JP2006286215A - Method of processing resin coated metal plate - Google Patents

Method of processing resin coated metal plate Download PDF

Info

Publication number
JP2006286215A
JP2006286215A JP2005100677A JP2005100677A JP2006286215A JP 2006286215 A JP2006286215 A JP 2006286215A JP 2005100677 A JP2005100677 A JP 2005100677A JP 2005100677 A JP2005100677 A JP 2005100677A JP 2006286215 A JP2006286215 A JP 2006286215A
Authority
JP
Japan
Prior art keywords
resin
coated metal
metal plate
layer
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100677A
Other languages
Japanese (ja)
Inventor
Michinari Miyagawa
倫成 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2005100677A priority Critical patent/JP2006286215A/en
Publication of JP2006286215A publication Critical patent/JP2006286215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a processing method of a resin coated metal plate which can form easily a fine and small cooling medium passage fixed around a heated part because of heat diffused from electronic devices fitted with electronic parts, personal computers, fuel cells or the like, and provide a fuel cell. <P>SOLUTION: A rough surface layer (11) is made on at least one side of a metal base plate (1) and a resin coated metal plate (3) coated with thermoplastic resin layer (2) on the rough surface layer (11) is cold formed by a mold into continuous grooves (4) of a cross-sectional concave shape. Two sheets of the resin coated metal plates (3) having the continuous grooves (4) are positioned so that the bottom side of cross-sectional concave grooves (4) are on opposite side each other and are heat-pressed to be welded with the thermoplastic resin layers (2) except grooved areas, and a part of the resin coated metal plate (3) is bonded, as well as a cylindrical part (5) of which the inner surface is coated with the thermoplastic resin layer (2) is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂被覆金属板の加工方法に係り、特に燃料電池(たとえば、固体高分子電解質型の燃料電池)に用いる金属製セパレータで、液絡(冷却媒体を介して、冷却系配管やラジエータ等に電流が流れてしまう現象)の防止が可能な冷媒流路を容易に形成できる加工方法に関する。   The present invention relates to a method of processing a resin-coated metal plate, and more particularly to a metal separator used in a fuel cell (for example, a solid polymer electrolyte type fuel cell), and a liquid junction (through a cooling medium, a cooling system pipe or a radiator). It is related with the processing method which can form easily the refrigerant | coolant flow path which can prevent the phenomenon in which an electric current flows into the.

近年、電子部品を搭載した電子機器、パソコン、燃料電池等で、発生する熱を放散する目的で発熱する部位の周辺に微細な冷媒流路を巡らして冷却することがなされている。
このような冷媒流路の形成について燃料電池の例により下記に説明する。
燃料電池、具体的には固体高分子電解質型燃料電池では、イオン交換膜からなる電解質膜とこの電解質膜の一面に配置されたアノードおよび電解質膜の他面に配置されたカソードとからなる膜−電極アッセンブリ(MEA:Membrane−Electrode Assembly )と、アノード、カソードに燃料ガス(水素)および酸化ガス(酸素、通常は空気)を供給するための流体流路を形成するセパレータとからなる単セルを複数重ねてセル積層体とし、セル積層体のセル積層方向両端に、ターミナル(電極板)、インシュレータ、エンドプレートを配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート)にて固定したスタックから構成されている。上記セパレータにはセル間またはモジュール間に冷媒流路が形成され、そこに冷却水が流されて燃料電池を冷却している。
2. Description of the Related Art In recent years, electronic devices equipped with electronic components, personal computers, fuel cells, and the like have been cooled around a fine refrigerant flow path around a portion that generates heat for the purpose of dissipating generated heat.
The formation of such a refrigerant flow path will be described below using an example of a fuel cell.
In a fuel cell, specifically a solid polymer electrolyte fuel cell, a membrane comprising an electrolyte membrane comprising an ion exchange membrane, an anode disposed on one surface of the electrolyte membrane, and a cathode disposed on the other surface of the electrolyte membrane A plurality of single cells comprising an electrode assembly (MEA) and a separator that forms a fluid flow path for supplying fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) to the anode and cathode Stack the cells to form a cell stack, and place terminals (electrode plates), insulators, and end plates at both ends of the cell stack in the cell stack direction, tighten the cell stack in the cell stack direction, and place the cell stack outside the cell stack. It is comprised from the stack fixed with the fastening member (for example, tension plate) extended in this. In the separator, a refrigerant flow path is formed between cells or between modules, and cooling water is supplied to cool the fuel cell.

固体高分子電解質型燃料電池では、アノード側では、水素を水素イオンと電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣接したMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層体の一端のセルのアノードで生成した電子が外部回路を通してくる)から水を生成する反応が行われる。
アノード側:H →2H+ +2e
カソード側:2H+ +2e +(1/2)O →H
In a solid polymer electrolyte fuel cell, a reaction is carried out to convert hydrogen into hydrogen ions and electrons on the anode side, and the hydrogen ions move through the electrolyte membrane to the cathode side, and oxygen, hydrogen ions and electrons (adjacent to the cathode side). The electrons generated at the anode of the MEA come through the separator, or the electrons generated at the anode of the cell at one end of the cell stack come through an external circuit) to generate water.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

従来、上記燃料電池用セパレータでは、片面はMEAと接触し反対側面は冷却水と接触している。冷却水との接触面にて電流がセパレータから冷却水に漏れ、この電流は、冷却水を通じてセル面内方向に流れて冷媒マニホルドに達し、冷媒マニホルドでセル面内と直交方向に流れて隣接もしくは近傍のセルの反対極に流れ、本来得るべき出力性能がダウン(目減り)する。この漏れ電流は、セパレータの小型化や、冷却水の長期使用を狙うことにより、冷却水部分における電気抵抗が低下し、結果として増加する傾向にある。また、漏れ電流が発生する冷却水まわりの電食も問題となる。
このような液絡を防止するために、例えば特許文献1では、燃料電池スタックを冷却セルと発電セルとの積層体とし、冷却セル内に供給される冷媒を発電セルから絶縁し、冷却セルを挟んで配置される発電セル同士を導電手段で接続した構造を開示している。
Conventionally, in the fuel cell separator, one side is in contact with MEA and the opposite side is in contact with cooling water. The current leaks from the separator to the cooling water at the contact surface with the cooling water, and this current flows in the cell surface direction through the cooling water to reach the refrigerant manifold, and flows adjacent to the cell surface in the refrigerant manifold. It flows to the opposite pole of a nearby cell, and the output performance that should be obtained is reduced (decreased). This leakage current tends to increase as a result of decreasing the electrical resistance in the cooling water portion by downsizing the separator and aiming for long-term use of the cooling water. Moreover, electric corrosion around the cooling water in which leakage current is generated becomes a problem.
In order to prevent such a liquid junction, for example, in Patent Document 1, the fuel cell stack is a laminated body of a cooling cell and a power generation cell, the refrigerant supplied into the cooling cell is insulated from the power generation cell, and the cooling cell is A structure is disclosed in which power generation cells arranged between each other are connected by a conductive means.

しかしながら、この方法では、冷却セルの両側に絶縁材および導電板を配置し、導電板の外周部分をスタック外で連結するため、スタック外に突出した連結部分のサイズが絶縁のための被覆部分も含めて大きくなり、互いの干渉を考慮して隣接する冷却セルとの間隔を小さくできない不具合があった。更には、定格電流に合わせた厚さの導電板を必要とするため、導電板を薄肉化できず、この点でも燃料電池スタックを小型化できない不具合があった。   However, in this method, an insulating material and a conductive plate are arranged on both sides of the cooling cell, and the outer peripheral portion of the conductive plate is connected outside the stack, so that the size of the connecting portion protruding out of the stack is also a covering portion for insulation. There is a problem that the distance between adjacent cooling cells cannot be reduced in consideration of mutual interference. Furthermore, since a conductive plate having a thickness corresponding to the rated current is required, the conductive plate cannot be thinned. In this respect, there is a problem that the fuel cell stack cannot be reduced in size.

そこで、例えば特許文献2では、一対の導電板を冷媒通路以外の部分で連結して形成することで、導電性を保持し、一方冷媒通路を構成する導電板の内壁面に絶縁材によるコーティングを施すことで冷媒通路内を絶縁することが提案されている。   Therefore, in Patent Document 2, for example, a pair of conductive plates are connected and formed at portions other than the refrigerant passage, so that the conductivity is maintained, while the inner wall surface of the conductive plate constituting the refrigerant passage is coated with an insulating material. It has been proposed to insulate the inside of the refrigerant passage.

しかしながら、一対の導電板の中に形成された冷却通路以外の部分を、選択的に通電状態にすることは技術的に困難であった。   However, it has been technically difficult to selectively energize portions other than the cooling passages formed in the pair of conductive plates.

特開2001−332288JP 2001-332288 A 特開2004−127786JP 2004-127786 A

本発明は、燃料電池(たとえば、固体高分子電解質型の燃料電池)に用いる金属製セパレータで、冷却媒体による液絡(冷却媒体を介して、冷却系配管やラジエータ等に電流が流れてしまう現象)の防止が可能な冷媒流路を容易に形成できる樹脂被覆金属板の加工方法を提供することを目的とする。   The present invention is a metal separator used in a fuel cell (for example, a solid polymer electrolyte type fuel cell), and a liquid junction caused by a cooling medium (a phenomenon in which an electric current flows to a cooling system pipe, a radiator, etc. via the cooling medium). It is an object of the present invention to provide a method for processing a resin-coated metal plate that can easily form a refrigerant flow path capable of preventing the above.

本発明は、上述した問題点を解消できる樹脂被覆金属板の加工方法を提供することを見出したものであり、その要旨とするところは、
1.金属基板(1)の少なくとも片面に粗面層(11)を設け、該粗面層(11)に熱可塑性樹脂層(2)を被覆してなる樹脂被覆金属板(3)を金型により冷間加工して断面凹形状の連続した溝部(4)を形成し、当該連続した溝部(4)を有する樹脂被覆金属板(3)を2枚を互いに断面凹形状溝部(4)の底面を反対側になるように配置し、熱プレスすることで溝部以外の熱可塑性樹脂層(2)を融着させ樹脂被覆金属板(3)の一部を接合するとともに内面が熱可塑性樹脂層(2)で被覆された筒状部(5)を形成することを特徴とする樹脂被覆金属板の加工方法。
2.金属基板(1)の少なくとも片面に設ける粗面層(11)の最大表面粗さRy(JIS B0601に準拠して測定)が0.3〜10μmの範囲であることを特徴とする上記1記載の樹脂被覆金属板の加工方法。
The present invention has been found to provide a method for processing a resin-coated metal plate that can solve the above-described problems,
1. A metal-coated metal plate (3) formed by providing a rough surface layer (11) on at least one surface of the metal substrate (1) and covering the rough surface layer (11) with a thermoplastic resin layer (2) is cooled by a mold. A continuous groove portion (4) having a concave cross section is formed by inter-processing, and two resin-coated metal plates (3) having the continuous groove portion (4) are opposed to each other with the bottom surface of the concave groove portion (4) being cross section The thermoplastic resin layer (2) other than the grooves is fused by being placed on the side and hot pressed to join a part of the resin-coated metal plate (3) and the inner surface is the thermoplastic resin layer (2). A method of processing a resin-coated metal plate, characterized in that a cylindrical part (5) covered with is formed.
2. 2. The maximum surface roughness Ry (measured according to JIS B0601) of the rough surface layer (11) provided on at least one surface of the metal substrate (1) is in the range of 0.3 to 10 μm. Processing method for resin-coated metal sheet.

3.熱可塑性樹脂層(2)の厚みが、金属基板(1)の最大表面粗さ(Ry)に対して、(Ry)×1.1倍〜(Ry)×3.0倍の範囲であることを特徴とする上記1又は2記載の樹脂被覆金属板の加工方法。
4.金属基板(1)は、ステンレス鋼、チタン、アルミニウム、銅、ニッケル、及び鋼からなる群より選ばれることを特徴とする上記1乃至3のいずれかに記載の樹脂被覆金属板の加工方法。
5.筒状部(5)が冷媒流路であるとともに、樹脂被覆金属板(3)の接合した部分が通電性を有する燃料電池の金属製セパレータに用いることを特徴とする上記1乃至4のいづれかに記載の樹脂被覆金属板。
6.上記5の金属製セパレータを組み込んでなる燃料電池。
3. The thickness of the thermoplastic resin layer (2) is in the range of (Ry) × 1.1 times to (Ry) × 3.0 times the maximum surface roughness (Ry) of the metal substrate (1). 3. A method for processing a resin-coated metal sheet according to 1 or 2 above.
4). 4. The method for processing a resin-coated metal plate according to any one of 1 to 3, wherein the metal substrate (1) is selected from the group consisting of stainless steel, titanium, aluminum, copper, nickel, and steel.
5. Any one of 1 to 4 above, wherein the cylindrical portion (5) is a refrigerant flow path, and the joined portion of the resin-coated metal plate (3) is used for a metal separator of a fuel cell having electrical conductivity. The resin-coated metal plate described.
6). A fuel cell comprising the metal separator according to 5 above.

本発明によれば、電子部品を搭載した電子機器、パソコン、燃料電池等で、発生する熱を放散する目的で発熱する部位の周辺に設ける微細で小型の冷媒流路、特に燃料電池(たとえば、固体高分子電解質型の燃料電池)に用いる金属製セパレータで、液絡(冷却媒体を介して、冷却系配管やラジエータ等に電流が流れてしまう現象)の防止が可能な冷媒流路を容易に形成できる樹脂被覆金属板の加工方法、及び燃料電池を提供できる。   According to the present invention, a small and small refrigerant flow path, particularly a fuel cell (e.g., a fuel cell (e.g., This is a metal separator used in solid polymer electrolyte fuel cells), and it is easy to create a refrigerant flow path that can prevent liquid junctions (a phenomenon in which current flows through cooling medium, cooling system piping, radiators, etc.). A method for processing a resin-coated metal plate that can be formed, and a fuel cell can be provided.

以下、本発明を詳しく説明する。
本発明における樹脂被覆金属板は図1の工程概略図に示す方法により加工される。
(a)金属基板(1)の少なくとも片面に粗面層(11)を設ける。
(b)粗面層(11)に熱可塑性樹脂層(2)を被覆して樹脂被覆金属板(3)を得る。
(c)樹脂被覆金属板(3)を金型(6)により冷間加工して断面凹形状の連続した溝部(4)を形成する。
(d)連続した溝部(4)を有する樹脂被覆金属板(3)を2枚を互いに断面凹形状溝部(4)の底面を反対側になるように配置し、熱プレス機(7)で熱プレスする。
The present invention will be described in detail below.
The resin-coated metal plate in the present invention is processed by the method shown in the process schematic diagram of FIG.
(A) A rough surface layer (11) is provided on at least one surface of the metal substrate (1).
(B) A thermoplastic resin layer (2) is coated on the rough surface layer (11) to obtain a resin-coated metal plate (3).
(C) The resin-coated metal plate (3) is cold-worked by the mold (6) to form a continuous groove (4) having a concave cross section.
(D) Two resin-coated metal plates (3) having continuous groove portions (4) are arranged so that the bottom surfaces of the groove portions (4) having a concave cross section are opposite to each other, and heated by a hot press (7). Press.

本発明における樹脂被覆金属板は、燃料電池の金属製セパレータとして好適に使用できることから、以下に当該金属製セパレータとしての加工方法について説明する。
(a)冷媒と接触する冷媒接触面をもつ金属製セパレータを有する燃料電池において、冷媒と接触する金属基板(1)である金属製セパレータの燃料電池発電部対応部を除く部位に熱可塑性樹脂層(2)からなる電気絶縁層を形成するには、先ず初めに冷媒と接触する金属製セパレータ面を粗面化する必要がある。冷媒と接触する金属製セパレータ面の粗面化は、最大表面粗さRyが0.3〜10μmの範囲、好ましくは0.5〜5.0μmの範囲、更に好ましくは0.5〜3.0μmの範囲である。
ここで、最大表面粗さRyの測定方法は、JIS B0601に準拠して測定すれば良く、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートル(μm)で表したものである。
Since the resin-coated metal plate in the present invention can be suitably used as a metal separator for a fuel cell, a processing method as the metal separator will be described below.
(A) In a fuel cell having a metal separator having a refrigerant contact surface in contact with a refrigerant, a thermoplastic resin layer on a portion of the metal separator which is a metal substrate (1) in contact with the refrigerant, excluding the corresponding portion of the fuel cell power generation unit In order to form the electrical insulating layer comprising (2), it is necessary to first roughen the metallic separator surface that contacts the refrigerant. The roughening of the metallic separator surface in contact with the refrigerant has a maximum surface roughness Ry in the range of 0.3 to 10 μm, preferably in the range of 0.5 to 5.0 μm, and more preferably in the range of 0.5 to 3.0 μm. Range.
Here, the measurement method of the maximum surface roughness Ry may be measured in accordance with JIS B0601, and only the reference length is extracted from the roughness curve in the direction of the average line, and the peak line and valley line of this extracted part are extracted. Is measured in the direction of the vertical magnification of the roughness curve, and this value is expressed in micrometers (μm).

最大表面粗さが0.5μm未満では、電気絶縁層の接着が不十分になるばかりでなく、
本発明の方法で得られる金属製セパレータの通電性が低下するという問題が発生し易く、一方、最大表面粗さが10μmを越えると、粗面を形成するのに長時間を要し生産性に劣るという問題が発生し易い。
また、金属基板(1)である金属製セパレータは、耐食性、低コスト性及びガス及び冷媒流路の形成がやり易い、ステンレス鋼、チタン、アルミニウム、銅、ニッケル、及び鋼が好適に使用できる。
If the maximum surface roughness is less than 0.5 μm, not only is the adhesion of the electrical insulating layer insufficient,
On the other hand, when the maximum surface roughness exceeds 10 μm, the metal separator obtained by the method of the present invention is likely to have a reduced electrical conductivity. The problem of inferiority is likely to occur.
In addition, as the metal separator as the metal substrate (1), stainless steel, titanium, aluminum, copper, nickel, and steel, which can easily form the corrosion resistance, low cost, and gas and refrigerant flow path, can be suitably used.

冷媒と接触する金属製セパレータ面を粗面化するには、各種エッチング方法を用いることができる。例えば、研磨剤を用いる機械エッチング、化学薬品を用いる化学エッチング、電気エネルギーを用いた陽極溶解を利用する電解エッチング等により、金属の種類にあわせて適宜決めることが好ましい。   Various etching methods can be used to roughen the metallic separator surface in contact with the refrigerant. For example, it is preferable to determine appropriately according to the type of metal by mechanical etching using an abrasive, chemical etching using chemicals, electrolytic etching using anodic dissolution using electric energy, or the like.

(b)次に上記方法で粗面化した粗面層(11)を熱可塑性樹脂層(2)である電気絶縁層で完全に被覆して樹脂被覆金属板(3)を得る。使用する熱可塑性樹脂としては、例えば、
エチレンを含む単独重合体又は共重合体等のポリオレフィン(PO)系樹脂又はポリオレフィン系エラストマー、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリスチレン(PS)、ABS、SBS等のポリスチレン系樹脂又はSEBS等の水素添加されたスチレン系エラストマー、ポリ塩化ビニル(PVC)樹脂、ポリ塩化ビニリデン(PVDC)樹脂、ポリメチルメタクリレート(PMMA)、共重合アクリル等のアクリル系樹脂、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド(PA)系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)、ポリオキシメチレン(POM)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラール(PVB)樹脂、ポリアリレート(PAR)樹脂、フッ化ビニリデン−四フッ化エチレン−六フッ化プロピレン共重合体(THV)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、等のフッ素系樹脂又はエラストマー、(メタ)アクリレート系樹脂などが挙げられる。
(B) Next, the rough surface layer (11) roughened by the above-described method is completely covered with the electrical insulating layer as the thermoplastic resin layer (2) to obtain a resin-coated metal plate (3). As a thermoplastic resin to be used, for example,
Polyolefin (PO) resins such as homopolymers or copolymers containing ethylene or polyolefin elastomers, amorphous polyolefin resins (APO) such as cyclic polyolefins, polystyrene resins such as polystyrene (PS), ABS, SBS, etc. Hydrogenated styrene elastomers such as SEBS, polyvinyl chloride (PVC) resins, polyvinylidene chloride (PVDC) resins, polymethyl methacrylate (PMMA), acrylic resins such as copolymerized acrylics, polyethylene terephthalate (PET), etc. Polyamide (PA) resin such as polyester resin, nylon 6, nylon 12, copolymer nylon, polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin , Polya Doimide (PAI) resin, polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE), polyoxymethylene (POM) resin, polycarbonate (PC) resin, polyvinyl butyral (PVB) resin, poly Arylate (PAR) resin, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer (THV), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), vinylidene fluoride (PVDF), fluorine Fluorine resins or elastomers such as vinyl fluoride (PVF), (meth) acrylate resins, and the like.

上記例示した熱可塑性樹脂の中では、耐熱性に優れ、耐薬品性を有する、ポリオレフィン(PO)系樹脂又はポリオレフィン系エラストマー、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)、ポリオキシメチレン(POM)樹脂、フッ化ビニリデン−四フッ化エチレン−六フッ化プロピレン共重合体(THV)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、等のフッ素系樹脂又はエラストマーの使用が好ましい。
さらに好ましくは、ポリエーテルイミド(PEI)樹脂、ポリエーテルサルホン(PES)樹脂、フッ素系樹脂又はエラストマーの使用が好ましい。
Among the thermoplastic resins exemplified above, polyolefin (PO) resin or polyolefin elastomer, amorphous polyolefin resin such as cyclic polyolefin, polyimide (PI) resin having excellent heat resistance and chemical resistance. , Polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyamideimide (PAI) resin, polyetheretherketone (PEEK) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether ( PPE), polyoxymethylene (POM) resin, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer (THV), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (P F), the fluorocarbon resin or elastomer etc. are preferred.
More preferably, a polyetherimide (PEI) resin, a polyethersulfone (PES) resin, a fluorine resin, or an elastomer is used.

粗面化した冷媒と接触する金属製セパレータ表面を熱可塑性樹脂層(2)である電気絶縁層で完全に被覆する方法は特に限定されないが、電気絶縁層を溶剤に溶解又は分散させて塗料を作製したあと、粗面化したセパレータ表面にコーティングする方法が好ましい。コーティングする方法としては、エアドクタコータ、ブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、含浸コータ、リバースロールコータ、トランファロールコータ、キスロールコータ、キャストコータなどの各種コーティング法が適用できる。   The method of completely covering the surface of the metal separator that is in contact with the roughened refrigerant with the electrical insulating layer that is the thermoplastic resin layer (2) is not particularly limited, but the coating is applied by dissolving or dispersing the electrical insulating layer in a solvent. A method of coating the roughened separator surface after the production is preferable. As a coating method, various coating methods such as an air doctor coater, a blade coater, a rod coater, a knife coater, a squeeze coater, an impregnation coater, a reverse roll coater, a transfer roll coater, a kiss roll coater, and a cast coater can be applied.

粗面化した金属製セパレータ面を被覆する熱可塑性樹脂層(2)である電気絶縁層の厚みは、前述した冷媒と接触するセパレータ面の表面粗さRy(JIS B0601に準拠して測定)に対して、Ry×1.1倍〜Ry×3.0倍の範囲、好ましくはRy×1.2〜Ra×2.0倍の範囲が良い。ここで、最大表面粗さRyの測定方法は、前述した内容と同じである。
電気絶縁層の厚みが冷媒と接触する金属製セパレータ面の最大表面粗さ(Ry)に対して、Rya×1.1倍未満では、表面粗さと電気絶縁層の厚みがほぼ等しいので、接合される電気絶縁層にピンホールが発生し、冷却媒体による地絡や液絡が発生し易くなる。また、電気絶縁層の厚みが冷媒と接触するセパレータ面の表面粗さ(Ry)に対して、Ry×3.0倍を越えると、表面粗さに対して電気絶縁層の厚みが厚いため、本発明の方法で最終的に得られる流路を設けた金属製セパレータの通電性が低下するという問題が発生し易い。
The thickness of the electrical insulating layer which is the thermoplastic resin layer (2) covering the roughened metal separator surface is equal to the surface roughness Ry (measured in accordance with JIS B0601) of the separator surface in contact with the refrigerant. On the other hand, a range of Ry × 1.1 times to Ry × 3.0 times, preferably a range of Ry × 1.2 to Ra × 2.0 times is preferable. Here, the method for measuring the maximum surface roughness Ry is the same as described above.
If the thickness of the electrical insulating layer is less than Rya × 1.1 times the maximum surface roughness (Ry) of the metal separator surface that contacts the refrigerant, the surface roughness is almost equal to the thickness of the electrical insulating layer. Pinholes are generated in the electrically insulating layer, and ground faults and liquid junctions due to the cooling medium are likely to occur. In addition, if the thickness of the electrical insulating layer exceeds Ry × 3.0 times the surface roughness (Ry) of the separator surface in contact with the refrigerant, the thickness of the electrical insulating layer is thicker than the surface roughness. The problem that the electrical conductivity of the metallic separator provided with the flow path finally obtained by the method of the present invention is likely to occur.

(c)ついで、上記方法で得られた樹脂被覆金属板(3)を金型(6)により冷間加工して断面凹形状の連続した溝部(4)を形成する。燃料電池では、セパレータと電極との間には、燃料ガス、酸化ガスの流路を、セパレータとセパレータとの間には、冷媒の流路を形成する必要があり、セパレータ表面には流路となるための多数の突起部および溝部を設ける必要がある。突起部および溝部を形成するには、所定の金型を用いたプレス加工により突起部および溝部を形成して、所定の形状のセパレータとする方法が生産性等の点から好ましい。 (C) Next, the resin-coated metal plate (3) obtained by the above method is cold-worked by the mold (6) to form a continuous groove (4) having a concave cross section. In a fuel cell, it is necessary to form a flow path of fuel gas and oxidizing gas between the separator and the electrode, and a flow path of refrigerant between the separator and the separator. It is necessary to provide a large number of protrusions and grooves for the purpose. In order to form the protrusion and the groove, a method of forming the protrusion and the groove by pressing using a predetermined mold to form a separator having a predetermined shape is preferable from the viewpoint of productivity.

(d)ついで、上記の連続した溝部(4)を有する樹脂被覆金属板(3)を2枚を互いに断面凹形状溝部(4)の底面を反対側になるように配置し、熱プレス機(7)により熱プレスする。
熱プレスの条件は、電気絶縁層の流動開始温度以上で熱プレスし、溝部(4)以外の接合部分を通電状態にする必要がある。電気絶縁層は前述した通り、熱可塑性樹脂であり流動開始温度とは熱可塑性樹脂が結晶性樹脂の場合は、融点、非晶性樹脂の場合はガラス転移温度が相当する。熱プレスにより上記断面凹形状溝部(4)が互いに向き合うようになり、内面が熱可塑性樹脂層(2)で被覆された冷媒の流路になる筒状部(5)が形成される。
(D) Next, two resin-coated metal plates (3) having the continuous groove (4) are arranged so that the bottom surfaces of the concave grooves (4) are opposite to each other, and a hot press machine ( 7) Hot press.
As for the conditions of the hot pressing, it is necessary to perform hot pressing at a temperature equal to or higher than the flow start temperature of the electrical insulating layer, and to bring the joining portion other than the groove (4) into an energized state. As described above, the electrical insulating layer is a thermoplastic resin, and the flow start temperature corresponds to the melting point when the thermoplastic resin is a crystalline resin and the glass transition temperature when the thermoplastic resin is an amorphous resin. The groove portions (4) having the concave cross section (4) face each other by hot pressing, and a cylindrical portion (5) is formed which becomes a refrigerant flow path whose inner surface is covered with the thermoplastic resin layer (2).

ここで、熱プレス時の圧力は、5×10〜5×10Paの範囲、好ましくは5×10〜2×10Paの範囲が良い。圧力が5×10Pa未満では、十分な荷重がかからないため、セパレータ2枚の接合部分の接着性が不十分で、筒状部(5)である冷媒流路中の冷媒が漏れたり、抵抗値増加が生じやすい。また、圧力が5×10Paを越えると、筒状部(5)であるガス及び冷媒流路が荷重に耐えられず、変形するという問題が発生し易い。 Here, the pressure during hot pressing is in the range of 5 × 10 5 to 5 × 10 6 Pa, preferably in the range of 5 × 10 5 to 2 × 10 6 Pa. If the pressure is less than 5 × 10 5 Pa, a sufficient load is not applied, so that the adhesiveness of the joining portion of the two separators is insufficient, and the refrigerant in the refrigerant flow path that is the cylindrical portion (5) leaks or has resistance. Value is likely to increase. Further, when the pressure exceeds 5 × 10 6 Pa, the gas and the refrigerant flow path, which are the cylindrical portions (5), cannot withstand the load and are likely to be deformed.

以下、実施例について説明するが、本発明はこれに限定されるものではない。
[実験1]
Hereinafter, although an example is described, the present invention is not limited to this.
[Experiment 1]

図1に示した工程概略図に従い燃料電池用の流路を形成した金属製セパレータを作成した。
(a)金属製セパレータ1として、SUS304(厚み0.1mm)の表面をジェットスクラブ研磨機((株)石井表記製)を用いて粗面化し、粗面層11を設けた。粗面化の条件は、研磨剤にアルミナ(サクランダム#150 日本カーリット(株)製)を使用し、研磨剤濃度20%、搬送速度1.0m/min、圧力0.4MPaにてSUS304表面を研磨した。研磨後のSUS304(No.1)の表面粗さは表1に示す通り、中心線平均表面粗さRa=0.31μmで、最大表面粗さRy=2.52μmであった。
A metal separator having a flow path for a fuel cell was prepared in accordance with the process schematic shown in FIG.
(A) As the metal separator 1, the surface of SUS304 (thickness 0.1 mm) was roughened by using a jet scrubbing machine (manufactured by Ishii Co., Ltd.) to provide a rough surface layer 11. The roughening conditions were as follows. Alumina (Sac Random # 150, Nippon Carlit Co., Ltd.) was used as an abrasive, and the surface of SUS304 was applied at an abrasive concentration of 20%, a conveyance speed of 1.0 m / min, and a pressure of 0.4 MPa. Polished. As shown in Table 1, the surface roughness of SUS304 (No. 1) after polishing was a center line average surface roughness Ra = 0.31 μm and a maximum surface roughness Ry = 2.52 μm.

(b)電気絶縁層として、PES(ポリエーテルサルホン)(「住友化学工業(株)」製 スミカエクセルPES5003P ガラス転移温度230℃)をジメチルホルミアミド/シクロヘキサノン=1/4(重量比)の混合溶剤に固形分濃度が12重量%になるように溶解して塗料を作成した。この塗料を前述した研磨後のSUS304(No.1)の表面研磨面上にバーコータ(「松尾産業製」#24番)で塗布し、300℃で溶媒を乾燥して厚さが4μmの電気絶縁層を形成し、樹脂被覆金属板3(No.1)平板を作成した。 (B) As an electrical insulation layer, PES (polyethersulfone) (Sumitomo Chemical Co., Ltd., SUMIKAEXCEL PES5003P glass transition temperature 230 ° C.) of dimethylformamide / cyclohexanone = 1/4 (weight ratio) A paint was prepared by dissolving in a mixed solvent so that the solid content concentration was 12% by weight. This paint is applied to the polished surface of SUS304 (No. 1) after polishing with the bar coater (“Matsuo Sangyo” # 24), and the solvent is dried at 300 ° C. to have a thickness of 4 μm. A layer was formed to prepare a resin-coated metal plate 3 (No. 1) flat plate.

樹脂被覆金属板3(No.1)平板の体積抵抗値を、JIS K 7194に準じて、以下のように行った。尚、体積抵抗値の測定は、電気絶縁層側にASPプローブを接触させて行った。
1. 測定装置
Loresta HP (三菱化学(株)製)
2. 測定方式
四端子四探針法(ASPタイププローブ)
3. 測定印可電流
100mA
その結果、樹脂被覆金属板3(No.1)平板の、電気絶縁層側から測定した体積抵抗値は、表1に示すとおり、上記測定装置の測定限界である10Ωcm以上であり、電気絶縁層側の金属板(SUS304)表面は絶縁体であった。
The volume resistance value of the resin-coated metal plate 3 (No. 1) flat plate was measured in accordance with JIS K 7194 as follows. The volume resistance value was measured by bringing an ASP probe into contact with the electrical insulating layer side.
1. Measuring device Loresta HP (Mitsubishi Chemical Corporation)
2. Measurement method Four-terminal four-probe method (ASP type probe)
3. Measurement applied current 100mA
As a result, as shown in Table 1, the volume resistance value of the resin-coated metal plate 3 (No. 1) flat plate measured from the electric insulating layer side is 10 7 Ωcm or more, which is the measurement limit of the measuring device, and The surface of the metal plate (SUS304) on the insulating layer side was an insulator.

(c)樹脂被覆金属板3(No.1)平板を、プレス成形して、連続した溝部4を形成した。溝部4の形状は波形で、流路のピッチが3mm、波形の凸部と凹部の高低差は0.5mmに成形できる金型を使用して、プレス成型機(「(株)アマダ」製 トルクパックプレス プレス速度45spm)にて室温で成形した。成形後は、電気絶縁層の割れもなく、絶縁層と金属板(SUS304)との接着も良好であった。 (C) Resin-coated metal plate 3 (No. 1) flat plate was press-molded to form continuous grooves 4. The shape of the groove 4 is corrugated, the pitch of the flow path is 3 mm, and the height difference between the corrugated convex part and the concave part is 0.5 mm, and a press molding machine ("AMADA Co., Ltd. Torque" is used. Pack press Molding was performed at room temperature at a press speed of 45 spm). After the molding, the electric insulating layer was not cracked and the adhesion between the insulating layer and the metal plate (SUS304) was good.

(d)連続した溝部4を有する樹脂被覆金属板(No.1)2枚を互いに断面凹形状の溝部4の底面を反対側になるように配置し、熱プレス機7で熱プレスした。熱プレスの条件は、温度300℃、圧力1.0×10Pa、時間5分間にて実施した。熱プレス後の樹脂被覆金属板(No.1)2枚の接着性は良好で、ガス及び冷媒流路である筒状部5の変形も無かった。 (D) Two resin-coated metal plates (No. 1) having continuous groove portions 4 were arranged so that the bottom surfaces of the groove portions 4 having a concave cross section were opposite to each other, and were hot-pressed by a hot press 7. The hot pressing was performed at a temperature of 300 ° C., a pressure of 1.0 × 10 6 Pa, and a time of 5 minutes. The adhesiveness of the two resin-coated metal plates (No. 1) after hot pressing was good, and there was no deformation of the cylindrical part 5 which is a gas and refrigerant flow path.

上記方法で得られた流路を形成した金属製セパレータの電気抵抗を図2の概略図に示す方法で測定した。
1.測定装置
抵抗計:YMR−3型((株)山崎精機研究所社製)
負荷装置:YSR−8型((株)山崎精機研究所社製)
電極:真鍮製平板2枚(面積1平方インチ、鏡面仕上げ)
2.測定条件
方法:4端子法
印加電流:10mA(交流、287Hz)
開放端子電圧:20mVピーク以下
面圧:1.0×10Pa
測定した結果、流路を形成した金属製セパレータ2枚の抵抗値は表1に示すとおり、1.5mΩで、良好な通電状態であった。また、ガス及び冷媒流路である筒状部5の内面は電気絶縁層により完全に絶縁され、液絡もなかった。
[実験2]
The electrical resistance of the metal separator formed with the channel obtained by the above method was measured by the method shown in the schematic diagram of FIG.
1. Measuring device Resistance meter: YMR-3 type (manufactured by Yamazaki Seiki Laboratory Co., Ltd.)
Load device: YSR-8 type (manufactured by Yamazaki Seiki Laboratory Co., Ltd.)
Electrodes: 2 brass flat plates (area 1 square inch, mirror finish)
2. Measurement conditions Method: 4-terminal method Applied current: 10 mA (AC, 287 Hz)
Open terminal voltage: 20 mV peak or less Surface pressure: 1.0 × 10 6 Pa
As a result of the measurement, as shown in Table 1, the resistance value of the two metal separators having the flow path was 1.5 mΩ, which was a good energized state. Moreover, the inner surface of the cylindrical part 5 which is a gas and refrigerant flow path was completely insulated by the electrical insulating layer, and there was no liquid junction.
[Experiment 2]

実験1と同様に、研磨剤をアルミナ(サクランダム#220 日本カーリット(株)製)に変更してSUS304(厚み0.1mm)を研磨した。研磨後のSUS304(No.2)の表面粗さは表1に示す通り、中心線平均表面粗さRa=0.19μmで、最大表面粗さRy=1.61μmであった。   As in Experiment 1, the polishing agent was changed to alumina (Sac Random # 220, manufactured by Nippon Carlit Co., Ltd.), and SUS304 (thickness 0.1 mm) was polished. As shown in Table 1, the surface roughness of SUS304 (No. 2) after polishing was a center line average surface roughness Ra = 0.19 μm and a maximum surface roughness Ry = 1.61 μm.

電気絶縁層として、実験1と同じ塗料を研磨後のSUS304(No.2)の表面研磨面上にバーコータ(「松尾産業製」#12番)で塗布し、300℃で溶媒を乾燥して厚さが2μmの電気絶縁層を形成し、樹脂被覆金属板(No.2)平板を作成した。   As an electrical insulating layer, apply the same paint as in Experiment 1 on the polished surface of SUS304 (No. 2) after polishing with a bar coater (“Matsuo Sangyo” # 12) and dry the solvent at 300 ° C. A 2 μm thick electric insulation layer was formed to prepare a resin-coated metal plate (No. 2) flat plate.

樹脂被覆金属板(No.2)平板の体積抵抗値を、実験1と同様に測定した結果、樹脂被覆金属板(No.2)平板の、電気絶縁層側から測定した体積抵抗値は、表1に示すとおり、上記測定装置の測定限界である10Ωcm以上であり、電気絶縁層側の金属板(SUS304)表面は絶縁体であった。 As a result of measuring the volume resistance value of the resin-coated metal plate (No. 2) flat plate in the same manner as in Experiment 1, the volume resistance value measured from the electrical insulating layer side of the resin-coated metal plate (No. 2) flat plate is As shown in FIG. 1, the measurement limit of the measurement apparatus was 10 7 Ωcm or more, and the surface of the metal plate (SUS304) on the electrical insulating layer side was an insulator.

樹脂被覆金属板(No.2)平板を、実験1と同じ方法でプレス成形し、連続した溝部4を形成した。成形後は、電気絶縁層の割れもなく、絶縁層と金属板(SUS304)との接着も良好であった。   A resin-coated metal plate (No. 2) flat plate was press-molded by the same method as in Experiment 1 to form a continuous groove 4. After the molding, the electric insulating layer was not cracked and the adhesion between the insulating layer and the metal plate (SUS304) was good.

連続した溝部4を有する樹脂被覆金属板(No.2)2枚を、実験1と同じ方法で、熱プレスした。熱プレス後の樹脂被覆金属板(No.2)2枚の接着性は良好で、ガス及び冷媒流路の変形も無かった。   Two resin-coated metal plates (No. 2) having continuous grooves 4 were hot-pressed in the same manner as in Experiment 1. The adhesiveness of the two resin-coated metal plates (No. 2) after hot pressing was good, and there was no deformation of the gas and refrigerant flow paths.

上記方法で得られた流路を形成した金属製セパレータ2枚の電気抵抗を、実験1と同様に測定した結果、抵抗値は表1に示すとおり、1.0mΩで、良好な通電状態であった。
また、ガス及び冷媒流路である筒状部5の内面は電気絶縁層により完全に絶縁され、液絡もなかった。
[実験3]
As a result of measuring the electric resistance of the two metal separators formed with the flow path obtained by the above method in the same manner as in Experiment 1, the resistance value was 1.0 mΩ as shown in Table 1, indicating that the electric current was in a good energized state. It was.
Moreover, the inner surface of the cylindrical part 5 which is a gas and refrigerant flow path was completely insulated by the electrical insulating layer, and there was no liquid junction.
[Experiment 3]

実験1で作成した表面研磨SUS304(No.1)の研磨面上に、実験1で作成した同じ塗料を、バーコータ(「松尾産業製」#48番)で塗布し、300℃で溶媒を乾燥して厚さが8μmの電気絶縁層を形成し、樹脂被覆金属板(No.3)平板を作成した。   On the polished surface of surface polished SUS304 (No. 1) created in Experiment 1, apply the same paint created in Experiment 1 with a bar coater (“Matsuo Sangyo” # 48) and dry the solvent at 300 ° C. Then, an electric insulating layer having a thickness of 8 μm was formed to prepare a resin-coated metal plate (No. 3) flat plate.

樹脂被覆金属板(No.3)平板の体積抵抗値を、実験1と同様に測定した結果、樹脂被覆金属板(No.3)平板の、電気絶縁層側から測定した体積抵抗値は、表1に示すとおり、上記測定装置の測定限界である10Ωcm以上であり、電気絶縁層側の金属板(SUS304)表面は絶縁体であった。 As a result of measuring the volume resistance value of the resin-coated metal plate (No. 3) flat plate in the same manner as in Experiment 1, the volume resistance value measured from the electric insulating layer side of the resin-coated metal plate (No. 3) flat plate is As shown in FIG. 1, the measurement limit of the measurement apparatus was 10 7 Ωcm or more, and the surface of the metal plate (SUS304) on the electrical insulating layer side was an insulator.

樹脂被覆金属板(No.3)平板を、実験1と同じ方法でプレス成形し、実験1と同じ方法でプレス成形し、連続した溝部4を形成した。成形後は、電気絶縁層の割れもなく、絶縁層と金属板(SUS304)との接着も良好であった。   A resin-coated metal plate (No. 3) flat plate was press-molded by the same method as in Experiment 1 and press-molded by the same method as in Experiment 1 to form a continuous groove 4. After the molding, the electric insulating layer was not cracked and the adhesion between the insulating layer and the metal plate (SUS304) was good.

連続した溝部4を有する樹脂被覆金属板(No.3)2枚を、実験1と同じ方法で、熱プレスした。熱プレス後の樹脂被覆金属板(No.3)2枚の接着性は良好で、ガス及び冷媒流路の変形も無かった。   Two resin-coated metal plates (No. 3) having continuous grooves 4 were hot-pressed in the same manner as in Experiment 1. The adhesiveness of the two resin-coated metal plates (No. 3) after hot pressing was good, and there was no deformation of the gas and refrigerant flow paths.

上記方法で得られた流路を形成した金属製セパレータ2枚の電気抵抗を、実験1と同様に測定した結果、抵抗値は表1に示すとおり、測定装置の限界である20,000mΩ以上であった。
[実験4]
As a result of measuring the electrical resistance of the two metal separators formed with the flow path obtained by the above method in the same manner as in Experiment 1, the resistance value is 20,000 mΩ or more, which is the limit of the measuring apparatus as shown in Table 1. there were.
[Experiment 4]

実験1で作成した表面研磨SUS304(No.1)の研磨面上に、実験1で作成した同じ塗料を、バーコータ(「松尾産業製」#16番)で塗布し、300℃で溶媒を乾燥して厚さが2.7μmの電気絶縁層を形成し、樹脂被覆金属板(No.4)平板を作成した。   The same paint prepared in Experiment 1 is applied to the polished surface of the surface polished SUS304 (No. 1) prepared in Experiment 1 with a bar coater (“Matsuo Sangyo” # 16), and the solvent is dried at 300 ° C. Then, an electric insulating layer having a thickness of 2.7 μm was formed, and a resin-coated metal plate (No. 4) flat plate was prepared.

樹脂被覆金属板(No.4)平板の体積抵抗値を、実験1と同様に測定した結果、樹脂被覆金属板(No.4)平板の、電気絶縁層側から測定した体積抵抗値は、表1に示すとおり、一定しなかった。樹脂被覆金属板(No.4)平板の電気絶縁層側表面を顕微鏡(「(株)キーエンス」製 デジタルHDマイクロスコープVH−7000)にて50倍で観察した結果、微小なピンホールが存在していることが分かった。

Figure 2006286215
As a result of measuring the volume resistance value of the resin-coated metal plate (No. 4) flat plate in the same manner as in Experiment 1, the volume resistance value measured from the electrical insulating layer side of the resin-coated metal plate (No. 4) flat plate is As shown in 1, it was not constant. As a result of observing the surface of the resin-coated metal plate (No. 4) flat plate on the side of the electric insulation layer with a microscope (Digital HD Microscope VH-7000, manufactured by Keyence Corporation) at a magnification of 50, a minute pinhole is present. I found out.
Figure 2006286215

表1に示すとおり、実験1、2で得られた流路を形成した金属製セパレータは、燃料電池発電部対応部は良好な通電状態を維持しながら、燃料電池発電部対応部を除く部位は絶縁状態であり、特に冷却媒体による液絡の防止に好適であった。   As shown in Table 1, in the metal separator formed with the flow paths obtained in Experiments 1 and 2, the fuel cell power generation unit corresponding part maintains a good energized state, while the portions other than the fuel cell power generation unit corresponding part are It was in an insulating state and was particularly suitable for preventing liquid junction due to the cooling medium.

一方、実験3では電気絶縁層厚みが、金属板の最大表面粗さRyの3倍より厚いため、燃料電池発電部対応部の抵抗値が大きく、燃料電池の内部抵抗の増加になることがわかった。また、実験4では電気絶縁層厚みが、金属板の最大表面粗さRyの1.1倍より薄いため、電気絶縁層に微小ピンホールが発生しやすく、燃料電池に組み込んだ時に、冷却媒体による液絡が発生し易いことが分かった。   On the other hand, in Experiment 3, since the thickness of the electrical insulating layer is thicker than three times the maximum surface roughness Ry of the metal plate, it is found that the resistance value of the fuel cell power generation unit corresponding part is large and the internal resistance of the fuel cell is increased. It was. In Experiment 4, since the thickness of the electrical insulating layer is less than 1.1 times the maximum surface roughness Ry of the metal plate, minute pinholes are likely to occur in the electrical insulating layer. It was found that liquid junctions are likely to occur.

本発明の樹脂被覆金属板の加工方法の工程を示す概略図である。It is the schematic which shows the process of the processing method of the resin coating metal plate of this invention. 流路を形成した金属製セパレータの電気抵抗の測定法を示す概略図である。It is the schematic which shows the measuring method of the electrical resistance of the metal separator which formed the flow path.

符号の説明Explanation of symbols

1…金属基板
11…粗面層
2…熱可塑性樹脂層
3…樹脂被覆金属板
4…溝部
5…筒状部
DESCRIPTION OF SYMBOLS 1 ... Metal substrate 11 ... Rough surface layer 2 ... Thermoplastic resin layer 3 ... Resin coating metal plate 4 ... Groove part 5 ... Cylindrical part

Claims (6)

金属基板(1)の少なくとも片面に粗面層(11)を設け、該粗面層(11)に熱可塑性樹脂層(2)を被覆してなる樹脂被覆金属板(3)を金型により冷間加工して断面凹形状の連続した溝部(4)を形成し、当該連続した溝部(4)を有する樹脂被覆金属板(3)を2枚を互いに断面凹形状溝部(4)の底面を反対側になるように配置し、熱プレスすることで溝部以外の熱可塑性樹脂層(2)を融着させ樹脂被覆金属板(3)の一部を接合するとともに内面が熱可塑性樹脂層(2)で被覆された筒状部(5)を形成することを特徴とする樹脂被覆金属板の加工方法。 A metal-coated metal plate (3) formed by providing a rough surface layer (11) on at least one surface of the metal substrate (1) and covering the rough surface layer (11) with a thermoplastic resin layer (2) is cooled by a mold. A continuous groove portion (4) having a concave cross section is formed by inter-processing, and two resin-coated metal plates (3) having the continuous groove portion (4) are opposed to each other with the bottom surface of the concave groove portion (4) being cross section The thermoplastic resin layer (2) other than the grooves is fused by being placed on the side and hot pressed to join a part of the resin-coated metal plate (3) and the inner surface is the thermoplastic resin layer (2). A method of processing a resin-coated metal plate, characterized in that a cylindrical part (5) covered with is formed. 金属基板(1)の少なくとも片面に設ける粗面層(11)の最大表面粗さRy(JIS B0601に準拠して測定)が0.3〜10μmの範囲であることを特徴とする請求項1記載の樹脂被覆金属板の加工方法。 The maximum surface roughness Ry (measured according to JIS B0601) of the rough surface layer (11) provided on at least one surface of the metal substrate (1) is in the range of 0.3 to 10 µm. Method for processing a resin-coated metal plate. 熱可塑性樹脂層(2)の厚みが、金属基板(1)の最大表面粗さ(Ry)に対して、(Ry)×1.1倍〜(Ry)×3.0倍の範囲であることを特徴とする請求項1又は2記載の樹脂被覆金属板の加工方法。 The thickness of the thermoplastic resin layer (2) is in the range of (Ry) × 1.1 times to (Ry) × 3.0 times the maximum surface roughness (Ry) of the metal substrate (1). The processing method of the resin-coated metal plate according to claim 1 or 2. 金属基板(1)は、ステンレス鋼、チタン、アルミニウム、銅、ニッケル、及び鋼からなる群より選ばれることを特徴とする請求項1乃至3のいずれかに記載の樹脂被覆金属板の加工方法。 The method for processing a resin-coated metal plate according to any one of claims 1 to 3, wherein the metal substrate (1) is selected from the group consisting of stainless steel, titanium, aluminum, copper, nickel, and steel. 筒状部(5)が冷媒流路であるとともに、樹脂被覆金属板(3)の接合した部分が通電性を有する燃料電池の金属製セパレータに用いることを特徴とする請求項1乃至4のいづれかに記載の樹脂被覆金属板。 The cylindrical part (5) is a refrigerant flow path, and the joined part of the resin-coated metal plate (3) is used for a metal separator of a fuel cell having electrical conductivity. The resin-coated metal plate described in 1. 請求項5の金属製セパレータを組み込んでなる燃料電池。
A fuel cell comprising the metal separator according to claim 5 incorporated therein.
JP2005100677A 2005-03-31 2005-03-31 Method of processing resin coated metal plate Pending JP2006286215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100677A JP2006286215A (en) 2005-03-31 2005-03-31 Method of processing resin coated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100677A JP2006286215A (en) 2005-03-31 2005-03-31 Method of processing resin coated metal plate

Publications (1)

Publication Number Publication Date
JP2006286215A true JP2006286215A (en) 2006-10-19

Family

ID=37407934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100677A Pending JP2006286215A (en) 2005-03-31 2005-03-31 Method of processing resin coated metal plate

Country Status (1)

Country Link
JP (1) JP2006286215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079614A (en) * 2010-10-05 2012-04-19 Dainippon Printing Co Ltd Fuel cell separator and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173631A (en) * 1998-12-08 2000-06-23 General Motors Corp <Gm> Adhesive plate for proton exchange membrane fuel cell
JP2001246317A (en) * 1999-12-27 2001-09-11 Toyo Kohan Co Ltd Method for manufacturing coated metallic sheet, coated metallic sheet and electrical connecting member using the same
JP2002015750A (en) * 2000-06-30 2002-01-18 Mitsubishi Plastics Ind Ltd Fuel cell separator
JP2003068317A (en) * 2001-08-28 2003-03-07 Nissan Motor Co Ltd Fuel cell
JP2004127786A (en) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd Fuel cell stack
JP2004158217A (en) * 2002-11-01 2004-06-03 Honda Motor Co Ltd Fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173631A (en) * 1998-12-08 2000-06-23 General Motors Corp <Gm> Adhesive plate for proton exchange membrane fuel cell
JP2001246317A (en) * 1999-12-27 2001-09-11 Toyo Kohan Co Ltd Method for manufacturing coated metallic sheet, coated metallic sheet and electrical connecting member using the same
JP2002015750A (en) * 2000-06-30 2002-01-18 Mitsubishi Plastics Ind Ltd Fuel cell separator
JP2003068317A (en) * 2001-08-28 2003-03-07 Nissan Motor Co Ltd Fuel cell
JP2004127786A (en) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd Fuel cell stack
JP2004158217A (en) * 2002-11-01 2004-06-03 Honda Motor Co Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079614A (en) * 2010-10-05 2012-04-19 Dainippon Printing Co Ltd Fuel cell separator and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4648007B2 (en) Fuel cell separator and fuel cell
US8361673B2 (en) Fuel cell and method for manufacturing same
JP4975262B2 (en) Fuel cell separator and method for producing the same
WO2006047015A2 (en) Passive dual-phase cooling for fuel cell assemblies
JP4627406B2 (en) Separator and fuel cell
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
WO2015101773A1 (en) Fuel cell flow plate
JP4458877B2 (en) Manufacturing method of fuel cell separator
CN101645507B (en) Layered electrode for electrochemical cells
KR20090123661A (en) Separator for fuel cell and method for fabricating the same
US7482088B2 (en) Flow field
JP2001236967A (en) Separator for solid polymer electrolyte fuel cell
JP2007193948A (en) Fuel cell
JP2006286215A (en) Method of processing resin coated metal plate
JP2006196328A (en) Method and apparatus for manufacturing battery cell
JP3839022B2 (en) Fuel cell
JP5614468B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
WO2014132679A1 (en) Conductive laminated sheet and collector
JP2002198072A (en) Solid polymer fuel cell
JP2004192855A (en) Separator for fuel cell
JP2001185173A (en) Combined gas separator for fuel cell
KR20120131350A (en) Separator for proton exchange membrane fuel cell and proton exchange membrane fuel cell using the same
WO2022150953A1 (en) Bipolar plate and manufacturing method therefor, and proton exchange membrane fuel cell
JP2002343375A (en) Separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120111