JP2004186627A - Resistor - Google Patents

Resistor Download PDF

Info

Publication number
JP2004186627A
JP2004186627A JP2002354891A JP2002354891A JP2004186627A JP 2004186627 A JP2004186627 A JP 2004186627A JP 2002354891 A JP2002354891 A JP 2002354891A JP 2002354891 A JP2002354891 A JP 2002354891A JP 2004186627 A JP2004186627 A JP 2004186627A
Authority
JP
Japan
Prior art keywords
resistor
electrode
insulator
plating
primary electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002354891A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yaginuma
希世史 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002354891A priority Critical patent/JP2004186627A/en
Publication of JP2004186627A publication Critical patent/JP2004186627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistor of a new structure in which prevention of sulphidizing is sharply improved. <P>SOLUTION: In a resistor having a structure in which an electrode part is plated, a primary electrode is not in contact directly with the plating, and only a secondary electrode is plated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、チップ抵抗器、多連ネットワークなどのように電極部分にメッキを施すタイプの抵抗器の構造に関するものであり、特に硫化雰囲気に強い抵抗器に関する。
【0002】
【従来の技術】
従来使用されている抵抗器の断面を図3に示す。抵抗器は、一般に、1次電極と2次電極には通常銀もしくはパラジウムを5%以下含む銀パラジウムを、絶縁体にはガラスまたは樹脂を、抵抗体にはRu酸化物とガラスを主成分とした厚膜組成物を印刷・焼成または硬化して製造される。Niメッキ層は1次電極と2次電極が銀など半田に溶け込み易い金属で形成されており抵抗器を実装するときに使われる半田付け工程において断線することを防ぐ目的で行われる。Niは半田に溶けずらい金属であるためこのNi層でその下部にある半田に溶け易い電極層を半田から守っている。しかしNiは逆に半田に濡れずらくそのままでは半田工程で半田が付きずらい不具合が発生する。そのためNiメッキ層の上にさらに半田(および錫)メッキが施される。
【0003】
【発明が解決しようとする課題】
この構造の抵抗器は一般的には信頼性に優れると評価されているが、硫化雰囲気に曝されると数ヶ月から数年で断線するという致命的な欠点が発生する。硫化物は我々が生活する環境においても大気中に存在する。特に火山地帯ではその濃度は高い。
【0004】
そのため従来から電子部品に対し硫化試験が実施され耐硫化に対しての良し悪しを評価してきた。JEIDA−25−1974(日本電子工業振興協会発行「印刷配線板用コネクタ 硫化試験方法」)はその試験の1つである。抵抗器に対しても過去試験されてきているが硫化に対しては弱い部品という認識がされている。
【0005】
このため、抵抗器における硫化による腐食を防止する目的で、下記文献に記載の発明が提案されている。
【特許文献1】特開2002−184602号公報
【特許文献2】特開2002−64003号公報
特許文献1に記載の発明では、本発明における1次電極の上にニッケル系樹脂層を設け、雰囲気と1次電極を隔離しようとするものであるが、ニッケル系樹脂層を設ける工程が増え,従来の工程をそのまま使用できない欠点がある。
また、特許文献2に記載の発明では、本発明における1次電極の上にPd5%以上を含む銀系層を設けるものであるが、やはりPd5%以上を含む銀系層を設ける工程が増え,従来の工程をそのまま使用できない欠点がある。
【0006】
したがって、本発明の目的は、硫化の防止を著しく向上させることができる新規な構造の抵抗器を提供することにある。
【0007】
【課題を解決するための手段】
前述の目的を達成するために、本発明は、電極部分にメッキを施す構造の抵抗器において、1次電極とメッキが直接接触せず、2次電極にのみメッキが施されてなることを特徴とする構造の抵抗器を採用するものである。
【0008】
【発明の実施の形態】
従来の抵抗器が実装された後の表面はガラス、半田もしくはNiで覆われている。これらの材料は硫化に対し本来強い材料であり硫黄成分によりアタックされることは無い。そこで実際に硫化試験を繰り返し、発生する硫化物の調査などを実施し断線に導かれるプロセスを詳細に調査した。
【0009】
その結果、抵抗器をプリント基板に半田で実装した後に、図3中絶縁体▲2▼の両端部分からNiメッキ膜がめくれ上がり、その下層である硫化に対し著しく弱い銀膜(1次電極)の極一部が図3の奥行き方向にライン状に露出し、そこから銀の硫化が始まる。このめくれ上がりは、1次電極とNiメッキ膜とはアンカーボンドで結合しているだけであり、半田付けの半田溶融・凝固の際の収縮によりメッキ膜の先端に発生すると考えられる。
【0010】
銀の硫化物に導電性はなく、この部分は導電の主要経路であり、銀膜は5−10μmと非常に薄いためやがて断線にまで至ってしまうことが判明した。銀の硫化は銀の外方拡散によって進行するため一部から硫化が始まると進行は止まらず断線にまで至ってしまう。
【0011】
この問題を解決するために下層の銀膜(1次電極)の耐硫化性を向上させる手段がある。接点材料などでは周知の事実であるが、銀の換わりに金を使う、銀に多量のパラジウムを添加する方法がある。銀の含有量に対し10WT%以上添加すれば大きな効果が得られる。しかしこれらの技術では大幅な価格上昇を伴い実用的ではない。上記課題を安価に解決するために、下記のような新しい構造の抵抗器を発明したものである。
【0012】
図1にその抵抗器の断面を示す。1次電極のほとんどを絶縁体▲2▼で覆い、その絶縁体▲2▼の両端上を2次電極で覆う構造である。これにより1次電極とメッキが直接接触せず、2次電極にのみメッキが施される構造の抵抗器を形成できる。この構造だと実装後にNiメッキ膜がめくれ上がったとしてもその下層は電極▲2▼の先端部分でありそこから硫化が進行しても導電の主要なルートからはるかに遠いため断線に及ぶまでには従来構造とは比較にならない程に長い時間を要するようになり、著しく硫化に強い抵抗器となる。
【0013】
したがって、1次電極は高価なパラジウムを多く添加せずに安価に形成することが可能になる。しかも印刷形状だけの変更であるため従来と全く同じ工法が使用できるメリットもある。図1に示す構造において絶縁体▲2▼を2層(絶縁体▲2▼+絶縁体▲3▼)に分けることによっても全く同じ効果は得られる。その断面を図2に示す。新たに絶縁体▲3▼が形成されている。また、工程において絶縁体と2次電極を同時に焼成することも本発明の効果を無くすことにはならない。
【0014】
次に、本発明の抵抗体の製造工程を説明する。ここで、本発明の抵抗体の製造工程は従来例の製造工程を流用できるものである。ちなみに、図4に従来の抵抗器の製造工程を示す。基板となるのはアルミナ基板である。フォルステライトなど耐火性であれば使用可能だが絶縁性など信頼性に優れるアルミナが一般的である。抵抗器のサイズはJISなどで規格化されているが、一度に多量の生産を可能にするため各サイズに分割可能なようにスリットが入った数インチ角のものが使われる。メッキ、分割工程以外の工程で使われる材料は一般的にはペースト状の厚膜組成物であり次のようなものが使われる。1次電極、裏面電極、2次電極には60〜80wt%Ag、0〜5wt%Pd、ガラス0〜15wt%、ビヒクル20〜40wt%からなる厚膜組成物、絶縁体▲1▼、▲2▼にはメッキ浴に腐食されない程度の耐酸性を有するガラス50〜80wt%、顔料0〜20wt%、ビヒクル15〜30wt%からなる厚膜組成物、抵抗体にはルテニウム酸化物1〜30wt%、銀0〜70wt%、パラジウム0〜70wt%、ガラス1〜80wt%、ビヒクル20〜35wt%からなる厚膜組成物が用いられる。
【0015】
しかし、本発明は抵抗器の構造に関するものであり、使われる材料を選ぶものではない。電極に銀と同じに硫化に弱い銅系の材料を使用した場合にも有効である。また上記高温で焼結タイプの材料だけでなく樹脂などを使った低温で硬化させるタイプの材料で形成させても同様の効果が得られる。
【0016】
本発明は図4と同様な工法で製造できる。従来、絶縁体▲2▼の部分は絶縁体▲1▼を覆う大きさで形成されていたが、これを抵抗器の両端近くまでの大きさで形成することに特徴がある。これにより2次電極を従来と同様に形成しメッキすれば1次電極とNiメッキが接触しない構造の抵抗器が完成する。なお、絶縁体▲2▼の部分を大きく形成する代わりに、絶縁体▲1▼を抵抗器の両端近くまでの大きさで形成してもよい。
【0017】
この絶縁体▲2▼のパターンの大きさは小さすぎると1次電極が露出しNiメッキが付いてしまい従来と同じ構造になってしまう。逆に大きすぎ1次電極の両端まで覆ってしまうと1次電極と2次電極の接触が取れず導通の無い抵抗器になってしまう。絶縁体▲2▼と2次電極の重なりは1次電極が露出しないようにするために最低でも10μmは必要であり、理想的には50μm〜200μmが確実である。絶縁体▲2▼の厚さは1次電極を覆っていれば問わないが5μm以上が望ましい。
【0018】
本発明の抵抗器は2次電極を絶縁体▲2▼まで深く印刷することによっても実施可能である。しかし2次電極を印刷する際の下地は平板ではなく、特殊な印刷工法が採られる。そのため安定して深く印刷することは大きく歩留まりを落とすことになる。さらに深すぎると電極間隔を狭くすることに繋がるため定格より高い電圧が印加されたときの絶縁性に問題を生じることになる。
【0019】
(実施例、比較例)
図4に示す工程の通りに長さ1.6mm、幅0.8mmのサイズの抵抗器を製造した。使用した材料は下記の表1に示す。これら2種類の材料系(材料系1、材料系2)で従来の構造をもつ抵抗器(比較例)と本発明の抵抗器(実施例)を製造した。従来のものは絶縁体▲2▼を絶縁体▲1▼の一回り大きなサイズに1次電極が露出するように形成し、1次電極と2次電極の両方の上にNiメッキが施されるようにした。本発明の構造をもつものは絶縁体▲2▼を大きく形成させ2次電極との重なりが150μmになるようにした。これによりNiメッキは2次電極にのみ施された。絶縁体▲2▼と2次電極の形成は材料系1の場合は600°Cで焼成、材料系2の場合は150°Cで硬化で行った。硫化の進行を抵抗値で測定するため抵抗体にはシート抵抗値約20mΩの導体組成物を使用した。
【0020】
【表1】

Figure 2004186627
【0021】
完成した抵抗器を抵抗値を測定できるプリント基板に共晶半田に230°Cで実装した。これらの2材料系、2構造の4種類の抵抗器で硫化試験を実施した。試験条件はJEIDA−25−1974と同じ方法で行った。硫化の程度は抵抗値の変化率で測定した。各測定個数は100個である。硫化が進行すれば抵抗値は上昇しいずれ無限大にまで至る。
【0022】
下記の表2に2000時間後の抵抗値変化率を示す。材料系によらず従来構造の抵抗器では大きな抵抗値上昇が測定されたのに対し、本発明の抵抗器では全く抵抗値上昇は見られない。硫化に対し著しい向上が認められる。
【0023】
【表2】
Figure 2004186627
【0024】
【発明の効果】
以上のように本発明によれば、1次電極とメッキが直接接触せず、2次電極にのみメッキが施される構造の抵抗器にすることにより若しく耐硫化性を向上させることができる。また従来工法と同じ方法が使用できるため比較的安易に製造することが可能である。さらに、これまで耐硫化性を落ちることを恐れ1次電極のPd含有量を減らすことができなかったが、この発明によりさらにPd含有量を減らすことが可能になり低価格化が図れる。
【図面の簡単な説明】
【図1】図1は、本発明の実施例の抵抗器を示す断面図である。
【図2】図2は、本発明の他の実施例の抵抗器を示す断面図である。
【図3】図4は、従来例の抵抗器を示す断面図である。
【図4】図4は、本発明と従来例の抵抗器の製造工程を説明するためのブロック図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a type in which an electrode portion is plated, such as a chip resistor and a multiple network, and more particularly to a resistor that is resistant to a sulfurizing atmosphere.
[0002]
[Prior art]
FIG. 3 shows a cross section of a conventionally used resistor. In general, a resistor mainly includes silver or palladium containing 5% or less of silver or palladium for a primary electrode and a secondary electrode, glass or resin for an insulator, and Ru oxide and glass for a resistor. The thick film composition is manufactured by printing, baking or curing. The Ni plating layer is made of a metal in which the primary electrode and the secondary electrode are easily dissolved in solder such as silver, and is provided for the purpose of preventing disconnection in a soldering process used when mounting a resistor. Since Ni is a metal which does not easily dissolve in solder, this Ni layer protects an electrode layer below it that is easily soluble in solder from solder. However, on the contrary, Ni does not easily get wet with the solder, and if it is used as it is, a problem occurs that the solder does not easily stick in the soldering process. Therefore, solder (and tin) plating is further performed on the Ni plating layer.
[0003]
[Problems to be solved by the invention]
Although a resistor having this structure is generally evaluated as having excellent reliability, it has a fatal disadvantage that it is disconnected in months to years when exposed to a sulfurizing atmosphere. Sulfides are also present in the atmosphere in the environment in which we live. The concentration is particularly high in volcanic areas.
[0004]
For this reason, a sulfurization test has been conventionally performed on electronic components to evaluate the quality of the sulfuration resistance. JEIDA-25-1974 (published by the Japan Electronic Industry Development Association, “Method for testing sulfuration of connectors for printed wiring boards”) is one of the tests. Although resistors have been tested in the past, they are recognized as being vulnerable to sulfidation.
[0005]
For this reason, the invention described in the following document has been proposed for the purpose of preventing corrosion due to sulfuration in a resistor.
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-184602 [Patent Document 2] Japanese Patent Application Laid-Open No. 2002-64003 In the invention described in Patent Document 1, a nickel-based resin layer is provided on a primary electrode in the present invention, and an atmosphere is formed. However, there is a disadvantage that the conventional process cannot be used as it is because the number of steps for providing a nickel-based resin layer is increased.
In the invention described in Patent Document 2, a silver-based layer containing 5% or more of Pd is provided on the primary electrode in the present invention. However, the number of steps for providing a silver-based layer containing 5% or more of Pd also increases. There is a disadvantage that the conventional process cannot be used as it is.
[0006]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a resistor having a novel structure capable of remarkably improving prevention of sulfidation.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a resistor having a structure in which an electrode portion is plated, wherein a primary electrode and a plating do not directly contact with each other, and only a secondary electrode is plated. Is adopted.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The surface after the conventional resistor is mounted is covered with glass, solder or Ni. These materials are inherently resistant to sulfidation and are not attacked by sulfur components. Therefore, the sulfurization test was actually repeated, and the sulfides generated were investigated, and the process leading to the disconnection was investigated in detail.
[0009]
As a result, after the resistor is mounted on the printed circuit board by soldering, the Ni plating film is turned up from both ends of the insulator (2) in FIG. Are exposed in a line in the depth direction of FIG. 3 and silver sulfuration starts therefrom. This turn-up is only caused by the anchor bond between the primary electrode and the Ni plating film, and is considered to occur at the tip of the plating film due to shrinkage during solder melting and solidification during soldering.
[0010]
It has been found that silver sulfide has no conductivity, and this portion is a main conductive path, and the silver film is very thin, 5 to 10 μm, and eventually leads to disconnection. Since the sulfuration of silver proceeds by outward diffusion of silver, if sulfuration starts from a part, the progress does not stop and leads to disconnection.
[0011]
In order to solve this problem, there is a means for improving the sulfuration resistance of the lower silver film (primary electrode). As is well known for contact materials, there is a method of using gold instead of silver and adding a large amount of palladium to silver. Great effects can be obtained by adding 10 WT% or more to the silver content. However, these technologies are not practical due to a significant price increase. In order to solve the above-mentioned problems at low cost, a resistor having a new structure as described below has been invented.
[0012]
FIG. 1 shows a cross section of the resistor. Most of the primary electrode is covered with an insulator (2), and both ends of the insulator (2) are covered with a secondary electrode. As a result, it is possible to form a resistor having a structure in which the primary electrode and the plating do not directly contact with each other, and only the secondary electrode is plated. With this structure, even if the Ni plating film is turned up after mounting, the lower layer is the tip of the electrode (2). Requires a long time, which is incomparable with the conventional structure, and is a resistor that is remarkably resistant to sulfidation.
[0013]
Therefore, the primary electrode can be formed at low cost without adding much expensive palladium. In addition, since only the printing shape is changed, there is an advantage that the same method as the conventional method can be used. The same effect can be obtained by dividing the insulator (2) into two layers (insulator (2) + insulator (3)) in the structure shown in FIG. The cross section is shown in FIG. An insulator {circle around (3)} is newly formed. Simultaneously firing the insulator and the secondary electrode in the process does not eliminate the effect of the present invention.
[0014]
Next, the manufacturing process of the resistor of the present invention will be described. Here, the manufacturing process of the resistor of the present invention can use the manufacturing process of the conventional example. FIG. 4 shows a manufacturing process of a conventional resistor. The substrate is an alumina substrate. Alumina, which can be used as long as it is fire resistant such as forsterite, is generally excellent in insulation and reliability. Although the size of the resistor is standardized by JIS or the like, in order to enable mass production at one time, a resistor having a slit of several inches is used so that it can be divided into each size. The material used in the steps other than the plating and dividing steps is generally a paste-like thick film composition, and the following are used. Thick film composition composed of 60 to 80 wt% Ag, 0 to 5 wt% Pd, glass 0 to 15 wt%, vehicle 20 to 40 wt%, insulators (1), (2) ▼ is a thick film composition composed of 50 to 80 wt% of glass having acid resistance not corroded by a plating bath, 0 to 20 wt% of pigment, and 15 to 30 wt% of a vehicle, and 1 to 30 wt% of ruthenium oxide for a resistor. A thick film composition comprising 0 to 70 wt% of silver, 0 to 70 wt% of palladium, 1 to 80 wt% of glass, and 20 to 35 wt% of a vehicle is used.
[0015]
However, the present invention relates to the structure of the resistor and does not select the material to be used. It is also effective when a copper-based material, which is as vulnerable to sulfuration as silver, is used for the electrode. The same effect can be obtained by forming the material not only from the sintering type material at a high temperature but also from a type of a material cured at a low temperature using a resin or the like.
[0016]
The present invention can be manufactured by a method similar to that of FIG. Conventionally, the portion of the insulator (2) has been formed to have a size that covers the insulator (1), but is characterized in that it is formed to have a size near both ends of the resistor. As a result, if the secondary electrode is formed and plated in the same manner as in the prior art, a resistor having a structure in which the primary electrode does not contact the Ni plating is completed. Instead of making the insulator (2) large, the insulator (1) may be formed to have a size near the both ends of the resistor.
[0017]
If the size of the pattern of the insulator {circle around (2)} is too small, the primary electrode is exposed and Ni plating is applied, resulting in the same structure as the conventional one. Conversely, if it is too large and covers both ends of the primary electrode, the primary electrode and the secondary electrode cannot be brought into contact, resulting in a resistor without conduction. The overlap between the insulator (2) and the secondary electrode must be at least 10 μm in order to prevent the primary electrode from being exposed, and ideally 50 μm to 200 μm is assured. The thickness of the insulator (2) is not limited as long as it covers the primary electrode, but is preferably 5 μm or more.
[0018]
The resistor of the present invention can also be implemented by printing the secondary electrode deeply to the insulator (2). However, the base for printing the secondary electrode is not a flat plate, and a special printing method is employed. Therefore, printing stably and deeply greatly reduces the yield. If it is too deep, it will lead to the narrowing of the electrode interval, so that a problem will occur in the insulation when a voltage higher than the rated voltage is applied.
[0019]
(Examples, Comparative Examples)
A resistor having a length of 1.6 mm and a width of 0.8 mm was manufactured according to the process shown in FIG. The materials used are shown in Table 1 below. A resistor having a conventional structure (comparative example) and a resistor of the present invention (example) were manufactured using these two types of material systems (material system 1 and material system 2). In the conventional one, the insulator (2) is formed so as to expose the primary electrode to a size slightly larger than the insulator (1), and Ni plating is applied on both the primary electrode and the secondary electrode. I did it. In the case of the structure having the structure of the present invention, the insulator (2) was formed large so that the overlap with the secondary electrode became 150 μm. Thereby, Ni plating was applied only to the secondary electrode. The insulator (2) and the secondary electrode were formed by baking at 600 ° C. in the case of the material system 1 and by curing at 150 ° C. in the case of the material system 2. In order to measure the progress of sulfuration by a resistance value, a conductor composition having a sheet resistance value of about 20 mΩ was used for the resistor.
[0020]
[Table 1]
Figure 2004186627
[0021]
The completed resistor was mounted at 230 ° C. on eutectic solder on a printed circuit board capable of measuring the resistance value. Sulfuration tests were performed with these two materials and four types of resistors having two structures. The test conditions were the same as in JEIDA-25-1974. The degree of sulfuration was measured by the rate of change of the resistance value. Each measurement number is 100 pieces. As sulfuration progresses, the resistance increases and eventually reaches infinity.
[0022]
Table 2 below shows the resistance value change rate after 2000 hours. Regardless of the material system, a large increase in the resistance was measured in the resistor having the conventional structure, whereas no increase in the resistance was observed in the resistor of the present invention. Significant improvement in sulfurization is observed.
[0023]
[Table 2]
Figure 2004186627
[0024]
【The invention's effect】
As described above, according to the present invention, it is possible to improve the sulfuration resistance by using a resistor having a structure in which the primary electrode and the plating are not in direct contact with each other and only the secondary electrode is plated. . Further, since the same method as the conventional method can be used, it can be manufactured relatively easily. Further, although the Pd content of the primary electrode could not be reduced because of the fear of lowering the sulfuration resistance, the present invention allows the Pd content to be further reduced, thereby achieving cost reduction.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a resistor according to an embodiment of the present invention.
FIG. 2 is a sectional view showing a resistor according to another embodiment of the present invention.
FIG. 3 is a sectional view showing a conventional resistor.
FIG. 4 is a block diagram for explaining a manufacturing process of a resistor according to the present invention and a conventional example.

Claims (5)

電極部分にメッキを施す構造の抵抗器において、1次電極とメッキが直接接触せず、2次電極にのみメッキが施されてなることを特徴とする構造の抵抗器。A resistor having a structure in which plating is performed on only a secondary electrode without directly contacting the primary electrode and the plating, wherein the resistor has a structure in which electrode portions are plated. 基板と、該基板に設けられた抵抗体と、該抵抗体と接触状態で前記基板に設けられた1次電極と、前記基板の端部と前記1次電極の端部を覆うように設けられた2次電極と、前記抵抗体を覆い前記1次電極を部分的に覆って前記2次電極に部分的に覆われるように前記2次電極の内側まで延びる絶縁体と、前記2次電極を覆うように設けられたメッキ層と、を有することを特徴とする抵抗器。A substrate, a resistor provided on the substrate, a primary electrode provided on the substrate in contact with the resistor, and an end of the substrate and an end of the primary electrode. A secondary electrode, an insulator extending to the inside of the secondary electrode so as to cover the resistor, partially cover the primary electrode, and partially cover the secondary electrode; And a plating layer provided so as to cover the resistor. 請求項2記載の抵抗器において、前記絶縁体は、前記抵抗体を覆う第1絶縁体と、該第1絶縁体を覆いかつ前記1次電極を部分的に覆って前記2次電極に部分的に覆われるように前記2次電極の内側まで延びる第2絶縁体を有することを特徴とする抵抗体。3. The resistor according to claim 2, wherein the insulator is a first insulator covering the resistor, and partially covering the first electrode and partially covering the primary electrode. 4. A second insulator extending to the inside of the secondary electrode so as to be covered by the resistor. 請求項2記載の抵抗器において、前記絶縁体は、前記抵抗体を覆いかつ前記1次電極を部分的に覆って前記2次電極に部分的に覆われるように前記2次電極の内側まで延びる第1絶縁体と、該第1絶縁体を部分的に覆う第2絶縁体を有することを特徴とする抵抗体。3. The resistor of claim 2, wherein the insulator extends to the inside of the secondary electrode so as to cover the resistor and partially cover the primary electrode and partially cover the secondary electrode. A resistor comprising: a first insulator; and a second insulator that partially covers the first insulator. 請求項3または4記載の抵抗器において、前記絶縁体は、前記抵抗器の上方で、前記第2絶縁体を部分的に覆うように設けられた第3絶縁体をさらに有することを特徴とする抵抗体。5. The resistor according to claim 3, wherein the insulator further includes a third insulator provided above the resistor so as to partially cover the second insulator. Resistor.
JP2002354891A 2002-12-06 2002-12-06 Resistor Pending JP2004186627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354891A JP2004186627A (en) 2002-12-06 2002-12-06 Resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354891A JP2004186627A (en) 2002-12-06 2002-12-06 Resistor

Publications (1)

Publication Number Publication Date
JP2004186627A true JP2004186627A (en) 2004-07-02

Family

ID=32755740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354891A Pending JP2004186627A (en) 2002-12-06 2002-12-06 Resistor

Country Status (1)

Country Link
JP (1) JP2004186627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336931B2 (en) 2014-06-06 2016-05-10 Yageo Corporation Chip resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336931B2 (en) 2014-06-06 2016-05-10 Yageo Corporation Chip resistor

Similar Documents

Publication Publication Date Title
JP3983264B2 (en) Terminal structure of chip-like electrical components
US6828898B2 (en) Fuel tank resistor card having improved corrosion resistance
JP5360330B2 (en) Chip resistor and manufacturing method thereof
US6982624B2 (en) Chip resistor
TWI429609B (en) Composition for formation of thick film conductor, thick film conductor formed by using the composition and chip resistor using the thick film conductor
US20100258341A1 (en) Mounting board and method of producing the same
JPH07302510A (en) Conductive paste composition
WO2008149876A1 (en) Chip resistor
JP2006228572A (en) Composition for forming thick film conductor
EP2680278B1 (en) Mounting structure for electronic components
US6488869B2 (en) Conductive paste, its manufacturing method, and printed wiring board using the same
JP2017123453A (en) Chip resistor element
TW201701299A (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP2004186627A (en) Resistor
JP2008182128A (en) Chip resistor
JP4236021B2 (en) Electronic component having humidity detection function and manufacturing method thereof
JP3665545B2 (en) Chip resistor and manufacturing method thereof
JPH07111921B2 (en) Chip resistor
JPH06150802A (en) Chip type fuse resistor
JP4051783B2 (en) Jumper resistor
JPH10340625A (en) Conductive paste, its manufacture, and printed wiring board using the paste
WO2023112667A1 (en) Electronic component
JP3850725B2 (en) Conductive paste
JPH10106346A (en) Silver-based conductor paste
Weng et al. Study of Anti-Sulfuration Methods for Thick Film Chip Resistors