JP2004189625A - Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride - Google Patents

Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride Download PDF

Info

Publication number
JP2004189625A
JP2004189625A JP2002356354A JP2002356354A JP2004189625A JP 2004189625 A JP2004189625 A JP 2004189625A JP 2002356354 A JP2002356354 A JP 2002356354A JP 2002356354 A JP2002356354 A JP 2002356354A JP 2004189625 A JP2004189625 A JP 2004189625A
Authority
JP
Japan
Prior art keywords
dimethylcyclopropane
formula
weight
parts
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002356354A
Other languages
Japanese (ja)
Other versions
JP4453247B2 (en
Inventor
Norihiko Hirata
紀彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002356354A priority Critical patent/JP4453247B2/en
Publication of JP2004189625A publication Critical patent/JP2004189625A/en
Application granted granted Critical
Publication of JP4453247B2 publication Critical patent/JP4453247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride. <P>SOLUTION: The method for purifying the acid anhydride comprises hydrolyzing unpurified 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by formula (1) to form a dicarboxylate represented by formula (2) (wherein Ms are independently hydrogen atoms, alkali metal atoms, or alkaline earth metal atoms), acidifying an aqueous layer obtained by washing with a water-insoluble organic solvent and separating to obtain a dicarboxylic acid represented by formula (3), and reacting the obtained dicarboxyllic acid represented by formula (3) with an acylating agent to obtain 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by formula (1). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、医薬、農薬等の中間体として有用な3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物(以下、酸無水物と略する。)の精製方法に関する。
【0002】
【従来の技術】
従来、酸無水物を反応で得られた未精製物から精製する方法として例えば、1−メチル−2−ピロリジノンを反応溶媒として用いた場合には減圧下(1mmHg)に回転バンド塔を用いて1−メチル−2−ピロリジノンを精留により留去させる方法(特許文献1参照。)、また未精製物に水と活性炭を加えて100℃以上で加熱処理した後、不溶物をろ過し、水を減圧下に除去した後再度無水物化する方法(特許文献2、非特許文献1参照。)等が知られている。
【0003】
【特許文献1】
特開昭57−120548号公報
【特許文献2】
特開昭61−171453号公報
【非特許文献1】
Tetrahedron Lett.,(21),1874(1978)
【0004】
【発明が解決しようとする課題】
上記従来法において、前者の反応溶媒である1−メチル−2−ピロリジノンを精留により除去する方法は、目的物である酸無水物と1−メチル−2−ピロリジノンの沸点が近く回転バンド塔などの特殊な分離装置が必要であり、かつ精留残渣に目的物を残すため必ずしも精製が充分なものとはいい難い方法である。さらに、反応後の粗生成物は酸性状態であるため酸無水物が熱的に不安定であり酸無水物自体の蒸留精製が困難な方法である。
また、後者の活性炭処理を行う方法ではタール化、高分子量化した成分などは除去可能であるが、1−メチル−2−ピロリジノンなどの高沸点、親水性溶媒を分離することはできないといった問題点があり、いずれも酸無水物の精製方法としては必ずしも充分に満足できるものではなかった。
【0005】
【課題を解決するための手段】
本発明者は、下記式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物の工業的有利な精製方法について鋭意検討したところ、反応で得られた式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を含む未精製物を加水分解して、一般式(2)で示されるジカルボン酸の塩に変換し、これを水に溶解させ水に不溶の有機溶媒を用いて洗浄することにより不要な成分を除去し、次いで酸で処理することにより得られる式(3)で示されるジカルボン酸をアシル化剤で処理することにより、式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物に再度変換することで高純度な酸無水物が得られることを見出した。
この精製操作により酸無水物の熱的な安定性が向上し、さらに精製するために蒸留等の操作を行う際に歩留りよく高純度な酸無水物が得られるものである。
すなわち本発明は、式(1)

Figure 2004189625
で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物の未精製物を加水分解し、一般式(2)
Figure 2004189625
(式中、Mは独立して、水素原子、アルカリ金属原子又はアルカリ土類金属原子を表す。)
で示されるジカルボン酸の塩とし、ついで、水に不溶の有機溶媒で洗浄・分液して得られる水層を酸性とし、式(3)
Figure 2004189625
で示されるジカルボン酸を得、得られた式(3)で示されるジカルボン酸をアシル化剤と反応させ、式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を得ることを特徴とする酸無水物の精製方法を提供するものである。
【0006】
【発明の実施の形態】
本発明の出発物質となる式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物(以下、無水物(1)と略記する。)の未精製物は例えば特許文献1に記載の方法または製造例1に記載の方法等により得ることができるが、これらに限定されるものではない。これら未精製物中には例えば塩酸、硫酸、酢酸などの酸、1−メチル−2−ピロリジノンなどの高沸点の親水性溶媒、またはタール化した成分などが不純物として含まれる。
【0007】
未精製の無水物(1)は水を用いた加水分解により式(3)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸(以下、ジカルボン酸(3)と略記する。)に変換した後、無機塩基により一般式(2)で示されるジカルボン酸の塩(以下、ジカルボン酸塩類(2)と略記する。)に誘導する。または直接無機塩基の水溶液を用いた加水分解によりジカルボン酸塩類(2)に誘導することもできる。
【0008】
かかる加水分解に用いる水の量は無水物(1)に対して通常0.2〜50重量倍、好ましくは0.5〜10重量倍である。
【0009】
無機塩基としては例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等のアルカリ金属およびアルカリ土類金属の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属の炭酸水素塩などが挙げられ、好ましくはアルカリ金属水酸化物が用いられる。
かかる塩基の使用量は未精製物中に含まれる無水物(1)を除いた酸を中和せしめる量に加えて、無水物(1)に対し通常1モル倍以上、好ましくは1〜2モル倍程度の範囲である。無水物(1)を加水分解すると、ジカルボン酸となり、塩基はモノカルボン酸を中和する量以上が必要である。未精製物中の酸の量が不明な場合には反応溶液のpHで無機塩基の使用量を決定することもできる。かかるpHとしては通常7以上、好ましくは7〜9の範囲である。
かかる塩基は通常、水溶液として用いられるが反応溶液中に水が存在する場合には固体を用いることもできる。
【0010】
加水分解の反応温度は通常0〜100℃、好ましくは20〜80℃である。
反応時間は原料である無水物(1)が消失すればよく、特に限定されるものではないが、通常0.5時間以上である。
【0011】
得られたジカルボン酸塩類(2)の水溶液にこの溶液と分液可能な有機溶媒を加えて混合、洗浄し、分液により中性成分である1−メチル−2−ピロリジノンなどの高沸点の親水性溶媒などを有機層に除去することができる。洗浄、分液操作は除去可能な成分の水層中の残存量が所望の量まで減少するまで複数回行なわれてもよい。
【0012】
かかる有機溶媒としては、例えば酢酸メチル、酢酸エチル等のエステル系溶媒、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、ジクロロメタン、ジクロロエタン、四塩化炭素等のハロゲン化脂肪族炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル、テトラヒドロフランなどのエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、アセトニトリル、プロピオニトリル等のニトリル系溶媒等が挙げられる。これらは単独または2種以上を混合して用いることができ、好ましく酢酸エチルとアセトンの混合溶媒、メチルイソブチルケトン、テトラヒドロフラン等が用いられる。
【0013】
かかる有機溶媒の使用量は洗浄操作1回当たり無水物(1)に対して通常0.5〜50重量倍、好ましくは1〜20重量倍である。
【0014】
洗浄、分液操作の際に不溶成分の析出等により分液が困難となる場合には、濾過により不溶成分を除去することで分液を容易にすることができる。またその際に濾過助剤を用いることもできる。さらにかかる濾過操作はジカルボン酸塩類(2)を得るために使用される無機塩基を加える前、使用量の全量を加える途中段階、加え終わった後のいずれの段階でも行なうことができる。
【0015】
かくして得られるジカルボン酸塩類(2)としては例えば、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸モノナトリウム塩、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸ジナトリウム塩、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸モノカリウム塩、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸ジカリウム塩、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸モノリチウム塩、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸ジリチウム塩、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸カルシウム塩等が挙げられる。
【0016】
有機溶媒による洗浄操作の後、得られたジカルボン酸塩類(2)を含む溶液に塩酸、硫酸、りん酸等の無機酸を加えて塩分解し、ジカルボン酸(3)へ誘導し、水層と分液可能な有機溶媒を用いて有機層へジカルボン酸(3)を抽出することで、出発原料である未精製の無水物(1)中に含まれる酸成分を除去することができる。
【0017】
かかる塩分解の際に使用される無機酸の量は溶液のpHにより決定され、かかるpHとしては通常0〜6、好ましくは1〜3の範囲である。
【0018】
ジカルボン酸(3)の抽出に用いられる有機溶媒としては、例えば酢酸メチル、酢酸エチル等のエステル系溶媒、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素系溶媒、ジクロロメタン、ジクロロエタン、四塩化炭素等のハロゲン化脂肪族炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、t−ブチルメチルエーテル等のエーテル系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒等が挙げられる。これらは単独または2種以上を混合して用いることができ、好ましく酢酸エチルが用いられる。
【0019】
かかる有機溶媒の使用量は洗浄操作1回当たり無水物(1)に対して通常0.5〜50重量倍、好ましくは1〜20重量倍である。
【0020】
分液操作の際に不溶成分の析出等により分液が困難となる場合には、濾過により不溶成分を除去することで分液を容易にすることができる。またその際に濾過助剤を用いることもできる。
【0021】
得られたジカルボン酸(3)を含む有機層は続いて以降の反応に用いてよいし、濃縮して一旦ジカルボン酸(3)を取り出してもよい。また再結晶、シリカゲルカラムクロマト等によりさらに精製してもよい。再結晶の方法としては例えば、抽出に用いた溶媒等に加熱溶解させたのち冷却により結晶化させる方法、また抽出に用いた溶媒等に溶解させたのち貧溶媒を加えることにより析出させる方法等が挙げられる。かかる貧溶媒としては例えばヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が挙げられる。
【0022】
得られたジカルボン酸(3)は例えば無水酢酸、塩化アセチル等のアシル化剤を加え、加熱することで容易に無水物(1)へ誘導することができ、反応終了後反応試剤であるアセチル化剤および反応で生じる酢酸、塩酸などの酸を濃縮等により除去するだけで目的とする高純度の無水物(1)を得ることができる。
【0023】
アシル化剤の使用量としてはジカルボン酸(3)に対して通常1〜10モル倍、好ましくは2〜5モル倍である。
【0024】
反応温度は通常20〜150℃、好ましくは50〜120℃である。
反応時間は原料であるジカルボン酸(3)が所望の量まで減少すればよく、特に制限されるものではないが、通常0.5時間以上である。
【0025】
かくして得られた無水物(1)はさらに蒸留、再結晶等の操作を行いさらに精製することもできる。
【0026】
蒸留は常圧下または減圧下で加熱し、単蒸留により、容易にさらに高純度な無水物(3)を得ることができる。
【0027】
再結晶の方法としては例えば、ジカルボン酸(3)の抽出に用いた溶媒等に加熱溶解させたのち冷却により結晶化させる方法、また抽出に用いた溶媒等に溶解させたのち貧溶媒を加えることにより析出させる方法等が挙げられる。かかる貧溶媒としては例えばヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が挙げられる。
【0028】
【発明の効果】
本発明の方法によれば、医薬、農薬等の中間体として有用な3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を工業的に有利に精製することが可能である。
【0029】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0030】
製造例1
3,3−ジメチルシクロプロパン−1,2−ジカルボン酸(Trans/cis比=64/36)585.6重量部を含む酢酸エチル溶液860重量部に1−メチル−2−ピロリジノン293重量部、無水酢酸1134重量部、硫酸72.6重量部を加え、内温を170℃まで8.3時間かけて昇温した。170〜174℃の範囲で4時間保温し3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物479.3重量部を含む溶液977重量部を得た。この溶液中には3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物以外に1−メチル−2−ピロリジノン241.6重量部、硫酸72.6重量部、無水酢酸32.0重量部、酢酸131.3重量部が含まれていた。
【0031】
実施例1
製造例1で得られた3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物479.3重量部を含む溶液977重量部を水685重量部に内温43〜52℃で0.5時間かけて滴下し、同温で2時間保温した。この溶液に40%水酸化ナトリウム水溶液85.0重量部を加えてpHを2.0に調整した。酢酸エチル3405重量部とラジオライト(珪藻土)117重量部を加え、20〜34℃で1時間攪拌した後、ろ過により不溶物を除去した。ろ過残渣はアセトン586重量部続いて酢酸エチル1054重量部で洗浄した。ろ液に30℃で40%水酸化ナトリウム水溶液702.0重量部を加えpHを7.7に調整した後、上層を分液により除去した。下層は酢酸エチル4099重量部、アセトン586重量部を用いて2回洗浄を行なった後、酢酸エチル4392重量部、水234重量部を加えた後、35%塩酸を加えpHを2.4に調整した。ラジオライト(珪藻土)60重量部を加え、30℃で1時間攪拌した後、ろ過により不溶物を除去した。ろ過残渣は酢酸エチル274重量部で洗浄した。ろ液を分液し3,3−ジメチルシクロプロパン−1,2−ジカルボン酸を含む有機層を得た。水層から酢酸エチル2342重量部を用いてさらに2回抽出を行い、得られた3つの有機層を合計すると3,3−ジメチルシクロプロパン−1,2−ジカルボン酸534.0重量部を含む溶液10870重量部が得られた。(収率98.7%) この溶液中には3,3−ジメチルシクロプロパン−1,2−ジカルボン酸以外に1−メチル−2−ピロリジノン24.5重量部、酢酸182.9重量部が含まれていた。
この溶液を減圧条件下(21〜39KPa)に溶媒を留去した後、無水酢酸1034重量部を加え、100℃まで2時間かけて昇温した。同温で1時間保温した後、減圧条件下(3〜19KPa)、内温36〜120℃で無水酢酸および酢酸を留去し、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物470.4重量部(純分447.1重量部)を得た。(含量95.0%、収率94.5%) この溶液中には3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物以外に1−メチル−2−ピロリジノン21.5重量部、無水酢酸2.0重量部、酢酸1.2重量部が含まれていた。
【0032】
実施例2
実施例1で得られた3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物449.5重量部(純分427.3重量部)を減圧条件下(1〜3KPa)、内温129〜144℃で単蒸留し、留出液温度100〜140℃の3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物である留分414.2重量部(純分395.9重量部)を取得した。(含量95.6%、蒸留収率92.7%) この留分には3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物以外に1−メチル−2−ピロリジノン15.9重量部、無水酢酸1.9重量部、酢酸0.7重量部が含まれていた。
【0033】
実施例3
実施例2の蒸留で得られた3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物397.8重量部(純分380.2重量部)をtert−ブチルメチルエーテル391重量部に混合させた溶液にn−ヘキサン76重量部を内温24〜27℃で1時間かけて滴下し、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物の種晶0.3重量部を加えて1時間攪拌した。さらにn−ヘキサン2964重量部を1時間かけて同温で滴下した後、0℃まで5時間かけて冷却した。同温1時間保温した後、結晶をろ過した。得られた結晶はtert−ブチルメチルエーテル76重量部、n−ヘキサン608重量部からなる溶液で洗浄した後、ろ過器上で窒素を通気させ溶媒を乾燥させ、3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物351.3重量部(純分350.5重量部)を得た。(含量99.8%、再結晶収率92.2%)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride (hereinafter abbreviated as acid anhydride), which is useful as an intermediate for medicines, agricultural chemicals and the like.
[0002]
[Prior art]
Conventionally, as a method for purifying an acid anhydride from an unpurified product obtained by the reaction, for example, when 1-methyl-2-pyrrolidinone is used as a reaction solvent, 1-methyl-2-pyrrolidinone is used under reduced pressure (1 mmHg) using a rotating band tower. A method of distilling off -methyl-2-pyrrolidinone by rectification (see Patent Document 1), adding water and activated carbon to an unpurified substance, subjecting it to heat treatment at 100 ° C or higher, filtering insoluble substances, and removing water. There is known a method of removing the compound under reduced pressure and then converting the product into an anhydride again (see Patent Document 2 and Non-Patent Document 1).
[0003]
[Patent Document 1]
JP-A-57-120548 [Patent Document 2]
JP-A-61-171453 [Non-Patent Document 1]
Tetrahedron Lett. , (21), 1874 (1978).
[0004]
[Problems to be solved by the invention]
In the above-mentioned conventional method, the former method of removing 1-methyl-2-pyrrolidinone, which is a reaction solvent, by rectification is a method in which the boiling points of the acid anhydride and 1-methyl-2-pyrrolidinone, which are the target substances, are so close to each other that a rotating band column is used. This is a method that requires a special separation device and that is not necessarily sufficiently purified because the target product remains in the rectification residue. Furthermore, since the crude product after the reaction is in an acidic state, the acid anhydride is thermally unstable, and it is difficult to purify the acid anhydride by distillation.
Further, in the latter method of performing the activated carbon treatment, the tarified and high molecular weight components can be removed, but a high boiling point and hydrophilic solvent such as 1-methyl-2-pyrrolidinone cannot be separated. However, none of these methods was necessarily satisfactory as a method for purifying an acid anhydride.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on an industrially advantageous method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the following formula (1), and found that the formula (1) obtained by the reaction was obtained. ) Is converted to a dicarboxylic acid salt represented by the general formula (2) by hydrolyzing a crude product containing 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the formula (2), By washing with an organic solvent insoluble in water to remove unnecessary components, and then treating the dicarboxylic acid of the formula (3) obtained by treating with an acid with an acylating agent. And 3,3-dimethylcyclopropane-1,2-dicarboxylic acid anhydride represented by the formula (1), to obtain a high-purity acid anhydride.
By this purification operation, the thermal stability of the acid anhydride is improved, and a high-purity acid anhydride can be obtained with good yield when performing operations such as distillation for further purification.
That is, the present invention relates to the formula (1)
Figure 2004189625
An unpurified 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the formula is hydrolyzed to obtain a compound represented by the general formula (2):
Figure 2004189625
(In the formula, M independently represents a hydrogen atom, an alkali metal atom or an alkaline earth metal atom.)
And then the aqueous layer obtained by washing and separating with a water-insoluble organic solvent is made acidic to obtain a salt of the formula (3)
Figure 2004189625
And the obtained dicarboxylic acid of the formula (3) is reacted with an acylating agent to give a 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride of the formula (1). And a method for purifying an acid anhydride, characterized by obtaining a product.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Unpurified 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride (hereinafter abbreviated as anhydride (1)) represented by formula (1) as a starting material of the present invention is described in, for example, Patent It can be obtained by the method described in Literature 1 or the method described in Production Example 1, but is not limited thereto. These unpurified substances include, as impurities, acids such as hydrochloric acid, sulfuric acid, and acetic acid, hydrophilic solvents having a high boiling point such as 1-methyl-2-pyrrolidinone, and tarified components.
[0007]
The unpurified anhydride (1) is hydrolyzed with water to give 3,3-dimethylcyclopropane-1,2-dicarboxylic acid of the formula (3) (hereinafter abbreviated as dicarboxylic acid (3)). After that, the salt is derived with an inorganic base into a dicarboxylic acid salt represented by the general formula (2) (hereinafter abbreviated as dicarboxylic acid salts (2)). Alternatively, dicarboxylic acid salts (2) can be directly derived by hydrolysis using an aqueous solution of an inorganic base.
[0008]
The amount of water used for such hydrolysis is usually 0.2 to 50 times by weight, preferably 0.5 to 10 times by weight, relative to the anhydride (1).
[0009]
Examples of the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkali metal and alkaline earth metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and calcium carbonate, and hydrogen carbonate. Examples thereof include hydrogen carbonates of alkali metals such as sodium and potassium hydrogen carbonate, and alkali metal hydroxides are preferably used.
The amount of the base to be used is, in addition to the amount for neutralizing the acid excluding the anhydride (1) contained in the unpurified product, usually 1 mol or more, preferably 1 to 2 mol, per 1 mol of the anhydride (1). The range is about double. When the anhydride (1) is hydrolyzed, it becomes a dicarboxylic acid, and the base must be used in an amount that neutralizes the monocarboxylic acid or more. When the amount of the acid in the unpurified product is unknown, the amount of the inorganic base used can be determined by the pH of the reaction solution. The pH is usually 7 or more, preferably 7 to 9.
Such a base is generally used as an aqueous solution, but when water is present in the reaction solution, a solid can also be used.
[0010]
The reaction temperature of the hydrolysis is usually 0 to 100 ° C, preferably 20 to 80 ° C.
The reaction time is not particularly limited, as long as the anhydride (1) as a raw material disappears, but is usually 0.5 hour or more.
[0011]
To the obtained aqueous solution of dicarboxylates (2), an organic solvent capable of being separated from this solution is added, mixed, washed, and separated to give a high-boiling hydrophilic compound such as 1-methyl-2-pyrrolidinone as a neutral component. An organic solvent or the like can be removed from the organic layer. The washing and liquid separation operations may be performed a plurality of times until the residual amount of the removable component in the aqueous layer decreases to a desired amount.
[0012]
Such organic solvents include, for example, ester solvents such as methyl acetate and ethyl acetate, aromatic hydrocarbon solvents such as toluene, xylene and chlorobenzene, pentane, hexane, heptane, aliphatic hydrocarbon solvents such as cyclohexane, dichloromethane, and the like. Dichloroethane, halogenated aliphatic hydrocarbon solvents such as carbon tetrachloride, diethyl ether, diisopropyl ether, t-butyl methyl ether, ether solvents such as tetrahydrofuran, acetone, methyl ethyl ketone, ketone solvents such as methyl isobutyl ketone, acetonitrile, Examples thereof include nitrile solvents such as propionitrile. These may be used alone or as a mixture of two or more, and preferably a mixed solvent of ethyl acetate and acetone, methyl isobutyl ketone, tetrahydrofuran and the like are used.
[0013]
The amount of the organic solvent used is usually 0.5 to 50 times, preferably 1 to 20 times the weight of the anhydride (1) per washing operation.
[0014]
When liquid separation becomes difficult due to precipitation of insoluble components during washing and liquid separation operations, separation can be facilitated by removing insoluble components by filtration. At that time, a filter aid can be used. Further, such a filtering operation can be performed at any stage before adding the inorganic base used for obtaining the dicarboxylates (2), in the middle of adding the entire amount used, or after finishing adding.
[0015]
The dicarboxylates (2) thus obtained include, for example, monosodium salt of 3,3-dimethylcyclopropane-1,2-dicarboxylic acid, disodium salt of 3,3-dimethylcyclopropane-1,2-dicarboxylic acid, Monopotassium 3,3-dimethylcyclopropane-1,2-dicarboxylate, dipotassium 3,3-dimethylcyclopropane-1,2-dicarboxylate, monolithium 3,3-dimethylcyclopropane-1,2-dicarboxylate Salts, 3,3-dimethylcyclopropane-1,2-dicarboxylic acid dilithium salt, 3,3-dimethylcyclopropane-1,2-dicarboxylic acid calcium salt, and the like.
[0016]
After a washing operation with an organic solvent, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or the like is added to the resulting solution containing the dicarboxylates (2) to cause salt decomposition, and the salt is decomposed into dicarboxylic acids (3), and the aqueous layer is formed. By extracting the dicarboxylic acid (3) into the organic layer using an organic solvent capable of liquid separation, the acid component contained in the crude anhydride (1) as a starting material can be removed.
[0017]
The amount of the inorganic acid used in the salt decomposition is determined by the pH of the solution, and the pH is generally in the range of 0 to 6, preferably 1 to 3.
[0018]
Examples of the organic solvent used for the extraction of the dicarboxylic acid (3) include ester solvents such as methyl acetate and ethyl acetate, aromatic hydrocarbon solvents such as toluene, xylene and chlorobenzene, dichloromethane, dichloroethane and carbon tetrachloride. Examples include halogenated aliphatic hydrocarbon solvents, ether solvents such as diethyl ether, diisopropyl ether and t-butyl methyl ether, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone. These can be used alone or in combination of two or more, and ethyl acetate is preferably used.
[0019]
The amount of the organic solvent used is usually 0.5 to 50 times, preferably 1 to 20 times the weight of the anhydride (1) per washing operation.
[0020]
When liquid separation becomes difficult due to precipitation of insoluble components during the liquid separation operation, the separation can be facilitated by removing the insoluble components by filtration. At that time, a filter aid can be used.
[0021]
The obtained organic layer containing the dicarboxylic acid (3) may be subsequently used for the subsequent reaction, or may be concentrated to take out the dicarboxylic acid (3) once. Further, it may be further purified by recrystallization, silica gel column chromatography or the like. As a method of recrystallization, for example, a method of heating and dissolving in a solvent or the like used for extraction and then crystallization by cooling, or a method of dissolving in a solvent or the like used for extraction and then adding a poor solvent to precipitate the solution. No. Examples of such poor solvents include aliphatic hydrocarbon solvents such as hexane, heptane, and cyclohexane.
[0022]
The dicarboxylic acid (3) thus obtained can be easily converted to the anhydride (1) by adding an acylating agent such as acetic anhydride, acetyl chloride and the like, and heating. The desired high-purity anhydride (1) can be obtained only by removing the agent and the acid such as acetic acid and hydrochloric acid generated in the reaction by concentration or the like.
[0023]
The amount of the acylating agent to be used is generally 1 to 10 moles, preferably 2 to 5 moles, relative to the dicarboxylic acid (3).
[0024]
The reaction temperature is usually 20-150 ° C, preferably 50-120 ° C.
The reaction time may be any amount as long as the amount of the raw material dicarboxylic acid (3) is reduced to a desired amount, and is not particularly limited, but is usually 0.5 hour or more.
[0025]
The anhydride (1) thus obtained can be further purified by performing operations such as distillation and recrystallization.
[0026]
The distillation is heated under normal pressure or reduced pressure, and simple distillation can easily obtain a higher purity anhydride (3).
[0027]
As a method of recrystallization, for example, a method of heating and dissolving in a solvent or the like used for extraction of dicarboxylic acid (3) and then crystallization by cooling, or a method of dissolving in a solvent or the like used for extraction and then adding a poor solvent And the like. Examples of such poor solvents include aliphatic hydrocarbon solvents such as hexane, heptane, and cyclohexane.
[0028]
【The invention's effect】
According to the method of the present invention, it is possible to industrially and advantageously purify 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride, which is useful as an intermediate for medicines, agricultural chemicals and the like.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0030]
Production Example 1
To 860 parts by weight of an ethyl acetate solution containing 585.6 parts by weight of 3,3-dimethylcyclopropane-1,2-dicarboxylic acid (Trans / cis ratio = 64/36), 293 parts by weight of 1-methyl-2-pyrrolidinone, anhydrous 1134 parts by weight of acetic acid and 72.6 parts by weight of sulfuric acid were added, and the internal temperature was raised to 170 ° C. over 8.3 hours. The mixture was kept at 170 to 174 ° C for 4 hours to obtain 977 parts by weight of a solution containing 479.3 parts by weight of 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride. In this solution, in addition to 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride, 241.6 parts by weight of 1-methyl-2-pyrrolidinone, 72.6 parts by weight of sulfuric acid, 32.0 parts by weight of acetic anhydride And 131.3 parts by weight of acetic acid.
[0031]
Example 1
977 parts by weight of a solution containing 479.3 parts by weight of 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride obtained in Production Example 1 was added to 685 parts by weight of water at an internal temperature of 43 to 52 ° C. for 0.5 part. The solution was dropped over a period of time, and kept at the same temperature for 2 hours. To this solution, 85.0 parts by weight of a 40% aqueous sodium hydroxide solution was added to adjust the pH to 2.0. 3405 parts by weight of ethyl acetate and 117 parts by weight of radiolite (diatomaceous earth) were added, and the mixture was stirred at 20 to 34 ° C. for 1 hour, and then insolubles were removed by filtration. The filtration residue was washed with 586 parts by weight of acetone and subsequently with 1054 parts by weight of ethyl acetate. After adding 702.0 parts by weight of a 40% aqueous sodium hydroxide solution to the filtrate at 30 ° C. to adjust the pH to 7.7, the upper layer was removed by liquid separation. The lower layer was washed twice with 4099 parts by weight of ethyl acetate and 586 parts by weight of acetone, then 4392 parts by weight of ethyl acetate and 234 parts by weight of water were added, and the pH was adjusted to 2.4 by adding 35% hydrochloric acid. did. After adding 60 parts by weight of radiolite (diatomaceous earth) and stirring at 30 ° C. for 1 hour, insoluble materials were removed by filtration. The filtration residue was washed with 274 parts by weight of ethyl acetate. The filtrate was separated to obtain an organic layer containing 3,3-dimethylcyclopropane-1,2-dicarboxylic acid. The aqueous layer was further extracted twice with 2342 parts by weight of ethyl acetate, and the obtained three organic layers were combined to give a solution containing 534.0 parts by weight of 3,3-dimethylcyclopropane-1,2-dicarboxylic acid. 10870 parts by weight were obtained. (Yield 98.7%) This solution contains 24.5 parts by weight of 1-methyl-2-pyrrolidinone and 182.9 parts by weight of acetic acid in addition to 3,3-dimethylcyclopropane-1,2-dicarboxylic acid. Had been.
After distilling off the solvent from this solution under reduced pressure (21 to 39 KPa), 1034 parts by weight of acetic anhydride was added, and the temperature was raised to 100 ° C. over 2 hours. After keeping at the same temperature for 1 hour, acetic anhydride and acetic acid were distilled off under reduced pressure (3 to 19 KPa) at an internal temperature of 36 to 120 ° C. to obtain 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride. 470.4 parts by weight (pure amount: 447.1 parts by weight) were obtained. (Content 95.0%, Yield 94.5%) In this solution, in addition to 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride, 21.5 parts by weight of 1-methyl-2-pyrrolidinone, 2.0 parts by weight of acetic anhydride and 1.2 parts by weight of acetic acid were contained.
[0032]
Example 2
449.5 parts by weight (pure 427.3 parts by weight) of 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride obtained in Example 1 was subjected to reduced pressure conditions (1 to 3 KPa) at an internal temperature of 129. Simple distillation at 〜144 ° C., and 414.2 parts by weight of a fraction which is 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride having a distillate temperature of 100-140 ° C. ). (Content: 95.6%, distillation yield: 92.7%) In addition to 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride, 15.9 parts by weight of 1-methyl-2-pyrrolidinone is contained in this fraction. 1.9 parts by weight of acetic anhydride and 0.7 parts by weight of acetic acid.
[0033]
Example 3
397.8 parts by weight (purity 380.2 parts by weight) of 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride obtained by distillation in Example 2 were mixed with 391 parts by weight of tert-butyl methyl ether. 76 parts by weight of n-hexane was added dropwise to the solution at an internal temperature of 24 to 27 ° C. over 1 hour, and 0.3 parts by weight of seed crystals of 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride was added. The mixture was further stirred for 1 hour. Further, 2964 parts by weight of n-hexane was added dropwise at the same temperature over 1 hour, and then cooled to 0 ° C over 5 hours. After keeping the same temperature for 1 hour, the crystals were filtered. The obtained crystals were washed with a solution consisting of 76 parts by weight of tert-butyl methyl ether and 608 parts by weight of n-hexane, and then the solvent was dried by passing nitrogen through a filter to obtain 3,3-dimethylcyclopropane-1. , 2-Dicarboxylic anhydride 351.3 parts by weight (purity 350.5 parts by weight). (Content 99.8%, recrystallization yield 92.2%)

Claims (4)

式(1)
Figure 2004189625
で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物の未精製物を加水分解し、一般式(2)
Figure 2004189625
(式中、Mは独立して水素原子、アルカリ金属原子又はアルカリ土類金属原子を表す。)
で示されるジカルボン酸の塩とし、ついで、水に不溶の有機溶媒で洗浄・分液して得られる水層を酸性とし、式(3)
Figure 2004189625
で示されるジカルボン酸を得、得られた式(3)で示されるジカルボン酸をアシル化剤と反応させ、式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を得ることを特徴とする酸無水物の精製方法。
Equation (1)
Figure 2004189625
An unpurified 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the formula is hydrolyzed to obtain a compound represented by the general formula (2):
Figure 2004189625
(In the formula, M independently represents a hydrogen atom, an alkali metal atom or an alkaline earth metal atom.)
And then the aqueous layer obtained by washing and separating with a water-insoluble organic solvent is made acidic to obtain a salt of the formula (3)
Figure 2004189625
And the obtained dicarboxylic acid of the formula (3) is reacted with an acylating agent to give a 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride of the formula (1). A method for purifying an acid anhydride, characterized by obtaining a product.
請求項1に記載の方法で得られた式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を蒸留することを特徴とする精製方法。A purification method comprising distilling 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the formula (1) obtained by the method according to claim 1. 請求項1に記載の方法で得られた式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を再結晶することを特徴とする精製方法。A purification method comprising recrystallizing the 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the formula (1) obtained by the method according to claim 1. 請求項1に記載の方法で得られた式(1)で示される3,3−ジメチルシクロプロパン−1,2−ジカルボン酸無水物を蒸留し、ついで再結晶することを特徴とする精製方法。A purification method comprising distilling 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride represented by the formula (1) obtained by the method according to claim 1 and recrystallizing the resulting product.
JP2002356354A 2002-12-09 2002-12-09 Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride Expired - Fee Related JP4453247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356354A JP4453247B2 (en) 2002-12-09 2002-12-09 Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356354A JP4453247B2 (en) 2002-12-09 2002-12-09 Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride

Publications (2)

Publication Number Publication Date
JP2004189625A true JP2004189625A (en) 2004-07-08
JP4453247B2 JP4453247B2 (en) 2010-04-21

Family

ID=32756717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356354A Expired - Fee Related JP4453247B2 (en) 2002-12-09 2002-12-09 Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride

Country Status (1)

Country Link
JP (1) JP4453247B2 (en)

Also Published As

Publication number Publication date
JP4453247B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP2002509551A (en) Malonic acid and its esters
EP2462098B1 (en) Process for the preparation of derivatives of 1-(2-halobiphenyl-4-yl)-cyclopropanecarboxylic acid
DK1377544T4 (en) Purification of 2-Nitro-4-Methylsulfonylbenzoic acid
JPS6233223B2 (en)
JP4453247B2 (en) Method for purifying 3,3-dimethylcyclopropane-1,2-dicarboxylic anhydride
JP2001151724A (en) Method for producing optically active 2,2,4-trimethyl-3- cyclohexenecarboxylic acid
JP2000327603A (en) Production of propionic acid derivative
KR101341449B1 (en) Preparation of p-Chloromethylbenzoic acid and Benzoic acid from by-products in method for processing dimethyl terephthalate
JP3570760B2 (en) Method for producing 2-t-butylhydroquinone
JP3563424B2 (en) Method for producing 4H-pyran-4-one
JPS5819665B2 (en) Succinyl succinate diester
JP4853691B2 (en) α, ω-Dihydroxy-δ, (ω-3) -alkanedione, ω-hydroxy- (ω-3) -keto fatty acid and salt thereof, and dicarboxylic acid and salt recovery method
EP0970952B1 (en) Processes for preparing 2-omega-alkoxycarbonylalkanoyl)-4-butanolides, omega-hydroxy-omega-3)-keto fatty esters, and derivatives thereof
JP4085199B2 (en) Method for producing O, O-dimethyl-O- (p-cyanophenyl) phosphorothioate
JP4081619B2 (en) Method for producing optically active 5-hydroxy-2-decenoic acid and method for producing optically active soya lactone
JP4244304B2 (en) Method for producing bis-fluorinated phthalonitrile derivative
JP2756373B2 (en) Method for producing 1,1,1-trifluoro-3-nitro-2-propene
JP2000198779A (en) Purification of 3-alkylflavanol derivative
JP2002167381A (en) Optical resolution method of (±)-6-hydroxy-2,5,7,8- tetramethylchroman-2-carboxylic acid
JPH02306934A (en) Production of 4-(alkylphenoxy)butyric acid
JP2003064039A (en) METHOD FOR PRODUCING o-CYANOANILINE DERIVATIVE
JP2006199599A (en) Method for producing bis-fluorine-containing phthalonitrile compound
JP2001026590A (en) Production of tetrahydrothiopyran-4-one
EP0021644A1 (en) A salt of 3-thienylmalonic acid and a process for the preparation of 3-thienylmalonic acid
JPH08176042A (en) Method for simultaneously producing high-purity 2-t-butylhydroquinone and 2,5-di-t-butylhydroquinone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080129

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees