JP2004184346A - 絶縁状態測定機器 - Google Patents

絶縁状態測定機器 Download PDF

Info

Publication number
JP2004184346A
JP2004184346A JP2002354497A JP2002354497A JP2004184346A JP 2004184346 A JP2004184346 A JP 2004184346A JP 2002354497 A JP2002354497 A JP 2002354497A JP 2002354497 A JP2002354497 A JP 2002354497A JP 2004184346 A JP2004184346 A JP 2004184346A
Authority
JP
Japan
Prior art keywords
component
voltage
leakage current
voltage signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002354497A
Other languages
English (en)
Inventor
Kazuya Aihara
和哉 藍原
Kazuhiko Kato
和彦 加藤
直大 ▲高▼鴨
Naohiro Takakamo
Yoshikazu Teraue
義和 寺上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2002354497A priority Critical patent/JP2004184346A/ja
Publication of JP2004184346A publication Critical patent/JP2004184346A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【課題】絶縁抵抗値を容易に算出すること。
【解決手段】被測定回路に非正弦波交流を印加し、被測定回路の漏れ電流信号と電圧信号から抵抗分電流を測定する方法において、前記電流及び電圧の信号波形をサンプリング記憶し、それぞれについてN次高調波に展開し、選択した少なくとも二つの次数における電流値と電圧値のよるアドミッタンスに関する連立方程式、または選択した次数における電圧と電流との位相差、または選択した次数における電圧と電流の直流分により、絶縁抵抗値を算出する方法を提供し、信頼性の高い絶縁抵抗値及び抵抗分漏れ電流値の測定を経済的に実施できるので、絶縁劣化の経時的変化を捉え警報を行うことが容易になり、事前に点検保守を可能ならしめて事故を未然に防止することが可能である。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、電気回路の絶縁状態を監視するために測定用の電圧を信号注入し、絶縁抵抗値と、漏れ電流中に含まれる抵抗分電流値を測定する技術に関する。
【0002】
【従来の技術】
従来の配電系統における絶縁抵抗あるいは漏れ電流の測定方法として測定のための電圧を注入するものにおいて、(A)配電回路あるいは変圧器の接地線に零相変流器を設置して商用周波数と異なる一つの電圧を印加する方法(例えば特許文献1参照。)と、(B)配電回路または変圧器の接地線に商用周波数と異なる複数の電圧を印加する方法が提案されている(例えば特許文献2参照。)。
【0003】
図7は(A)の開示例の概略を示す構成図であり、図において、40は変圧器、41は遮断器、42は配電系統の一次回路、49aは分岐した一次回路、49bは分岐した他方の一次回路、43a、43bは電気設備等の負荷、44は変圧器40の接地線、45a及び45bは零相変流器46a及び46bの出力を受けて絶縁抵抗等を測定する測定機器、47a、47bは配電経路と大地間に存在する静電容量、48a、48bは負荷43a〜43bに設置された電源スイッチ、50は変圧器40の接地線44に電圧を印加する電圧印加装置である。51a及び51bは負荷43a及び43bの絶縁抵抗示したものである。
【0004】
また、Izは一次回路の総合漏れ電流でIza及びIzbは分岐した一次回路の漏れ電流、Ica及びIcbは静電容量に流れる容量性電流(無効分電流)、Igra及びIgrbは、絶縁抵抗分に流れる抵抗分電流(有効分電流)である。
【0005】
図8は図7の測定機器45aの基本構成図であり、零相変流器46aからの入力は増幅器51、フィルタ52を通して印加周波数成分のみを抽出すると共に、前記電圧印加装置50により印加した電圧信号を、位相器53を介して中間演算部54に入力し乗算、記憶などを行い、この結果を基に演算処理部55により絶縁抵抗値を算出する。
【0006】
図9は(B)の開示例の概略を示す構成図であり、図において、
50a及び50bは変圧器40の接地線44に電圧を印加する二つの電圧印加装置である。構成のうち(A)の実施例と同じものには図7に示したものと同一の記号を付してある。
【0007】
図9において、上記(B)の測定方法は電圧印加装置50a及び50bから商用周波数以外の2種類の周波数でそれぞれ1Vくらいの電圧を印加し、零相変流器46a又は46bからの信号を計測器45a又は45bで測定する。
【0008】
図10は(B)の開示例の測定機器45aの基本構成図であり、零相変流器46aからの入力は2個のフィルタ52a及び52bを通して電圧印加装置50a及び50bの印加周波数成分を抽出し中間演算部1、及び中間演算部2を介して全体演算部55により絶縁抵抗値を算出する。
(A)の実施例との相違は、電圧印加装置、フィルタ、中間演算部がそれぞれ二つになっている事である。
【0009】
さらに接地線に流れる電流と、電路の電圧から電路に内在する第3n次(nは整数)の高調波成分を検出し、高調波電流、高調波電圧の位相関係から抵抗分の電圧を求めて、電路の絶縁状態を監視するもの(例えば特許文献3参照。)もある。
【0010】
【特許文献1】
特開平2−84361号公報
【特許文献2】
特開平1−143971号公報
【特許文献3】
特開平6−43196号公報
【0011】
【発明が解決しようとする課題】
上記(A)の方法は、零相変流器の2次側出力に含まれる商用周波数成分と印加周波数成分の合成電流から印加周波数成分のみを抽出するためのフィルタが必要であり装置の構成が複雑になる問題がある。
【0012】
また、絶縁抵抗値を求める演算において印加電圧を用いるので、電圧印加装置の印加電圧値を高精度に維持しなければならず、印加装置の構成も複雑になる。(B)の方法は、(A)の方法と同様の問題があることに加え、複数の印加装置と複数のフィルタ及び中間演算部が必要であり、
(A)の方法よりさらに複雑な構成となる問題がある。
【0013】
本発明は、上記した従来例の問題点を解決し、簡単な構成で信頼性の高い絶縁抵抗値及び抵抗分漏れ電流値を求めることを目的とする。また、他の目的として、絶縁劣化の経時的変化を捉え警報を行うことにより、事前に点検保守を可能ならしめて事故を未然に防止することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明では、
(1)被測定回路に少なくとも2種類の周波数成分を有する非正弦波交流電圧信号を、電圧印加装置一つで印加する。
(2)被測定回路に非正弦波交流を印加するとともに、被測定回路の漏れ電流を検出する零相変流器の信号波形と、被測定回路の電圧信号波形を、印加した非正弦波交流に含有する周波数成分のもっとも低い周波数の少なくとも1周期分についてサンプリングし記憶し、前記漏れ電流信号及び前記電圧信号をそれぞれN次高調波成分に展開し、2以上の次数における漏れ電流成分を同次数の電圧成分によって除した値が同次数における抵抗分及び静電容量分より構成されるアドミッタンスに等しいとした連立方程式より算出した結果を絶縁抵抗値とする。
(3)被測定回路に非正弦波交流を印加するとともに、被測定回路の漏れ電流を検出する零相変流器の信号の波形と、被測定回路の電圧信号の波形を、印加した非正弦波交流に含有する周波数成分のもっとも低い低い周波数の少なくとも1周期分についてサンプリングし記憶し、前記漏れ電流信号及び前期電圧信号をそれぞれN次高調波成分に展開し、展開演算により得られる少なくとも1つの次数における漏れ電流成分と同次数の電圧成分の位相角の差より算出した結果を絶縁抵抗値とする。
(4)被測定回路に非正弦波交流を印加するとともに、被測定回路の漏れ電流を検出する零相変流器の信号の波形と、被測定回路の電圧信号の波形を、印加した非正弦波交流に含有する周波数成分のもっとも低い周波数の少なくとも1周期分についてサンプリングし記憶し、前記漏れ電流信号及び前記電圧信号をそれぞれ直流分およびN次高調波成分に展開し、展開演算により得られる電圧信号直流分を同様に得られる漏れ電流信号直流分で除した結果を絶縁抵抗値とする。
(5)前記(2)乃至(4)のいずれかにおいて算出した絶縁抵抗値により前記被測定回路の電圧信号実効値を除算した結果を抵抗分漏れ電流値とする。
(6)前記(2)乃至(4)において、被測定回路の電圧信号を非接地側の電路と大地との間の対地間電圧とする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、実施例を用い、図及び式を参照して説明する。
【0016】
図1乃至図3及び式1乃至式12は本発明による第1の実施の例を示すもので、図1は被測定回路に印加する非正弦波交流の1例として矩形波を印加する場合の波形図を示す。式1はこれをN次高調波成分に展開した場合の高調波成分を示す一般式である。
【0017】
【数1】
Figure 2004184346
【0018】
即ち、非正弦波交流を印加しても式1のように直流項と正弦項と余弦項の級数の和に展開して表すことができ、特に矩形波の場合は、式2に示すように直流項と余弦項がなく正弦項の奇数調波だけで表される式となり簡潔なものとなる。
【0019】
【数2】
Figure 2004184346
【0020】
これらにより、前記解決の手段に示した零相変流器により得られる漏れ電流信号と、前記被測定回路の電圧信号には少なくとも本図に示す周波数成分が含まれるものとなり後述する式3乃至式12により前記した図7の51a及び51bの絶縁抵抗値及び抵抗分漏れ電流を算出することができる。
【0021】
図2は前記説明した図1の波形を用いて測定する絶縁状態測定機器の構成図を示し非測定回路が単相2線式の例である。図において、12は前記した非制限波交流を印加する電圧印加部であり、被測定回路に回路電圧の数%程度の測定用歪波交流電圧Eを印加する。1は絶縁状態測定機器であり、次の各部から構成されている。2a、2bは被測定回路の漏れ電流を非接触で測定する零相変流器であ2分岐回路の例を示し、3a、3bはその信号線、4は絶縁状態測定機器1の内部に適切な電圧を給電するための電源部5への給電線と兼用した信号線、6は前記信号線3a,3b、4の出力を受けて適切な内部信号に変換するための入力部、7は後述する演算処理部8の指示を受けて前記入力部6の出力をサンプリング及びディジタル値に変換するためのA/D変換部、8はA/D変換部7に対するサンプリング及びディジタル変換指示、また得られたディジタル値を記憶部9に記憶させると共に、前記図1及び式1乃至式12により絶縁抵抗値及び抵抗分漏れ電流を算出するための演算処理部である。また、演算処理部8は算出結果である絶縁抵抗値や漏れ電流等を後述する出力部10に出力することも併せて行うものである。出力部10は、前記演算処理部8により得られた算出結果を表示器例えばLED、液晶表示機等による視覚表示、あるいは、通信例えばEIA(アメリカ電子工業会)規格であるRS−232C、RS−485規格により遠隔通知を行う為の出力部である。30は上位装置で例えばパソコンであり絶縁状態測定機器1の前記した出力部と接続され絶縁抵抗値や抵抗分漏れ電流の値を表示したり、経時的変化をグラフで表示したりするものである。11は、設定部で予め警報レベル等の値を設定するためのものであり、この設定値と測定された値を比較し、測定された値が設定値を超えた場合には警報を発生する。例えば、前記の方法で測定された絶縁抵抗値と抵抗分漏れ電流値と警報レベル等の比較を行う。そして、この比較結果によって、例えば、出力部10に内蔵されたリレー接点等を閉じて、警報音、警報表示、あるいは通信による遠隔通知を行うものである。44は前記した図7で説明した変圧器40の接地線である。
【0022】
本実施例では、被測定回路から入力された電圧信号と、零相変流器2から得られた漏れ電流Iza(Izb)、即ち、容量性電流Ica(Icb)と抵抗分電流Igra(Igrb)のベクトル和が入力され、A/D変換部7でディジタルに変換され、演算処理部8で演算されて、絶縁抵抗値を算出することができる。以上の構成により絶縁抵抗値を知ることができる。
【0023】
図3は、前記図2において印加する非正弦波交流信号が一次回路を流れる様子を分かりやすく表したもので、前記図7及び図2に対応して符号を付してある。印加した信号は、零相変流器2aを通して負荷48aに流れ、絶縁抵抗51aと静電容量47aに流れる分と、負荷自体に流れる分とがあり、接地線44側の絶縁抵抗53aと静電容量52aには接地線44に帰還するため流れない。また、この時零相変流器2aで相殺されるので、結局零相変流器2aで検出される漏れ電流Izaは絶縁抵抗51aと静電容量47aに流れる分だけとなり正しい漏れ電流を測定することになりこれを下記に詳述する式1乃至12により絶縁抵抗と抵抗分漏れ電流を算出するものである。
【0024】
なお、被測定回路が交流回路であって、高調波成分を含んだものである場合はこの高調波によって前記解決手段に記載した方法による絶縁抵抗測定がおこなえるため測定のための電圧印加部12は必要ない。従って、あらかじめ被測定回路の電圧及び電流に含まれる高調波成分を求め、所定の値以上の高調波成分が有った場合には測定用の電圧印加を行なわない方法として良い。また、直流回路や高調波成分がほとんど無い回路に対しては測定用電圧を印加するが、サンプリング時以外は電圧印加を行なわなくて良い。これらのことから、測定用の電圧印加部に必要な場合以外は電圧印加を行なわないようにする事は公知の方法で実現できるので図示を省略する。
【0025】
次に式1乃至12を具体的に説明する。式1は図2において電圧印加部12により一次回路の非接地側電路と対地間に非正弦波交流電圧を印加し、変流器2a(2b)で検出し、信号線4からの電圧信号と共に入力部6、A/D変換部7を介して演算処理部8に取り込んだサンプリング波形を展開して表したもので、フーリエ展開として公知の式である。式1において、y(t)はひずみ波交流で電圧または電流、Aは直流成分、Asin(nωt+φn)は基本波成分(n=1)及び高調波成分である。式2は前記したとおりである。式3及び式4は前記式1をもとに電圧信号と、漏れ電流信号について展開した式である。
【0026】
【数3】
Figure 2004184346
【0027】
【数4】
Figure 2004184346
【0028】
式5及び式6は、被測定回路に形成される抵抗分と静電容量分が並列回路の例えば3次高調波成分と9次高調波成分のアドミッタンスを表わした式である。
【0029】
【数5】
Figure 2004184346
【0030】
【数6】
Figure 2004184346
【0031】
この式5及び式6の大きさは、式7及び式8のように表わされる。
【0032】
【数7】
Figure 2004184346
【0033】
【数8】
Figure 2004184346
【0034】
ここで、Rは抵抗分、Cは静電容量分であり、ωは角速度で2πfである。従って前記式3及び式4により電圧及び電流を3次高調波成分と9次高調波成分に展開し、前記式5及び式6により3次高調波成分と9次高調波成分のアドミッタンスを求め、前記式7及び式8の連立方程式を求めれば漏れ絶縁抵抗値Rを得ることができる。なお、前記式5及び式6はアドミッタンスで表わしたが、2以上の次数における電圧高調波成分を同次数の電流成分によって除した値が同次数における抵抗分及び静電容量分より構成されるインピーダンスに等しいとしても良いことは言うまでもない。また前記では絶縁抵抗値を算出するために例えば第3次あるいは第9次のN次高調波成分などと次数を限定してしまうと、展開して得られる値が小さい場合には信頼性が損なわれる可能性がある。そこでN次高調波成分に展開したなかから基本波成分に対する比率が大きい次数について自動的に判断選択し算出することもできる。また、漏れ電流回路内には前述の式7や式8に含まれる絶縁抵抗や静電容量の他に接地抵抗があるが、通常はこの値が無視できることから絶縁抵抗と静電容量の二つの未知数として2以上の次数による連立方程式により算出するようにしている。
【0035】
絶縁抵抗が無視できない大きさを持つ場合には、3以上の次数における接地抵抗を考慮したインピーダンスなどの連立方程式より絶縁抵抗、静電容量及び接地抵抗を算出すれば良く、本実施例の構成のなかで容易に実現できる。
【0036】
次に式9乃至11を説明する。
【0037】
【数9】
Figure 2004184346
【0038】
【数10】
Figure 2004184346
【0039】
【数11】
Figure 2004184346
【0040】
式9は前記式1におけるφnについて、電圧相を基準として電流との位相角の差を求める式であり、例えば式3及び式4をもとに算出する第3次高調波成分の電圧と電流の位相角の差である。式10は前記式9で求めた位相角の差と、前記式3及び式4で求めた例えば第3次高調波成分の電圧・電流から第3次高調波成分の電力を求める式である。式11は前記式10及び前記式3から抵抗値を求める式である。本実施例では第3次高調波成分から抵抗値を算出したが、これ以外の高調波成分からも算出できることは言うまでもない。
【0041】
次に式12について説明する。
【0042】
【数12】
Figure 2004184346
【0043】
式12は、交流1周期分の電圧波形信号をサンプリングし、
瞬時値の二乗の平方根即ち電圧信号の実効値を前記式11で求めた抵抗値で除算するものであり、抵抗分漏れ電流値を算出することができる。
【0044】
次に式1の直流項で算出する方法について説明する。
【0045】
前記式1の右辺第1項のAである直流成分が存在する場合、絶縁抵抗値は、式3で得られた電圧の直流成分を式4で得られた漏れ電流の直流成分で除算すれば算出することができる。
【0046】
次に被測定回路の電圧信号を非接地側の電路と大地との間の対地間電圧について説明する。
【0047】
一次回路42の漏れ電流Izは、静電容量分に流れる容量性電流Ica、Icbと絶縁抵抗分に流れる抵抗分電流Igra、Igrbが大地を経由して変圧器40の接地線44に還流するものであり、前記電流により一次回路42と大地間には電圧が発生する。従って、前期各実施例において取り込む電圧信号は、被測定回路の非接地側電路と大地との間の対地間電圧を得ることにより絶縁抵抗値または抵抗分漏れ電流値を容易に算出することができる。
【0048】
次に本発明の第2の実施例について図4を用いて説明する。
【0049】
図4は本発明の回路遮断器での実施例を示す構成図である。なお、図2と同じ部分については同一符号を記し、その説明を省略する。
遮断器13は一次回路の受電端子14、開閉機構部15、負荷装置に接続される負荷側端子20及び接地端子21と、前記第一の実施例で説明した各部で構成され、開閉機構部15は、遮断部19、前記受電端子14と負荷側端子20を結ぶ電路16、過電流検出部17、引き外し装置18から構成されている。過電流検出部17は、遮断器本来の目的の負荷側に規定値を越えた過大な電流が流れたときにこれを検出して引き外し装置18を駆動、遮断部19を引き外すものであり負荷の一次側回路を遮断するものである。6aは前記第一の実施例で複数の零相変流器2aからの信号を入力したが、本実施例では1つでよくその分構成が簡単になる。前記した非正弦波交流電圧信号は、電圧印加部12により一次側電路の非接地側(端子20側)と大地に接続された接地端子21に印加されるものである。以上の構成において前記第一の実施例で説明した方法により絶縁抵抗値及び抵抗分による漏れ電流が算出測定される。
【0050】
次に本発明の他の実施例について図5を用いて説明する。
【0051】
図5は前記図2の単相2線式に対し、本実施例では三相3線線式における絶縁状態測定機器を示すものであるが、違いは一次回路が3線になっただけで絶縁抵抗及び抵抗分漏れ電流の測定は全く同じ方法で行えるものである。即ち非接地線のいずれかに前記した非正弦波交流電圧信号を印加すればよく、計算は前記した式1乃至12で算出される。
【0052】
ところで、前記した非正弦波交流電圧信号は、微弱であるため
フーリエ展開した場合に精度が劣る可能性も考えられる。この場合は、式13のように一次回路電圧Vと漏れ電流Izaから補正をすればさらに精度は向上する。なお、式の例は第3次及び第9次の例を示し、それぞれの下付き数字はその次数を示す。
【0053】
【数13】
Figure 2004184346
【0054】
次に本発明の機能拡張例を図6で説明する。
【0055】
図6は抵抗分電流値の時間に対する変化を示す特性図であり、横軸に時間を、縦軸に抵抗分漏れ電流値(mA)を示す。前記実施例では、絶縁抵抗値或いは抵抗分漏れ電流値を測定し、絶縁劣化状態を把握することを目的としているが、一般に絶縁劣化は短時間に生ずるものではなく長時間に亘って生ずるものである。従って、予め設定した警報レベル(警報値)に達成するまでの時間が予測できれば、前もって停電等の計画を策定し、絶縁劣化品を交換するなどの処置が行え、事故等を未然に防止できる。
【0056】
この予測方法として、現在までの時間に対する抵抗分漏れ電流値の変化をグラフ化することによって、所定時間後の抵抗分漏れ電流値の変化量を予測することが可能である。
【0057】
図6において、時間t0で抵抗分漏れ電流値が増加し始め、時間t1でΔIgr増加したとする。 また、抵抗分漏れ電流値Igrの警告値がIqとすると、時間t0〜時間t1までの抵抗分変化から、この抵抗分電流値がIqに達する時間が略t2であることを予測することができる。
【0058】
抵抗分漏れ電流値は必ずしも安定しているとは限らず、バラツキがあるので予測が難しいという問題があるが、同一出願人が出願した特開2000−014003号公報に示す配電系統のデマンド監視の技術である最小二乗法を利用し、予測すると好適である。この方法は、残りT時間後にいくらの電力を消費するかを予測するものであるが、本実施例では、電力(Q)の代わりを予め設定された抵抗分漏れ電流値Igrの設定値(警告値)をIqと定め、残り時間(T)を逆に求めるものである。即ち図8に示す現在点t1からΔt以前までの複数点の抵抗分漏れ電流値ΔIgrを測定記憶し、設定値(警告値)Q点までの時間Tを予測するものである。
【0059】
この方法により警報レベル(警告値)に到達するまでの時間を予測するものである。なお、上記では予測に用いる値を抵抗分漏れ電流値としたが、絶縁抵抗値であっても良いことは明白である。
【0060】
次に他の機能拡張例について説明する。
【0061】
前記実施例では、通信の方法は絶縁状態監視機器1または遮断器13から上位装置30に対して一方的に通知する方法であるが、上位装置30が必要に応じて複数の計測機器等の端末装置に順次情報を要求し、これに呼応して端末装置から情報を送ることにより、通信信号のぶつかり合い等が無くなり、通信処理が容易となる。また、前記実施例における通信は、一般形態として有線によるものが多い。しかしながら有線は敷設の工事工数を多く必要とするので、本実施例では無線即ちワイヤレスで行うものである。この方法によれば工事工数は大幅に低減される。
【0062】
また、前記実施例では記憶部9を有しており、主にサンプリング時の電圧値等を記憶するが、本実施例では記憶部9に算出結果である抵抗分電流あるいは絶縁抵抗値を所定間隔毎に記憶し、必要に応じてこの内容を読み出すものである。このようにすれば、過去の値を参照することができるので、データ解析等に役立つ。
【0063】
また、前記実施例においてリレー接点等へ出力された内容は、例えば、抵抗分電流値が設定値を超えたことによって、リレー接点をオンした場合には、設定部11に有する確認キーを操作するまでその状態を保持する。これは前記警報レベル等の比較の結果、警報が出力された後復帰した場合でも発生原因を追求するための手段を設けた物である。従って発生原因を追求することが容易に行える。
【0064】
さらに、比較するための値等である設定値は設定部11で行えると共に、通信手段を有しているので上位装置30から行えるようにする。このようにすることによって、遠隔通信で行えるため現場まで設定作業に赴く必要が無く効率的に設定作業が行えるものである。
【0065】
【発明の効果】
以上述べたように、本発明によれば、一つの電圧印加部より複数の周波数成分の電圧を与えことと、演算部に特定の周波数成分のみを供給するためのフルタを必要としないので、簡単な構成で電気回路の絶縁抵抗値が測定できる。
【0066】
また、N次高調波成分に展開した電流値及び電圧値を、絶縁抵抗値を求める演算に用いるので、電圧印加部の電圧を高精度に維持する必要がなく、印加する電圧波形は直流電源のスイッチング等により簡単に得られる矩形波で良いことより、電圧印加装置も簡単な構成とすることができる。
【0067】
さらに、電圧と電流の位相角には無関係となり、変流器の問題点である微小電流領域での位相特性の悪化に影響されないことから、正確な絶縁抵抗値或いは抵抗分漏れ電流値を求める事ができる。
【0068】
従って、信頼性の高い絶縁抵抗値或いは抵抗分漏れ電流値の測定を経済的に実施できるので、絶縁劣化の経時的変化を捉え警報を行うことが容易となり、事前に点検保守を可能ならしめて事故を未然に防止することが可能である。
【0069】
なお、本発明によれば、被測定回路が直流の場合であっても何ら支障が無いので、動力回路ばかりでなく、構内放送や構内電話などの低圧直流回路に有効に適用できる。
【図面の簡単な説明】
【図1】本発明による絶縁抵抗値測定方法の印加電圧信号の一実施例を示す波形図である。
【図2】本発明による絶縁状態測定機器の単相回路での実施例を示す構成図である。
【図3】本発明の漏れ電流の流れを説明するための図である。
【図4】本発明による遮断器での実施例を示す構成図である。
【図5】本発明による絶縁状態測定機器の三相3線回路での実施例を示す構成図である。
【図6】抵抗分漏れ電流値の時間に対する変化を示す特性図である。
【図7】従来例(A)の方式による絶縁抵抗値測定方法の構成図である。
【図8】従来例(A)の方式による絶縁抵抗値測定方法の内部構成図である。
【図9】従来例(B)の方式による絶縁抵抗値測定方法の構成図である。
【図10】従来例(B)の方式による絶縁抵抗値測定方法の内部構成図である。
【符号の説明】
1・・・絶縁抵抗状態測定機器、 2a、2b・・・零相変流器
6、6a・・・入力部、 7・・・A/D変換部、 8・・・演算処理部
9・・・記憶部、 10・・・出力部、 11・・・設定部
12・・・電圧印加部、 13・・・遮断器、 14・・・受電端子
16・・・電路、 17・・・過電流検出部、 18・・・引き外し装置
19・・・遮断部、 20・・・非接地側電路、 21・・・接地端子
30・・・上位装置

Claims (7)

  1. 被測定回路に少なくとも2種類の周波数成分を有する非正弦波交流電圧信号を印加する手段と、
    被測定回路の漏れ電流信号を得る手段と、
    被測定回路の電圧信号を得る手段と、
    前記印加交流に含有する周波数成分のもっとも低い成分の少なくとも1周期分の前期漏れ電流信号及び前記電圧信号の波形をサンプリングしディジタル変換する手段と、
    前記ディジタル変換値を記憶する手段と、
    前記記憶した漏れ電流信号及び前記電圧信号をそれぞれN次高調波成分に展開し2以上の次数における漏れ電流成分を同次数の電圧成分によって除した値が同次数における抵抗分及び静電容量分より構成されるアドミッタンスに等しいとした連立方程式より絶縁抵抗値を算出する手段と
    を備えることを特徴とする絶縁状態測定機器。
  2. 被測定回路に少なくとも2種類の周波数成分を有する非正弦波交流電圧信号を印加する手段と、
    被測定回路の漏れ電流信号を得る手段と、
    被測定回路の電圧信号を得る手段と、
    前記印加交流に含有する周波数成分のもっとも低い成分の少なくとも1周期分の前記漏れ電流信号及び前記電圧信号の波形をサンプリングしディジタル変換する手段と、
    前記ディジタル変換値を記憶する手段と、
    前記記憶した漏れ電流信号及び前記電圧信号をそれぞれN次高調波成分に展開し展開演算により得られる少なくとも1つの次数における漏れ電流成分と同次数の電圧成分の位相角の差より絶縁抵抗値を算出する手段と
    を備えることを特徴とする絶縁状態測定機器。
  3. 被測定回路に少なくとも2種類の周波数成分を有する非正弦波交流電圧信号を印加する手段と、
    被測定回路の漏れ電流信号を得る手段と、
    被測定回路の電圧信号を得る手段と、
    前記印加交流に含有する周波数成分のもっとも低い成分の少なくとも1周期分の前記漏れ電流信号及び前記電圧信号の波形をサンプリングしディジタル変換する手段と、
    前記ディジタル変換値を記憶する手段と、
    前記記憶した漏れ電流信号及び前記電圧信号をそれぞれ直流分およびN次高調波成分に展開し展開演算により得られる電圧信号直流分を同様に得られる漏れ電流信号直流分で除することにより絶縁抵抗値を算出する手段と
    を備えることを特徴とする絶縁状態測定機器。
  4. 請求項1乃至3において、
    印加する電圧信号波形を矩形波とすることを特徴とする絶縁状態測定機器。
  5. 請求項1乃至3において、
    印加する非正弦波交流電圧信号は基本周波数成分と基本周波数の整数倍周波数のうち一つ以上の周波数成分とを含むものとすることを特徴とする絶縁状態測定機器。
  6. 請求項1乃至3のいずれかに記載のものにおいて、
    被測定回路の電圧信号を非接地側電路と大地との対地間電圧とすることを特徴とする絶縁状態測定機器。
  7. 請求項1乃至3のいずれかにおいて算出した絶縁抵抗値により前記被測定回路の電圧信号実効値を除算し、抵抗分漏れ電流値を算出する手段を備えることを特徴とする絶縁状態測定機器。
JP2002354497A 2002-12-06 2002-12-06 絶縁状態測定機器 Pending JP2004184346A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354497A JP2004184346A (ja) 2002-12-06 2002-12-06 絶縁状態測定機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354497A JP2004184346A (ja) 2002-12-06 2002-12-06 絶縁状態測定機器

Publications (1)

Publication Number Publication Date
JP2004184346A true JP2004184346A (ja) 2004-07-02

Family

ID=32755466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354497A Pending JP2004184346A (ja) 2002-12-06 2002-12-06 絶縁状態測定機器

Country Status (1)

Country Link
JP (1) JP2004184346A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300514A (ja) * 2004-03-16 2005-10-27 Nakajo Engineering Co Ltd 絶縁監視装置
WO2006134678A1 (ja) * 2005-06-14 2006-12-21 Ohno, Takemi 漏洩電流検出システム及び方法
US7161354B2 (en) * 2001-10-04 2007-01-09 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
US7353123B2 (en) 2001-10-04 2008-04-01 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
US8009394B2 (en) 2005-01-31 2011-08-30 Toyotsugu Atoji Leak current breaker and method
CN102539931A (zh) * 2012-03-07 2012-07-04 深圳市英威腾电气股份有限公司 一种绝缘检测方法及绝缘检测装置
JP2013130440A (ja) * 2011-12-21 2013-07-04 Mitsubishi Electric Corp 絶縁劣化診断装置
JP2015154631A (ja) * 2014-02-17 2015-08-24 テンパール工業株式会社 差込接続ユニット
JP2015190918A (ja) * 2014-03-28 2015-11-02 学校法人早稲田大学 電気化学解析装置および電気化学システム
CN112557853A (zh) * 2020-12-19 2021-03-26 哈尔滨恒达交通设备技术开发有限公司 铁路客车复合型智能绝缘检测仪
CN112816829A (zh) * 2020-07-01 2021-05-18 广东电网有限责任公司揭阳供电局 一种故障定位的分析装置及分析方法
CN114670643A (zh) * 2022-03-30 2022-06-28 重庆长安新能源汽车科技有限公司 一种绝缘故障诊断方法、装置、控制器及介质

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161354B2 (en) * 2001-10-04 2007-01-09 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
US7353123B2 (en) 2001-10-04 2008-04-01 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
JP2005300514A (ja) * 2004-03-16 2005-10-27 Nakajo Engineering Co Ltd 絶縁監視装置
JP4506959B2 (ja) * 2004-03-16 2010-07-21 株式会社中条エンジニアリング 絶縁監視装置
US8009394B2 (en) 2005-01-31 2011-08-30 Toyotsugu Atoji Leak current breaker and method
WO2006134678A1 (ja) * 2005-06-14 2006-12-21 Ohno, Takemi 漏洩電流検出システム及び方法
JP2013130440A (ja) * 2011-12-21 2013-07-04 Mitsubishi Electric Corp 絶縁劣化診断装置
CN102539931A (zh) * 2012-03-07 2012-07-04 深圳市英威腾电气股份有限公司 一种绝缘检测方法及绝缘检测装置
JP2015154631A (ja) * 2014-02-17 2015-08-24 テンパール工業株式会社 差込接続ユニット
JP2015190918A (ja) * 2014-03-28 2015-11-02 学校法人早稲田大学 電気化学解析装置および電気化学システム
CN112816829A (zh) * 2020-07-01 2021-05-18 广东电网有限责任公司揭阳供电局 一种故障定位的分析装置及分析方法
CN112816829B (zh) * 2020-07-01 2023-07-14 广东电网有限责任公司揭阳供电局 一种故障定位的分析装置及分析方法
CN112557853A (zh) * 2020-12-19 2021-03-26 哈尔滨恒达交通设备技术开发有限公司 铁路客车复合型智能绝缘检测仪
CN112557853B (zh) * 2020-12-19 2023-05-30 哈尔滨恒达交通设备技术开发有限公司 铁路客车复合型智能绝缘检测仪
CN114670643A (zh) * 2022-03-30 2022-06-28 重庆长安新能源汽车科技有限公司 一种绝缘故障诊断方法、装置、控制器及介质
CN114670643B (zh) * 2022-03-30 2023-05-23 重庆长安新能源汽车科技有限公司 一种绝缘故障诊断方法、装置、控制器及介质

Similar Documents

Publication Publication Date Title
JP4167872B2 (ja) 漏れ電流の監視装置及びその監視システム
RU2464581C2 (ru) Измерение полного сопротивления линии электропередачи
US6493644B1 (en) A-base revenue meter with power quality features
US6615147B1 (en) Revenue meter with power quality features
EP3081947A1 (en) A system for monitoring a medium voltage network
JP2004184346A (ja) 絶縁状態測定機器
KR101269131B1 (ko) 스마트 멀티채널 전력량계를 이용한 누설전류 검출장치 및 그 방법
RU2536772C1 (ru) Способ и устройство для определения расстояния до места короткого замыкания фазы на землю
JP4977481B2 (ja) 絶縁監視装置
JP2018183034A (ja) 電力供給システムの保護装置及びそれを備えたシステム
KR101916362B1 (ko) 절연 열화에 의한 삼상 누설전류 측정방법을 이용한 지능형 전력설비 고장 예지 시스템 및 방법
RU2305292C1 (ru) СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ СЕТИ НАПРЯЖЕНИЯ 6( 10 ) - 35 кВ С ИЗОЛИРОВАННОЙ ИЛИ КОМПЕНСИРОВАННОЙ НЕЙТРАЛЬЮ
JPH02263170A (ja) 電力線路の不平衡監視装置
KR20170014671A (ko) 고압 직류 송전 시스템에 포함되는 고조파 필터의 손실을 측정하는 손실 전력 측정 시스템 및 그의 손실 전력 측정 방법
US6336059B1 (en) Reach-measurement method for distance relays and fault locators on series-compensated transmission lines using local information
JP2008309681A (ja) 絶縁劣化監視装置とその方法
RU2175138C1 (ru) Способ измерения сопротивления изоляции силовой сети электроустановок транспорта под рабочим напряжением и устройство для его реализации
JPH11304855A (ja) 絶縁抵抗測定方法及びこれを用いた電気設備監視装置
JPH0697245B2 (ja) 非接地電力系統の対地静電容量の測定装置
JPH0692997B2 (ja) 電力系統の対地静電容量の測定装置
RU2028634C1 (ru) Способ измерения сопротивления изоляции электрических сетей переменного тока со статическими преобразователями и устройство для его осуществления
RU2803643C1 (ru) Таймер-электросчётчик мобильный портативный трёхфазный с измерением тока в нулевом проводнике
JP2004007921A (ja) ディジタル形保護継電装置の点検試験器
JP3027212B2 (ja) 高調波観測装置
JP3178358B2 (ja) 高調波計測装置