイト、シリコンカーバイト、炭化カルシウム、炭化ジルコニウム、炭化タンタル、炭化チタン、炭化ニオブ、炭化モリブデン、炭化バナジウムなど、金属酸化物としては、酸化チタン、酸化ルテニウム、酸化インジウム、金属窒化物としては窒化クロム、窒化アルミニウム、窒化モリブデン、窒化ジルコニウム、窒化タンタル、窒化チタン、窒化ガリウム、窒化ニオブ、窒化バナジウム、窒化ホウ素など、金属繊維としては、鉄繊維、銅繊維、ステンレス繊維など、金属粉末としては、タン粉、ニッケル粉、錫紛、タンタル紛、ニオブ粉などが例示できる。
上記の導電性フィラーの中では、カーボン系フィラー及びカーボンナノファイバーが導電性、耐食性に優れている点から好ましい。
It is necessary to mix a conductive filler into the resin layer, and carbon, carbon nanofiber, metal carbide, metal oxide, metal nitride, metal fiber, and metal powder can be suitably used as the conductive particles.
Graphite, carbon black, expanded graphite, carbon fiber, etc. are used as carbon, and carbon nanofiber is a single carbon tube structure generated from arc discharge method, vapor phase growth method, laser deposition method, organic solvent combustion method, etc. Single-tube type, double-type double-tube type, multi-type multi-type structure including more than triple, and nanohorn type with at least one end of the tube closed, carbon network with cup shape without bottom A cup shape or the like in which many layers are stacked is also included.
Metal carbides include tungsten carbide, silicon carbide, calcium carbide, zirconium carbide, tantalum carbide, titanium carbide, niobium carbide, molybdenum carbide, and vanadium carbide. Metal oxides include titanium oxide, ruthenium oxide, and indium oxide. Metal nitride includes chromium nitride, aluminum nitride, molybdenum nitride, zirconium nitride, tantalum nitride, titanium nitride, gallium nitride, niobium nitride, vanadium nitride, boron nitride, etc. Metal fibers include iron fiber, copper fiber, stainless steel fiber Examples of the metal powder include tan powder, nickel powder, tin powder, tantalum powder, and niobium powder.
Among the above conductive fillers, carbon-based fillers and carbon nanofibers are preferable from the viewpoint of excellent conductivity and corrosion resistance.

導電性フィラーの樹脂層中の混合比率は5体積%〜40体積%で樹脂層の体積抵抗率が1.0Ω・cm以下になるように適宜決めれば良く、混合比率が5体積%未満では体積抵抗率が1.0Ω・cmを越えて導電性に劣り、40体積%を越えると成形が困難になり易い。   The mixing ratio of the conductive filler in the resin layer may be appropriately determined so that the volume resistivity of the resin layer is 1.0 Ω · cm or less at 5% to 40% by volume, and the volume is less than 5% by volume. When the resistivity exceeds 1.0 Ω · cm, the conductivity is inferior, and when it exceeds 40% by volume, molding tends to be difficult.

また、金属基板と導電性フィラーを混合した樹脂層を積層した後の面積抵抗値を低減させるには、導電性フィラーを混合した樹脂層の金属基板側の最外層に低電気抵抗層1を設けることが好ましい。
低電気抵抗層1中の導電性フィラーの混合比率は15体積%〜40体積%の範囲が良く、混合比が15体積%未満では、金属板と導電性フィラーを混合した樹脂層との接触抵抗が大きく、金属基板と導電性フィラーを混合した樹脂層を積層した後の面積抵抗値が大きくなりやすく、混合比が40体積%を越えると成形が困難になり易いばかりでなく、金属基板との接着が難しいという問題が発生しやすい。
Moreover, in order to reduce the sheet resistance value after laminating the resin layer mixed with the metal substrate and the conductive filler, the low electrical resistance layer 1 is provided on the outermost layer on the metal substrate side of the resin layer mixed with the conductive filler. It is preferable.
The mixing ratio of the conductive filler in the low electrical resistance layer 1 is preferably in the range of 15% by volume to 40% by volume. When the mixing ratio is less than 15% by volume, the contact resistance between the metal plate and the resin layer in which the conductive filler is mixed. The area resistance value after laminating a resin layer in which a metal substrate and a conductive filler are mixed is likely to be large, and if the mixing ratio exceeds 40% by volume, not only molding is likely to be difficult, but also the metal substrate and The problem of difficult bonding is likely to occur.

さらに、金属基板と導電性フィラーを混合した樹脂層を積層した後の面積抵抗値を低減させるには、導電性フィラーを混合した樹脂層の金属基板とは反対側の最外層に低電気抵抗層2を設けることが好ましい。
低電気抵抗層2中の導電性フィラーの混合比率は15体積%〜40体積%の範囲が良く、混合比が15体積%未満では、導電性フィラーを混合した樹脂層とガス拡散電極との接触抵抗が大きく、金属基板と導電性フィラーを混合した樹脂層を積層した後の面積抵抗値が大きくなりやすく、混合比が40体積%を越えると成形が困難になり易いばかりでなく、プレス成形後、低電気抵抗層2中にピンホールやボイド、ミクロクラック等が発生しやすく、樹脂の融点温度以上で熱処理をしても、修復させることが艱難である。
Furthermore, in order to reduce the sheet resistance value after laminating the resin layer mixed with the metal substrate and the conductive filler, the low electrical resistance layer is formed on the outermost layer on the opposite side of the metal substrate of the resin layer mixed with the conductive filler. 2 is preferably provided.
The mixing ratio of the conductive filler in the low electrical resistance layer 2 is preferably in the range of 15% by volume to 40% by volume. When the mixing ratio is less than 15% by volume, the resin layer mixed with the conductive filler is in contact with the gas diffusion electrode. The resistance is large, and the area resistance value after laminating the resin layer mixed with the metal substrate and the conductive filler tends to increase. If the mixing ratio exceeds 40% by volume, not only the molding becomes difficult, but also after the press molding. In addition, pinholes, voids, microcracks and the like are likely to occur in the low electrical resistance layer 2, and it is difficult to repair even if heat treatment is performed at a temperature higher than the melting point of the resin.

導電性フィラーを混合した樹脂層には、金属板との密着性を改良するような接着剤、シランカップリング剤、チタンカップリング剤等接着助剤、耐食性を向上させるような添加剤等を適宜、添加しても良い。
樹脂層の厚みは10〜200μmの範囲が好ましく、10μm未満では金属基板への耐食効果が少なく、200μmを越えるものではセパレータが厚くなりスタックされた燃料電池が大きくなるという問題が生じ易い。
Adhesives that improve the adhesion to the metal plate, adhesion aids such as silane coupling agents, titanium coupling agents, additives that improve corrosion resistance, etc. are appropriately added to the resin layer mixed with the conductive filler. , May be added.
The thickness of the resin layer is preferably in the range of 10 to 200 [mu] m, and if it is less than 10 [mu] m, the corrosion resistance to the metal substrate is small, and if it exceeds 200 [mu] m, the separator becomes thick and the stacked fuel cell tends to be large.

本発明のセパレータの製造方法は特に限定されないが、予め製膜された上述した組成からなる導電樹脂製シートを金属基板の片面又は両面に載置し、熱プレス法や加圧ロール法で積層一体化する方法などがある。例えば、金属基板と導電樹脂製シートを重ね合わせた後に、導電樹脂製シートの融点以上の温度でプレスする熱プレス法や、予め金属基板を導電樹脂製シートの融点以上の温度に加熱した後、複数のロールで加圧圧着する加圧ロール法で積層一体化する方法などがある。
積層した後に冷間プレス成形によって突起部や溝部を形成し、その後、樹脂の融点以上の温度で熱処理する必要がある。ここで融点とは、JIS K 7121に準じて、示差操作熱量計(パーキンエルマー製DSC−7)を用いて、加熱速度10℃/分で昇温したときのサーモグラムで、結晶融解ピーク温度を言う。
熱処理温度は、樹脂の融点以上から(融点+80℃)以下、好ましくは(融点+50℃)以下、の範囲が良く、樹脂の融点未満では、ガス流路を形成するためのプレス加工に発生した、樹脂層のピンホールやボイド、ミクロクラック等が修復しにくく、(融点+80℃)を越える温度では、樹脂成分が熱分解を起こす可能性がある。
また、熱処理をする時間は、熱処理温度により相違するが、1分以上30分以下の範囲が良く、1分未満では樹脂が融点以上に達しない可能性があり、樹脂層のピンホールやボイド、ミクロクラック等が修復せず、30分を越えると樹脂の熱酸化劣化が起こることがあるので、好ましくない。
The method for producing the separator of the present invention is not particularly limited, but a conductive resin sheet having the above-described composition formed in advance is placed on one or both sides of a metal substrate, and laminated and integrated by a hot press method or a pressure roll method. There is a way to make it. For example, after the metal substrate and the conductive resin sheet are overlaid, a hot press method of pressing at a temperature equal to or higher than the melting point of the conductive resin sheet, or after heating the metal substrate to a temperature equal to or higher than the melting point of the conductive resin sheet, There is a method of laminating and integrating by a pressure roll method in which a plurality of rolls are pressure-bonded.
After lamination, it is necessary to form protrusions and grooves by cold press molding, and then heat-treat at a temperature equal to or higher than the melting point of the resin. Here, the melting point is a thermogram when the temperature is raised at a heating rate of 10 ° C./min using a differential operation calorimeter (DSC-7 manufactured by PerkinElmer) according to JIS K 7121. To tell.
The heat treatment temperature is in the range from the melting point of the resin to (melting point + 80 ° C.) or less, preferably (melting point + 50 ° C.) or less, and below the melting point of the resin, it occurs in the press working to form the gas flow path, Pinholes, voids, microcracks, etc. in the resin layer are difficult to repair, and at temperatures exceeding (melting point + 80 ° C.), the resin component may cause thermal decomposition.
In addition, the heat treatment time varies depending on the heat treatment temperature, but it is preferably in the range of 1 minute to 30 minutes, and in less than 1 minute, the resin may not reach the melting point or more. If microcracks or the like are not repaired and the time exceeds 30 minutes, the resin may be thermally oxidized and deteriorated, which is not preferable.

以下、実施例について説明するが、本発明はこれに限定されるものではない。
[評価方法]
体積抵抗値測定
導電性フィラーを混合した樹脂層の体積抵抗値はJIS K 7194に準じて、以下のように行った。
測定装置
Loresta HP (三菱化学(株)製)
測定方式
四端子四探針法(ASPタイププローブ)
測定印可電流
100mA
(2)面積抵抗測定
金属基板と導電性フィラーを混合した樹脂層を積層した導電性樹脂/金属複合板の面積抵抗は以下のように行った。
測定装置
抵抗計:YMR−3型((株)山崎精機研究所製)
負荷装置:YSR−8型((株)山崎精機研究所製)
電極:真鍮製平板2枚(面積1平方インチ、鏡面仕上げ)
測定条件
方法:4端子法
印加電流:10mA(交流、287Hz)
開放端子電圧:20mVピーク以下
負荷荷重:18×10Pa
カーボンペーパー:東レ社製TGP−H−090(厚み0.28mm)
3.測定方法
図1に示した測定装置により測定した。
Hereinafter, although an example is described, the present invention is not limited to this.
[Evaluation methods]
Volume resistance value measurement The volume resistance value of the resin layer mixed with the conductive filler was measured in accordance with JIS K 7194 as follows.
Measuring device Loresta HP (Mitsubishi Chemical Corporation)
Measuring method Four-terminal four-probe method (ASP type probe)
Measurement applied current 100mA
(2) Area resistance measurement The area resistance of the conductive resin / metal composite plate obtained by laminating a resin layer in which a metal substrate and a conductive filler are mixed was performed as follows.
Measuring device Resistance meter: YMR-3 type (manufactured by Yamazaki Seiki Laboratories)
Load device: YSR-8 type (manufactured by Yamazaki Seiki Laboratory Co., Ltd.)
Electrodes: 2 brass flat plates (area 1 square inch, mirror finish)
Measurement conditions Method: 4-terminal method Applied current: 10 mA (AC, 287 Hz)
Open terminal voltage: 20 mV peak or less Load load: 18 × 10 5 Pa
Carbon paper: TGP-H-090 (thickness 0.28 mm) manufactured by Toray Industries, Inc.
3. Measurement method Measurement was performed using the measurement apparatus shown in FIG.

(3)プレス成形性
導電性樹脂/金属複合板を、プレス後のガス流路の形状は波形で、ガス流路のピッチが3mm、波形の凸部と凹部の高低差は0.5mmに成形できる金型を使用して、プレス成型機((株)アマダ製 「トルクパックプレス」 プレス速度45spm(shoot per minute))にて室温で成形テストを行い、波形形状凸部を顕微鏡((株)キーエンス製 「デジタルHDマイクロスコープVH−7000」)にて50倍で観察した。
外観上 異常のないものを〇、クラック等の明らかに異常の発生したものを×と評価した。
(3) Press-molding conductive resin / metal composite plate, the shape of the gas flow path after pressing is corrugated, the pitch of the gas flow path is 3 mm, and the height difference between the corrugated convex part and concave part is 0.5 mm. Using a mold that can be used, a molding test is performed at room temperature with a press molding machine ("Torque Pack Press" manufactured by Amada Co., Ltd., press speed of 45 spm (shot per minute)). Observation was performed at a magnification of 50 with a “Digital HD microscope VH-7000” manufactured by Keyence.
The case where there was no abnormality on the appearance was evaluated as ◯, and the case where the cracks were clearly abnormal was evaluated as x.

(4)耐食性
プレス成形した導電性樹脂/金属複合板(大きさ30mm×30mm)の端部をフッ素樹脂(住友スリーエム(株)製 「THV220G」 比重2、融点=130℃)をアセトンに溶解させた溶液(固形分濃度15重量%)に浸して封止した。高圧用反応分解容器(三愛科学(株)製 「HU−50」)の中に0.005molの硫酸水溶液30mlと、封止した上記サンプルを浸漬し、80℃のオーブンに入れて、10日後サンプルを取出し、発錆の状態を観察した。
金属板表面に腐食が発生したもの×、わずかに腐食跡があるもの△、腐食跡がないもの○とした。
(4) Fluororesin (Sumitomo 3M "THV220G" specific gravity 2, melting point = 130 ° C) is dissolved in acetone at the end of the corrosion-resistant press-molded conductive resin / metal composite plate (size 30mm x 30mm) The solution was immersed in a solid solution (solid content concentration: 15% by weight) and sealed. 30 ml of 0.005 mol sulfuric acid aqueous solution and the above-mentioned sealed sample were immersed in a high pressure reaction decomposition vessel (“HU-50” manufactured by Sanai Kagaku Co., Ltd.), put in an oven at 80 ° C., and sampled after 10 days The rusting state was observed.
The case where corrosion occurred on the surface of the metal plate ×, the case where there was a slight corrosion mark Δ, and the case where there was no corrosion mark ○.

(実施例1)
2台の2軸押出機にフィードブロック及び口金を取り付けた製膜装置により、押出温度240℃にて、カーボンブラック(ライオン(株)製 「ケッチェンブラックEC600JD」、 比重1.5)12体積%を含有したフッ素樹脂(住友スリーエム(株)製 「THV220G」 比重2、融点=130℃)厚み80μmの両側にカーボンナノファイバー(昭和電工(株)製 「気相法炭素繊維VGCF」 比重2)20体積%を含有したフッ素樹脂(住友スリーエム(株)製 「THV220G」 比重2、融点=130℃)を厚み10μm設けた2種3層の導電性樹脂シート100μmを製膜した。
得られた導電性樹脂シートの体積抵抗値は、0.5Ωcmであった。
上記導電性樹脂シートを、ブラスト研磨法にて0.1μmの表面研磨層を形成したSUS304(厚み0.3mm)に、シランカップリング剤(GE東芝シリコーン(株)製 「TSL8331」)3%エタノール溶液を#10バーコーターで表面研磨層したSUS304の両面に塗布後、150℃×20分間乾燥し、導電性樹脂シート/SUS304/導電性樹脂シートの順に載置し、熱プレス加工にて積層一体化した。熱プレス条件は温度180℃、10分、圧力3.5×10Pa(36kgf/cm)にて行った。
得られた導電性樹脂/金属複合板の負荷荷重:18×10Pa時の面積抵抗値は20mΩcmであった。
Example 1
Carbon black (“Ketjen Black EC600JD” manufactured by Lion Corporation, specific gravity 1.5) 12 volume% at a extrusion temperature of 240 ° C. by a film forming apparatus in which a feed block and a die are attached to two twin-screw extruders. Containing fluorine resin (“THV220G” manufactured by Sumitomo 3M Co., specific gravity 2, melting point = 130 ° C.) Carbon nanofibers on both sides of a thickness of 80 μm (“Gas phase carbon fiber VGCF” manufactured by Showa Denko Co., Ltd., specific gravity 2) 20 A two-type, three-layer conductive resin sheet having a thickness of 10 μm and containing 100% by volume of fluororesin (“THV220G” manufactured by Sumitomo 3M Limited, specific gravity 2, melting point = 130 ° C.) containing 10% by volume was formed.
The volume resistance value of the obtained conductive resin sheet was 0.5 Ωcm.
A silane coupling agent (“TSL8331” manufactured by GE Toshiba Silicones Co., Ltd.) 3% ethanol is applied to SUS304 (thickness 0.3 mm) in which a 0.1 μm surface polishing layer is formed by blast polishing. After applying the solution to both surfaces of SUS304 surface-polished with a # 10 bar coater, it was dried at 150 ° C. for 20 minutes, placed in the order of conductive resin sheet / SUS304 / conductive resin sheet, and laminated integrally by hot pressing Turned into. The hot pressing conditions were a temperature of 180 ° C., 10 minutes, and a pressure of 3.5 × 10 6 Pa (36 kgf / cm 2 ).
The load resistance of the obtained conductive resin / metal composite plate: The area resistance value at 18 × 10 5 Pa was 20 mΩcm 2 .

得られた導電性樹脂/金属複合板をプレス成形した後に、樹脂の融点以上である150℃で10分間、熱処理し、外観の状態及び耐食試験を行った。得られた結果を表1に示す。   After the obtained conductive resin / metal composite plate was press-molded, it was heat-treated at 150 ° C., which is equal to or higher than the melting point of the resin, for 10 minutes, and the appearance and corrosion resistance test were performed. The obtained results are shown in Table 1.

(実施例2)
熱処理温度を樹脂の融点以上である200℃とした以外は実施例1と同様の方法により評価を行った。
得られた結果を表1に示す。
(Example 2)
Evaluation was performed in the same manner as in Example 1 except that the heat treatment temperature was 200 ° C. which is higher than the melting point of the resin.
The obtained results are shown in Table 1.

(比較例1)
熱処理を全くしなかった以外は実施例1と同様の方法により評価を行った。
得られた結果を表1に示す。
(Comparative Example 1)
Evaluation was performed in the same manner as in Example 1 except that no heat treatment was performed.
The obtained results are shown in Table 1.

(比較例2)
熱処理温度を樹脂の融点未満である100℃とした以外は実施例1と同様の方法により評価を行った。
得られた結果を表1に示す。
(Comparative Example 2)
Evaluation was performed in the same manner as in Example 1 except that the heat treatment temperature was 100 ° C. which is lower than the melting point of the resin.
The obtained results are shown in Table 1.

(比較例3)
熱処理温度を樹脂の融点未満である120℃とした以外は実施例1と同様の方法により評価を行った。
得られた結果を表1に示す。
(Comparative Example 3)
Evaluation was performed in the same manner as in Example 1 except that the heat treatment temperature was 120 ° C., which was lower than the melting point of the resin.
The obtained results are shown in Table 1.

(比較例4)
熱処理温度を樹脂の(融点+80℃)以上である400℃とした以外は実施例1と同様の方法により評価を行った。
得られた結果を表1に示す。

Figure 0004458877
(Comparative Example 4)
Evaluation was performed in the same manner as in Example 1 except that the heat treatment temperature was set to 400 ° C. which is equal to or higher than (melting point + 80 ° C.) of the resin.
The obtained results are shown in Table 1.
Figure 0004458877

表1に示す通り、プレス加工によって燃料となるガスの流路を付設した後、熱処理なしものや、導電性樹脂の融点温度未満で熱処理した、比較例1、2、3及び熱処理の温度が高すぎる比較例4は、耐食性に劣るが、導電性樹脂の融点温度以上で熱処理した実施例1、2は、樹脂が本来有する耐食性が発現でき、耐食性に優れることが分かる。   As shown in Table 1, after attaching a gas flow path as a fuel by press working, heat treatment was performed without heat treatment or less than the melting point temperature of the conductive resin. Comparative Example 4 that is too low is inferior in corrosion resistance, but Examples 1 and 2 that were heat-treated at a temperature equal to or higher than the melting point temperature of the conductive resin can exhibit the inherent corrosion resistance of the resin and are excellent in corrosion resistance.

面積抵抗の測定方法を示す装置の概略図。The schematic of the apparatus which shows the measuring method of sheet resistance.

符号の説明Explanation of symbols

1:真鍮製電極
2:カーボンペーパー
3:セパレータ
1: Brass electrode 2: Carbon paper 3: Separator

Claims (5)

金属基板の少なくとも片面に導電性フィラーを混合した熱可塑性樹脂層を積層し、その後プレス加工によって燃料ガスの流路を形成する燃料電池用セパレータの製造方法において、プレス加工によって燃料ガスの流路を形成した後、上記樹脂の融点以上、(融点+80℃)以下で、熱処理をすることを特徴とする燃料電池セパレータの製造方法。 In a method of manufacturing a fuel cell separator in which a thermoplastic resin layer mixed with a conductive filler is laminated on at least one surface of a metal substrate, and then a fuel gas channel is formed by pressing, the fuel gas channel is formed by pressing. A method for producing a fuel cell separator, characterized in that after the formation, a heat treatment is performed at a temperature not lower than the melting point of the resin and not higher than (melting point + 80 ° C.). 前記熱可塑性樹脂層がフッ素樹脂及びフッ素系エラストマー、ポリオレフィン樹脂ならびにポリオレフィンエラストマーから選ばれてなることを特徴とする請求項1記載の燃料電池セパレータの製造方法。 2. The method for producing a fuel cell separator according to claim 1, wherein the thermoplastic resin layer is selected from a fluororesin, a fluoroelastomer, a polyolefin resin, and a polyolefin elastomer. 前記金属基板がステンレス鋼、チタン、アルミニウム、銅、ニッケル、及び鋼から選ばれてなることを特徴とする請求項1又は2記載の燃料電池用セパレータの製造方法。 3. The method for manufacturing a fuel cell separator according to claim 1, wherein the metal substrate is selected from stainless steel, titanium, aluminum, copper, nickel, and steel. 前記導電性フィラーが、カーボン、カーボンナノファイバー、金属炭化物、金属酸化物、金属窒化物、金属繊維及び金属粉末から選ばれてなることを特徴とする請求項1乃至3のいずれか1項記載の燃料電池用セパレータの製造方法。 4. The conductive filler according to claim 1, wherein the conductive filler is selected from carbon, carbon nanofiber, metal carbide, metal oxide, metal nitride, metal fiber, and metal powder. A method for producing a separator for a fuel cell. 金属基板の少なくとも片面に15体積%〜40体積%の混合比率で導電性フィラーを混合した熱可塑性樹脂層を積層し、その後プレス加工によって燃料ガスの流路を形成する燃料電池用セパレータの製造方法において、プレス加工によって燃料ガスの流路を形成した後、上記樹脂の融点以上、(融点+80℃)以下で、熱処理をすることによって、樹脂層に発生したピンホールやボイド、ミクロクラックを修復することを特徴とする燃料電池セパレータの製造方法により得られたセパレータを組み入れてなる燃料電池。 A method for producing a fuel cell separator, wherein a thermoplastic resin layer mixed with a conductive filler at a mixing ratio of 15% by volume to 40% by volume is laminated on at least one surface of a metal substrate, and then a fuel gas flow path is formed by pressing. , After forming the fuel gas flow path by pressing, heat treatment is performed at a temperature not lower than the melting point of the resin and not higher than (melting point + 80 ° C.), thereby repairing pinholes, voids and microcracks generated in the resin layer. A fuel cell in which a separator obtained by the method for producing a fuel cell separator is incorporated.
JP2004050031A 2004-02-25 2004-02-25 Manufacturing method of fuel cell separator Expired - Fee Related JP4458877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050031A JP4458877B2 (en) 2004-02-25 2004-02-25 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050031A JP4458877B2 (en) 2004-02-25 2004-02-25 Manufacturing method of fuel cell separator

Publications (2)

Publication Number Publication Date
JP2005243354A JP2005243354A (en) 2005-09-08
JP4458877B2 true JP4458877B2 (en) 2010-04-28

Family

ID=35024874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050031A Expired - Fee Related JP4458877B2 (en) 2004-02-25 2004-02-25 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP4458877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020005686T5 (en) 2019-11-20 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Separator, fuel cell and manufacturing method for a separator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896488B2 (en) * 2005-10-25 2012-03-14 京セラケミカル株式会社 Manufacturing method of conductive separator for fuel cell by cold pressing method
WO2007049765A1 (en) * 2005-10-27 2007-05-03 Mitsubishi Plastics, Inc. Separator for fuel cell, fuel cell using the separator, and paint composition for preparaing the separator
JP5070716B2 (en) * 2006-03-09 2012-11-14 トヨタ自動車株式会社 Separator manufacturing method and separator
US8133591B2 (en) * 2006-06-27 2012-03-13 GM Global Technology Operations LLC Adhesion of polymeric coatings to bipolar plate surfaces using silane coupling agents
JP2009238497A (en) * 2008-03-26 2009-10-15 Nissan Motor Co Ltd Fuel cell separator
JP5654915B2 (en) * 2011-03-23 2015-01-14 大阪瓦斯株式会社 Method for forming protective film
JP5575696B2 (en) * 2011-04-28 2014-08-20 株式会社神戸製鋼所 Manufacturing method of fuel cell separator
WO2014010491A1 (en) 2012-07-11 2014-01-16 トヨタ車体 株式会社 Fuel cell separator and method for manufacturing same
JP6014548B2 (en) * 2012-12-07 2016-10-25 本田技研工業株式会社 Manufacturing method of fuel cell
WO2015068559A1 (en) * 2013-11-11 2015-05-14 株式会社神戸製鋼所 Titanium separator material for fuel cells, and method for producing titanium separator material for fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020005686T5 (en) 2019-11-20 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Separator, fuel cell and manufacturing method for a separator

Also Published As

Publication number Publication date
JP2005243354A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4633626B2 (en) Fuel cell separator
JP4975262B2 (en) Fuel cell separator and method for producing the same
JP4818486B2 (en) Gas diffusion layer, method for producing the same, and fuel cell
JP4458877B2 (en) Manufacturing method of fuel cell separator
JP2007324146A (en) Fuel cell separator
EP2642571A1 (en) Fuel cell separator material, fuel cell, and method for manufacturing fuel cell separator material
JP5342518B2 (en) Method for producing titanium fuel cell separator
JP4072371B2 (en) Fuel cell separator
WO2004001772A1 (en) Conductive resin film, collector and production methods therefore
JP2005294155A (en) Separator and fuel cell
JP2003288909A (en) Separator for fuel cell and its manufacturing method
JP2019197667A (en) Bipolar plate
JP4133323B2 (en) Press separator for fuel cell
JP2016062725A (en) Polymer electrolyte fuel cell and separator
JP2004014272A (en) Separator for fuel cell
JP5153993B2 (en) Conductive thermoplastic resin film
JP4082484B2 (en) Fuel cell separator
JP2004192855A (en) Separator for fuel cell
JP2002015750A (en) Fuel cell separator
JP4179759B2 (en) Fuel cell separator
JP4349793B2 (en) Conductive resin laminated film and method for producing the same
JP2021093298A (en) Separator for fuel cell and manufacturing method for the separator for fuel cell
JP2003109618A (en) Separator for fuel cell
JP2008091207A (en) Adhesive layer for polymer electrolyte fuel cell, member for bipolar plate, bipolar plate layered product, cell structure, and polymer electrolyte fuel cell
CA2955125C (en) Metallic material, and conductive component including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Ref document number: 4458877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees