JP2004189524A - Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact - Google Patents

Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact Download PDF

Info

Publication number
JP2004189524A
JP2004189524A JP2002358139A JP2002358139A JP2004189524A JP 2004189524 A JP2004189524 A JP 2004189524A JP 2002358139 A JP2002358139 A JP 2002358139A JP 2002358139 A JP2002358139 A JP 2002358139A JP 2004189524 A JP2004189524 A JP 2004189524A
Authority
JP
Japan
Prior art keywords
silicon carbide
pot
ceramic
mixing
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002358139A
Other languages
Japanese (ja)
Inventor
Shigeharu Matsubayashi
重治 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002358139A priority Critical patent/JP2004189524A/en
Publication of JP2004189524A publication Critical patent/JP2004189524A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method of manufacturing a silicon carbide fine particle-dispersed ceramic sintered compact having a high density and a high strength. <P>SOLUTION: The method of manufacturing the silicon carbide fine particle-dispersed ceramic sintered compact is characterized by using a pot and /or balls for pulverization which is composed of a ceramic material containing 50% to 99% silicon carbide by volume ratio, charging ceramic powder except silicon carbide and the balls into the pot, wearing the balls themselves for pulverizing and/or the inside surface of the pot in a process for pulverizing and mixing the ceramic powder by rotating or vibrating to incorporate ≥0.5vol.% to ≤4vol.% silicon carbide having ≥0.02 μm to ≤0.2 μm average particle diameter in the ceramic powder, and firing after molding the resultant ceramic powder. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高密度でかつ高強度を有する炭化珪素質微粒子分散セラミックス焼結体の製造方法に関する。
【0002】
【従来の技術】
セラミックス焼結体は、硬質セラミックス粒子をその焼結体中に分散することにより、セラミックス母相の結晶粒の成長を抑制する、あるいは見かけの靭性が向上する、等により高強度化が図られることが知られている。母相結晶粒の粒成長抑制には分散する硬質粒子の粒子径が小さいほど、体積分率が大きいほど効果が大きいことが知られている。特に、炭化珪素質粒子を硬質分散粒子として用いる場合、炭化珪素の耐熱性、耐酸化性、化学的安定性、等から、焼結過程においても安定して焼結体中に残留させることが容易であり、母相結晶粒成長抑制への効果が得られ易いと考えられている。
【0003】
ところが、セラミックス中への炭化珪素質粒子の分散には、特許文献1に見られるように、炭化珪素粒子をセラミックス粉末の混合粉砕時に同時に外部添加し、混合する方法が一般的であり、用いる炭化珪素粒子もアチソン法、等により通常得られるものは0.3μm〜20μmと大きく、突起等を有する凹凸の顕著なものである。気相合成法等により0.2μm以下の微粒子を得ることも可能であるが、細かければ細かいほどハンドリングし難いこと、添加前に凝集または凝結しており分散性に著しく欠けること、さらには単価が極めて高いこと等から実用には不適である。一方、母相を形成するセラミックス粉末の混合時にSi、Cを含む前駆体ポリマー(有機金属高分子、または無機高分子)を用いて、焼結過程中に微細な炭化珪素粒を得る方法も知られているが、前駆体ポリマーが高価で、焼結過程中に体積量として大きな熱分解ガスを発生すること等から、緻密な焼結体を得ることが困難であった。
【0004】
また、特許文献2では、相対密度97%以上の実質的にSiC製ボール及び/又はポットを用い、24時間以上の粉砕混合を行う方法が開示されているが、相対密度97%以上の緻密質かつ95%以上の高純度SiCは高価であり、かつ長時間(24時間以上)の粉砕混合はコストが高くなってしまうため好適ではない。
【0005】
【特許文献1】
特開平3−205363号公報
【特許文献2】
特開平7−291742号公報
【0006】
【発明が解決しようとする課題】
このように、従来技術では母相結晶粒成長に顕著な抑制効果のある微細な炭化珪素質粒を、安価かつ短時間の方法にてセラミックス焼結体中に効率的に、かつ均一に分散させるには様々な問題点があった。
【0007】
本発明は、上述の如き課題を解決するために行われたものである。本発明の目的は、高密度でかつ高強度を有する炭化珪素質微粒子分散セラミックス焼結体の安価な製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者等は、上記問題点を解決するために、炭化珪素質ポット及び粉砕用ボールの材質と摩滅混入の形態・焼結体の物性、さらにはコストに関する検討を鋭意行った結果、所定の平均粒径及び配合割合の炭化珪素質粒子を短時間に混入させることにより、優れた特性を有する焼結体が得られることを見出し、本発明を完成させるに至った。
【0009】
即ち、本発明は、
(1) 炭化珪素を体積比で50%以上99%以下含むセラミックス材料からなるポット及び/又は粉砕用ボールを用い、該ポット内に炭化珪素以外のセラミックス粉末と該粉砕用ボールを装入後、回転又は振動させ、該セラミックス粉末を粉砕混合させる工程で、該粉砕用ボール自身及び/又は該ポット内壁を摩滅させて該セラミックス粉末中に平均粒径0.02μm以上0.2μm以下の炭化珪素質微粒子を0.5体積%以上4体積%以下混入させ、得られたセラミックス粉末を成形し、焼成することを特徴とする炭化珪素質微粒子分散セラミックス焼結体の製造方法、
(2) 前記ポット及び/又は粉砕用ボールの相対密度が90〜96%の範囲である(1)記載の炭化珪素質微粒子分散セラミックス焼結体の製造方法、
(3) 前記粉砕混合させる工程を、2時間以上24時間未満の時間で行う(1)記載の炭化珪素質微粒子分散セラミックス焼結体の製造方法、
である。
【0010】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
【0011】
本発明者等は、母相結晶粒成長に顕著な抑制効果のある微細な炭化珪素質粒を、安価かつ短時間の方法にてセラミックス焼結体中に効率的に、かつ均一に分散させる方法に関する検討を鋭意行った。
【0012】
本発明の平均粒径0.02μm以上0.2μm以下の炭化珪素質微粒子の生成・分散方法としては、回転式ポットミル(=トロンメル)、遊星型ボールミル、アトライター、振動ボールミル、アトリッションミル、自転・公転混在型ポットミル、等の方法を用いることができる。0.02μm未満の炭化珪素質微粒子だけでは強度特性に顕著な効果が得難く、0.2μm超の炭化珪素質粒子が支配的ではセラミックス母相中で比較的大きな欠陥を形成し易く逆効果に繋がることがある。用いるポットとしては、炭化珪素を体積比で50%以上99%以下含むセラミックス焼結体の本体及び蓋からなるものが好ましく、大量製造用のポットミルではライナーとして炭化珪素質タイルを内壁に貼り付けたものを用いても構わない。ボールは、炭化珪素を体積比50%以上含むセラミックス焼結体の中実体、表面と中心部で材質が異なる構造、もしくは中空体のいずれでも構わない。炭化珪素の体積割合を50%未満にした場合、短時間に効率的に摩耗混入させることが難しくなり好適ではない。99%を超える高純度炭化珪素は、非焼結性の炭化珪素粉末を微量の焼結助剤で焼結するため、非常に高価なものとなり、また、このような高純度炭化珪素焼結体は硬いため、磨耗混入させるには長時間を要し、非効率である。
【0013】
また、ポットやボールを構成する炭化珪素を含有する他の材種に関しては、粉砕混合するセラミックスに比べ高硬度、高ヤング率、低熱膨張性を有するセラミックスが好適である。混入する炭化珪素質の結晶相は、α−SiC型(3C)、β−SiC型(2H、4H、6H等)のいずれでも構わない。摩耗混入質量について、混合方法、回転数、他の原料粉末の粒径等によって若干の違いは認められるが、おおよそポット内壁摩耗:ボール摩滅=1:10〜20(質量比)でボール摩滅が圧倒的に多い。したがって、混入量を変化させたい場合は、ボール添加量の増減に加え、ボール径を変化させる等のボール表面積の増減、即ち、ボール径の大小を概ねφ0.5mm〜φ20mmの範囲で制御することが効果的である。混入量としては、0.5体積%未満では母相結晶粒の成長抑制効果が乏しく、4体積%を超すと、母相の結晶成長並びに結晶相の絡みによる高靭化を阻害するため好ましくない。ポット、粉砕用ボールを構成する炭化珪素を体積比で50%以上99%以下を含むセラミックス焼結体の相対密度は90〜96%であることが好ましい。これは、相対密度90%未満のセラミックス焼結体を用いた場合、平均粒径10μm以上の大きな破砕粒が粉砕混合中のセラミックス粉に混合する場合があり、本願発明の高強度焼結体が得られ難くなることがあり、また、相対密度が96%を超えるとポットやボールの摩滅が少なくなり、炭化珪素の磨耗混合量を確保するのに長時間を要し、非効率となるばかりか、相対密度の高いセラミックスは高価であり、セラミック焼結体への添加原料として使用するには経済的に不利となるからである。
【0014】
混合時間は、炭化珪素を体積比で50%以上99%以下を含み、相対密度が90〜96%としたセラミックス焼結体から構成した、安価で混合法に応じた必要強度を有する、ポット、粉砕用ボールを使用することによって、できるだけ短時間、例えば2時間以上24時間未満で、0.5体積%以上の炭化珪素の磨耗混入を行なうことが好ましい。
【0015】
なお、粉砕するセラミックス粉は、炭化珪素を除く他のセラミックスを焼結体の所要組成に応じて、例えば、アルミナ、窒化珪素、ジルコニアなど、適宜選択できる。
【0016】
このようにして得られた混合粉末を、所望の形状に成形し、混合粉末を構成するセラミックス粉末の性状、成形体の形状などを考慮して、適切な加熱パターンにより焼成し、炭化珪素質微粒子が分散したセラミックス焼結体を得る。
【0017】
焼結方法としては、不活性ガス中、大気、有酸素中等、セラミックス毎に適した雰囲気にて、例えば、無加圧焼結法、ガス圧焼結法、熱間静水圧プレス焼結法、ホットプレス焼結法、等の各種焼結法を用いることができ、さらにこれらの焼結法を複数組合せても良い。
【0018】
例えば、窒化珪素質セラミックスの場合、窒素ガスを含む雰囲気で焼結する理由は、焼結中でのSiの分解を抑制するためである。Siは窒素ガス1気圧下では約1800℃以上で分解が生じるため、1800℃以上にて焼結を行う場合は、窒素ガス圧を焼結温度におけるSiの臨界分解圧力以上に設定するようにする。また、大型厚肉形状の成形体を製造する場合には、十分な緻密化を図るために、無加圧焼結後に、さらに窒素ガス雰囲気中での熱間静水圧プレス焼結を行うことがより好ましい。
【0019】
【実施例】
次に、本発明の実施例を比較例と共に説明する。
【0020】
(実施例1〜5)
アルミナを焼結助剤として5体積%添加し、相対密度96%まで緻密化させた炭化珪素質セラミックスからなるポット(内容積0.6L)とφ5mmの同材種ボールを用い、前記ポット中にアルミナ粉末(平均粒径0.5μm)200gと前記ボールを前記アルミナ粉末200gに対し2倍の400gの割合で充填し、遊星型ボールミルでそれぞれ2時間、4時間、8時間、12時間、23.5時間の粉砕混合を行った。混合時間毎に、実施例1〜5とした。精製水の添加量は、アルミナ粉末200gに対し300gとした。次いで、得られた粉砕粉末を乾燥後、40mm×80mm×厚さ25mmに1.2トン/cmで静水圧加圧成形後、大気中の1550℃×8h保持にて焼結した。得られた焼結体の密度を測定した後、JIS規格の曲げ試験片を切り出し、機械的特性を評価した。抗折強さは、JIS R 1601により、大気中室温及び1000℃にて測定した。硬さは、押込荷重98Nにてビッカース硬さとして測定した。靭性については、JIS R 1607のSEPB法により室温にて破壊靭性値KICを測定した。
【0021】
(比較例6〜9)
比較例6〜9においては、実施例と同じように、ポットにアルミナ粉末(平均粒径0.5μm)200gとボールをアルミナ粉末200gに対し2倍の400gを充填し、遊星型ボールミルで粉砕混合を行なったが、ポットや粉砕用ボールの材質や粉砕混合処理時間などの条件を変えた。
【0022】
炭化珪素質セラミックスを用いずにアルミナのみからなるボールやポットを用い12時間粉砕混合した比較例6、実施例と同サイズ・同材質の炭化珪素質のポットやボールを用いたが混合時間を1時間しか行っていない比較例7、実施例と同ポットを用いたが粉砕混合の時間を30時間まで延長した比較例8、純度99.5体積%の炭化珪素で相対密度98.5%の高価なポットやボールを用い4時間粉砕混合した比較例9とした。得られた粉砕粉末を乾燥後、40mm×80mm×厚さ25mmに1.2トン/cmで静水圧加圧成形後、大気中の1550℃×8h保持にて焼結した。これら比較例の材料も実施例1〜5と同様の条件で特性を評価し、その結果を第1表に示した。
【0023】
【表1】

Figure 2004189524
【0024】
(実施例10〜12)
炭化珪素に48体積%の炭化チタンを分散させ、相対密度90%まで緻密化させた炭化珪素質セラミックスからなるポット(0.6L)に、窒化珪素粉末(平均粒径0.3μm)と酸化イットリウム(平均粒径2.0μm)と酸化マグネシウム(平均粒径0.2μm)を90:5:5の質量比で合計150g加えた。これに、炭化珪素と炭化チタンをポットと同じ分散比で相対密度92%まで緻密化させたφ10mmのボールを前記原料粉末150gに対し2倍の300gの割合で充填した後、遊星型ボールミルでそれぞれ2時間、8時間、23.5時間の粉砕混合を行った。混合時間毎に、実施例10〜12とした。混合媒体として用いたアセトンの添加量は、前記原料粉末100gに対し150gとした。次いで、得られた粉砕粉末を乾燥後、60mm×60mm×厚さ15mmに1.3トン/cmで静水圧加圧成形後、大気圧窒素中の1750℃×8h保持にて焼結した。得られた焼結体の密度を測定した後、JIS規格の曲げ試験片を切り出し、機械的特性を評価した。抗折強さは、JIS R 1601により、大気中室温及び1200℃にて測定した。硬さは、押込荷重98Nにてビッカース硬さとして測定した。靭性についてはJIS R 1607のSEPB法により室温にて破壊靭性値KICを測定した。
【0025】
(比較例13〜15)
比較例13〜15においては、実施例と同じように、ポットに窒化珪素粉末(平均粒径0.3μm)と酸化イットリウム(平均粒径2.0μm)と酸化マグネシウム(平均粒径0.2μm)の粉末150gとボールをこの原料粉末150gに対し2倍の300gを充填し、遊星型ボールミルで粉砕混合を行なったが、ポットや粉砕用ボールの材質や粉砕混合処理時間などの条件を変えた。
【0026】
炭化珪素質セラミックスを用いずにジルコニアからなるボールやポットを用い8時間粉砕混合した比較例13、実施例と同サイズ・同材質の炭化珪素質のポットやボールを用いたが粉砕混合の時間を30時間まで延長した比較例14、純度99.5体積%の相対密度97%の炭化珪素製の高価なポットやボールを用い12時間粉砕混合した比較例15とした。得られた粉砕粉末を乾燥後、60mm×60mm×厚さ15mmに1.3トン/cmで静水圧加圧成形後、大気圧の窒素ガス中の1750℃×8h保持にて焼結した。これら比較例の材料も実施例10〜12と同様の条件で特性を評価し、その結果を第2表に示した。
【0027】
【表2】
Figure 2004189524
【0028】
第1表及び第2表に示すように、本発明の実施例によるものは、室温及び高温の強度や破壊靭性値が1.5倍程度優れることが確認された。
【0029】
【発明の効果】
以上述べたように、本発明の製造方法は生産効率を高められるとともに安価であり、この方法で得られた炭化珪素質微粒子分散セラミックス焼結体は、機械的特性に優れる特徴を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a silicon carbide-based fine particle-dispersed ceramic sintered body having high density and high strength.
[0002]
[Prior art]
The ceramic sintered body has high strength by dispersing the hard ceramic particles in the sintered body, thereby suppressing the growth of the crystal grains of the ceramic matrix or improving the apparent toughness. It has been known. It is known that the effect of suppressing the growth of the mother phase crystal grains is greater as the particle size of the dispersed hard particles is smaller and as the volume fraction is larger. In particular, when silicon carbide particles are used as hard dispersed particles, it is easy to stably remain in the sintered body even during the sintering process due to the heat resistance, oxidation resistance, chemical stability, etc. of silicon carbide. It is considered that the effect of suppressing the growth of the crystal grains of the parent phase is easily obtained.
[0003]
However, for dispersing silicon carbide-based particles in ceramics, as disclosed in Patent Document 1, a method of externally adding and mixing silicon carbide particles simultaneously with mixing and pulverization of ceramic powder is generally used. Silicon particles which are usually obtained by the Acheson method or the like are as large as 0.3 μm to 20 μm, and have remarkable irregularities having projections and the like. Although it is possible to obtain fine particles of 0.2 μm or less by a gas phase synthesis method or the like, the finer the finer, the more difficult it is to handle, the more the particles are agglomerated or coagulated before addition, and the dispersibility is extremely poor. Is extremely unsuitable for practical use. On the other hand, there is also known a method of obtaining fine silicon carbide particles during a sintering process by using a precursor polymer (organic metal polymer or inorganic polymer) containing Si and C at the time of mixing a ceramic powder forming a mother phase. However, it is difficult to obtain a dense sintered body because the precursor polymer is expensive and generates a large amount of pyrolysis gas in volume during the sintering process.
[0004]
Patent Document 2 discloses a method of performing pulverization and mixing for 24 hours or more using a substantially SiC ball and / or pot having a relative density of 97% or more. In addition, 95% or more high-purity SiC is expensive, and pulverization and mixing for a long time (24 hours or more) increases the cost, which is not preferable.
[0005]
[Patent Document 1]
JP-A-3-205363 [Patent document 2]
JP-A-7-291742
[Problems to be solved by the invention]
As described above, in the prior art, fine silicon carbide particles having a remarkable effect of suppressing the growth of matrix crystal grains can be efficiently and uniformly dispersed in a ceramic sintered body by an inexpensive and short-time method. Had various problems.
[0007]
The present invention has been made to solve the above-mentioned problems. An object of the present invention is to provide an inexpensive method for producing a silicon carbide-based fine particle dispersed ceramic sintered body having high density and high strength.
[0008]
[Means for Solving the Problems]
The present inventors, in order to solve the above problems, the material of the silicon carbide pot and pulverizing ball and the form of abrasion and mixing, the physical properties of the sintered body, furthermore, as a result of a study on the cost, the specified It has been found that a sintered body having excellent characteristics can be obtained by mixing silicon carbide particles having an average particle diameter and a compounding ratio in a short time, and the present invention has been completed.
[0009]
That is, the present invention
(1) Using a pot and / or a crushing ball made of a ceramic material containing silicon carbide in a volume ratio of 50% or more and 99% or less, charging the ceramic powder other than silicon carbide and the crushing ball into the pot, A step of rotating or vibrating to pulverize and mix the ceramic powder, thereby abrading the pulverizing ball itself and / or the inner wall of the pot to form a silicon carbide material having an average particle size of 0.02 μm or more and 0.2 μm or less in the ceramic powder. A method for producing a ceramic sintered body in which fine particles of silicon carbide are dispersed, wherein fine particles are mixed in an amount of 0.5% by volume or more and 4% by volume or less, and the obtained ceramic powder is molded and fired;
(2) The method for producing a silicon carbide-based fine particle-dispersed ceramic sintered body according to (1), wherein the relative density of the pot and / or the ball for grinding is in the range of 90 to 96%.
(3) The method for producing a sintered silicon carbide fine particle-dispersed ceramic sintered body according to (1), wherein the step of pulverizing and mixing is performed for a time of 2 hours or more and less than 24 hours.
It is.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0011]
The present inventors relate to a method of efficiently and uniformly dispersing fine silicon carbide particles having a remarkable effect of suppressing the growth of mother phase crystal grains in a ceramic sintered body in a low-cost and short-time method. The study was conducted eagerly.
[0012]
Examples of the method for producing and dispersing silicon carbide-based fine particles having an average particle diameter of 0.02 μm or more and 0.2 μm or less according to the present invention include a rotary pot mill (= trommel), a planetary ball mill, an attritor, a vibration ball mill, an attrition mill, and the like. A method such as a mixed rotation / revolution type pot mill can be used. It is difficult to obtain a remarkable effect on the strength characteristics by using only silicon carbide-based particles having a particle size of less than 0.02 μm. May be connected. The pot to be used is preferably composed of a body and a lid of a ceramic sintered body containing silicon carbide in a volume ratio of 50% or more and 99% or less. In a pot mill for mass production, a silicon carbide tile was adhered to the inner wall as a liner. A thing may be used. The ball may be a solid body of a ceramic sintered body containing silicon carbide at a volume ratio of 50% or more, a structure in which the material is different between the surface and the central portion, or a hollow body. If the volume ratio of silicon carbide is less than 50%, it is difficult to efficiently mix in the wear in a short time, which is not preferable. High-purity silicon carbide exceeding 99% is very expensive because non-sinterable silicon carbide powder is sintered with a small amount of a sintering aid. Because of its hardness, it takes a long time to mix in abrasion, which is inefficient.
[0013]
As for other materials containing silicon carbide constituting pots and balls, ceramics having higher hardness, higher Young's modulus, and lower thermal expansion than ceramics to be pulverized and mixed are preferable. The silicon carbide-based crystal phase to be mixed may be any of α-SiC type (3C) and β-SiC type (2H, 4H, 6H, etc.). Although a slight difference is observed in the amount of abrasion mixture depending on the mixing method, the number of rotations, the particle size of other raw material powders, etc., the abrasion of the ball is overwhelmed when the inner wall of the pot: abrasion of the ball = 1: 10 to 20 (mass ratio). Often. Therefore, when it is desired to change the mixing amount, in addition to the increase / decrease of the ball addition amount, the ball surface area is changed by changing the ball diameter or the like. Is effective. When the content is less than 0.5% by volume, the effect of suppressing the growth of the crystal grains of the parent phase is poor, and when the content exceeds 4% by volume, the crystal growth of the parent phase and the toughening due to the entanglement of the crystal phase are not preferred. . The relative density of the ceramic sintered body containing 50% or more and 99% or less by volume of silicon carbide constituting the pot and the crushing ball is preferably 90 to 96%. This is because when a ceramic sintered body having a relative density of less than 90% is used, large crushed particles having an average particle size of 10 μm or more may be mixed with the ceramic powder being pulverized and mixed. When the relative density exceeds 96%, the wear of the pot and the ball is reduced, and it takes a long time to secure the wear and mixing amount of silicon carbide, which is not only inefficient. This is because ceramics having a high relative density are expensive and are economically disadvantageous when used as a raw material to be added to a ceramic sintered body.
[0014]
The mixing time is a pot formed of a ceramic sintered body containing silicon carbide in a volume ratio of 50% or more and 99% or less and having a relative density of 90% to 96%. It is preferable to use a grinding ball to wear and mix 0.5% by volume or more of silicon carbide in as short a time as possible, for example, 2 hours or more and less than 24 hours.
[0015]
The ceramic powder to be pulverized can be appropriately selected from ceramics other than silicon carbide, for example, alumina, silicon nitride, zirconia, etc., according to the required composition of the sintered body.
[0016]
The mixed powder thus obtained is formed into a desired shape, and fired in an appropriate heating pattern in consideration of the properties of the ceramic powder constituting the mixed powder, the shape of the molded body, and the like, and silicon carbide-based fine particles. To obtain a ceramic sintered body in which is dispersed.
[0017]
As a sintering method, in an atmosphere suitable for each ceramic, such as in an inert gas, air, or aerobic, for example, pressureless sintering, gas pressure sintering, hot isostatic press sintering, Various sintering methods such as a hot press sintering method can be used, and a plurality of these sintering methods may be combined.
[0018]
For example, in the case of silicon nitride ceramics, the reason for sintering in an atmosphere containing nitrogen gas is to suppress the decomposition of Si 3 N 4 during sintering. Since Si 3 N 4 is decomposed at about 1800 ° C. or more under 1 atm of nitrogen gas, when sintering at 1800 ° C. or more, the nitrogen gas pressure should be higher than the critical decomposition pressure of Si 3 N 4 at the sintering temperature. Set to. Also, when manufacturing a large-sized thick-walled compact, it is necessary to further perform hot isostatic press sintering in a nitrogen gas atmosphere after pressureless sintering in order to achieve sufficient densification. More preferred.
[0019]
【Example】
Next, examples of the present invention will be described together with comparative examples.
[0020]
(Examples 1 to 5)
5% by volume of alumina was added as a sintering aid, and a pot (internal volume: 0.6 L) made of silicon carbide ceramics densified to a relative density of 96% and a ball of the same kind having a diameter of 5 mm were used. 200 g of alumina powder (average particle size: 0.5 μm) and the balls were filled at a ratio of 400 g, which was twice as large as 200 g of the alumina powder, and each was subjected to a planetary ball mill for 2 hours, 4 hours, 8 hours, 12 hours, and 23 hours. Grinding and mixing were performed for 5 hours. Examples 1 to 5 were made for each mixing time. The amount of purified water added was 300 g per 200 g of alumina powder. Next, the obtained pulverized powder was dried, then subjected to isostatic pressing under a pressure of 1.2 ton / cm 2 to 40 mm × 80 mm × 25 mm in thickness, and then sintered at 1550 ° C. for 8 hours in the atmosphere. After measuring the density of the obtained sintered body, a bending test piece of JIS standard was cut out and the mechanical properties were evaluated. The flexural strength was measured at room temperature and 1000 ° C. in the air according to JIS R 1601. Hardness was measured as Vickers hardness at a pushing load of 98N. Regarding toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JIS R1607.
[0021]
(Comparative Examples 6 to 9)
In Comparative Examples 6 to 9, the pot was filled with 200 g of alumina powder (average particle size of 0.5 μm) and 400 g of the ball twice as much as 200 g of alumina powder, and ground and mixed with a planetary ball mill in the same manner as in the examples. However, conditions such as the material of the pot and the crushing ball and the crushing and mixing processing time were changed.
[0022]
Comparative Example 6 in which balls and pots made of only alumina were used without using silicon carbide ceramics and pulverized and mixed for 12 hours. Silicon carbide pots and balls of the same size and the same material as in the example were used, but the mixing time was 1 Comparative Example 7 in which the pot was used only for the time, Comparative Example 8 in which the same pot was used as in the example, but the time of pulverization and mixing was extended to 30 hours, and expensive silicon carbide having a purity of 99.5% by volume and a relative density of 98.5%. Comparative Example 9 was obtained by pulverizing and mixing for 4 hours using a suitable pot or ball. After the obtained crushed powder was dried, it was subjected to isostatic pressing under a pressure of 1.2 ton / cm 2 to 40 mm × 80 mm × 25 mm in thickness, and then sintered at 1550 ° C. × 8 h in the atmosphere. The properties of the materials of these comparative examples were evaluated under the same conditions as in Examples 1 to 5, and the results are shown in Table 1.
[0023]
[Table 1]
Figure 2004189524
[0024]
(Examples 10 to 12)
In a pot (0.6 L) made of silicon carbide-based ceramics in which 48% by volume of titanium carbide is dispersed in silicon carbide and densified to a relative density of 90%, silicon nitride powder (average particle size: 0.3 μm) and yttrium oxide (Average particle size: 2.0 μm) and magnesium oxide (average particle size: 0.2 μm) were added in a mass ratio of 90: 5: 5 to a total of 150 g. This was filled with balls of φ10 mm in which silicon carbide and titanium carbide were densified at the same dispersion ratio as the pot to a relative density of 92% at a rate of 300 g, which was twice as large as 150 g of the raw material powder, and then each was mixed with a planetary ball mill. Grinding and mixing were performed for 2 hours, 8 hours, and 23.5 hours. Examples 10 to 12 were made for each mixing time. The amount of acetone used as the mixing medium was 150 g per 100 g of the raw material powder. Next, the obtained pulverized powder was dried, and then subjected to isostatic pressing under a pressure of 1.3 ton / cm 2 to 60 mm × 60 mm × 15 mm in thickness, and then sintered at 1750 ° C. × 8 h in nitrogen under atmospheric pressure. After measuring the density of the obtained sintered body, a bending test piece of JIS standard was cut out and the mechanical properties were evaluated. The flexural strength was measured at room temperature and 1200 ° C. in the air according to JIS R 1601. Hardness was measured as Vickers hardness at a pushing load of 98N. Regarding toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JIS R 1607.
[0025]
(Comparative Examples 13 to 15)
In Comparative Examples 13 to 15, similarly to the examples, the pot was filled with silicon nitride powder (average particle diameter 0.3 μm), yttrium oxide (average particle diameter 2.0 μm), and magnesium oxide (average particle diameter 0.2 μm). Of 150 g of this powder and 150 g of the raw material powder were filled with 300 g, which was twice as much as the raw material powder, and pulverized and mixed by a planetary ball mill.
[0026]
Comparative Example 13 in which balls and pots made of zirconia were crushed and mixed for 8 hours without using silicon carbide ceramics. Silicon carbide pots and balls of the same size and the same material as in the example were used, but the time of crushing and mixing was increased. Comparative Example 14 was extended to 30 hours, and Comparative Example 15 was obtained by pulverizing and mixing for 12 hours using an expensive pot or ball made of silicon carbide having a purity of 99.5% by volume and a relative density of 97%. After the obtained crushed powder was dried, it was subjected to isostatic pressing under a pressure of 1.3 ton / cm 2 to 60 mm × 60 mm × 15 mm in thickness, and then sintered at 1750 ° C. × 8 h in nitrogen gas at atmospheric pressure. The properties of the materials of these comparative examples were evaluated under the same conditions as in Examples 10 to 12, and the results are shown in Table 2.
[0027]
[Table 2]
Figure 2004189524
[0028]
As shown in Tables 1 and 2, it was confirmed that the steels according to the examples of the present invention were excellent in strength and fracture toughness at room temperature and high temperature by about 1.5 times.
[0029]
【The invention's effect】
As described above, the production method of the present invention can increase production efficiency and is inexpensive, and the silicon carbide-based fine particle-dispersed ceramic sintered body obtained by this method has characteristics of excellent mechanical properties.

Claims (3)

炭化珪素を体積比で50%以上99%以下含むセラミックス材料からなるポット及び/又は粉砕用ボールを用い、該ポット内に炭化珪素以外のセラミックス粉末と該粉砕用ボールを装入後、回転又は振動させ、該セラミックス粉末を粉砕混合させる工程で、該粉砕用ボール自身及び/又はポット内壁を摩滅させて、該セラミックス粉末中に平均粒径0.02μm以上0.2μm以下の炭化珪素質微粒子を0.5体積%以上4体積%以下混入させ、得られたセラミックス粉末を成形し、焼成することを特徴とする炭化珪素質微粒子分散セラミックス焼結体の製造方法。Using a pot and / or a crushing ball made of a ceramic material containing silicon carbide in a volume ratio of 50% or more and 99% or less, and charging the ceramic powder other than silicon carbide and the crushing ball into the pot, rotating or vibrating. In the step of pulverizing and mixing the ceramic powder, the grinding ball itself and / or the inner wall of the pot are abraded to remove silicon carbide fine particles having an average particle diameter of 0.02 μm or more and 0.2 μm or less in the ceramic powder. A method for producing a sintered body of silicon carbide-based fine particle-dispersed ceramics, comprising mixing ceramic powder obtained by mixing at least 5% by volume and not more than 4% by volume, molding and firing the obtained ceramic powder. 前記ポット及び/又は粉砕用ボールの相対密度が90〜96%の範囲である請求項1記載の炭化珪素質微粒子分散セラミックス焼結体の製造方法。The method for producing a silicon carbide-based fine particle-dispersed ceramic sintered body according to claim 1, wherein the relative density of the pot and / or the ball for grinding is in the range of 90 to 96%. 前記粉砕混合させる工程を、2時間以上24時間未満の時間で行う請求項1記載の炭化珪素質微粒子分散セラミックス焼結体の製造方法。The method for producing a silicon carbide-based fine particle-dispersed ceramic sintered body according to claim 1, wherein the step of pulverizing and mixing is performed for a time of 2 hours or more and less than 24 hours.
JP2002358139A 2002-12-10 2002-12-10 Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact Withdrawn JP2004189524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002358139A JP2004189524A (en) 2002-12-10 2002-12-10 Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358139A JP2004189524A (en) 2002-12-10 2002-12-10 Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2004189524A true JP2004189524A (en) 2004-07-08

Family

ID=32757945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358139A Withdrawn JP2004189524A (en) 2002-12-10 2002-12-10 Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2004189524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015258A2 (en) * 2010-07-30 2012-02-02 Lg Innotek Co., Ltd. Method for manufacturing silicon carbide sintered material using ball
JP2014129185A (en) * 2012-12-27 2014-07-10 Kyushu Univ Ceramic slurry and method for producing the same, and solid oxide fuel cell
CN109369189A (en) * 2018-11-14 2019-02-22 江苏高越高新科技有限公司 A kind of moulding process of silicon carbide ceramics ball

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015258A2 (en) * 2010-07-30 2012-02-02 Lg Innotek Co., Ltd. Method for manufacturing silicon carbide sintered material using ball
WO2012015258A3 (en) * 2010-07-30 2012-05-31 Lg Innotek Co., Ltd. Method for manufacturing silicon carbide sintered material using ball
JP2013535398A (en) * 2010-07-30 2013-09-12 エルジー イノテック カンパニー リミテッド Method for producing sintered silicon carbide using balls
JP2014129185A (en) * 2012-12-27 2014-07-10 Kyushu Univ Ceramic slurry and method for producing the same, and solid oxide fuel cell
CN109369189A (en) * 2018-11-14 2019-02-22 江苏高越高新科技有限公司 A kind of moulding process of silicon carbide ceramics ball

Similar Documents

Publication Publication Date Title
US5543370A (en) Composite materials based on boron carbide, titanium diboride and elemental carbon and processes for the preparation of same
CN111410536A (en) Method for preparing compact (HfZrTaNbTi) C high-entropy ceramic sintered body by normal-pressure sintering
EP1892227B1 (en) Process for producing a boron carbide based sintered body
WO2009020635A2 (en) Method of preparing pressureless sintered, highly dense boron carbide materials
WO2011011606A2 (en) Methods of forming sintered boron carbide
KR102094198B1 (en) Silicon carbide high carbon composite material and manufacturing method thereof
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JP6354621B2 (en) Silicon nitride ceramic sintered body and method for producing the same
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JP2004189524A (en) Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact
JPS632913B2 (en)
JP3413278B2 (en) Method for producing ceramic sintered body with SiC fine particles dispersed therein
JPH05178657A (en) Alumina group composite sintered body and its production
JP3694583B2 (en) Crusher parts
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
JPH03261611A (en) Production of silicon nitride composite powder
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPH04305064A (en) Ceramic composition
JPH0753256A (en) Aluminous composite sintered compact and its production
JPH08225311A (en) Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
JPH01246178A (en) Production of refractory for molten steel
JPH01131062A (en) Complex compact calcined under ordinary pressure
JP4126447B2 (en) Crusher parts
JP3580660B2 (en) Crusher components
JP2944271B2 (en) Method for producing alumina-based composite sintered body and alumina-based composite sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307