JP2004183347A - Pipe line installation method for columnar article and load introduction reinforcement foundation - Google Patents

Pipe line installation method for columnar article and load introduction reinforcement foundation Download PDF

Info

Publication number
JP2004183347A
JP2004183347A JP2002352286A JP2002352286A JP2004183347A JP 2004183347 A JP2004183347 A JP 2004183347A JP 2002352286 A JP2002352286 A JP 2002352286A JP 2002352286 A JP2002352286 A JP 2002352286A JP 2004183347 A JP2004183347 A JP 2004183347A
Authority
JP
Japan
Prior art keywords
foundation
embankment layer
reinforcing material
soil
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002352286A
Other languages
Japanese (ja)
Inventor
Yujiro Inaba
雄次郎 稲葉
Yasuyuki Kitano
靖行 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002352286A priority Critical patent/JP2004183347A/en
Publication of JP2004183347A publication Critical patent/JP2004183347A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an installation method for a columnar duct to enable improvement of the installation strength of the columnar article or pipe line to be installed and a load introduction reinforcing foundation capable of being formed in a short time irrespective of the foundation shape when the foundation forming a base is formed and capable of improving the installation strength of the installed columnar article or the pipe line. <P>SOLUTION: A marker, a lighting tower, etc. are erected on the ground and a pile line such as a force feed pipe is installed. In this method, After the vicinity of the installation position is digged to form a digged section, a high rigid bottom disc is put on the digged section provided with a fill layer formed of a multilayer of backfilled earth on a bottom disc, a flat, an almost flat reticulated, or a latticed reinforcing material put between respective fill layers and having a large friction coefficient and tensile strength, a highly rigid upper disc on the uppermost or upper fill layer, a tension member connecting the upper disc and the bottom disc. Further, in the construction method, a compression force is actuated on the whole body of the fill layer through the tension member to form respective fill layers reaching from the high rigid upper disc to the bottom disc and the earth foundation is formed by integrally forming the reinforcing materials the columnar article or the pipe line is set on the upper disc or a hole with the columner article penetrated therein is formed on the upper disc to support the foundation for the article. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は道路の一部を掘削して基礎を埋設し、支柱やポールもしくは標識基部や照明灯基部等の柱状物又は管路を前記基礎上に設置する柱状物・管路設置工法および基礎に関するものである。
【0002】
【従来の技術】
従来、支柱やポールもしくは標識基部や照明灯基部等の柱状物を地面に立設(設置)する際には、設置位置付近の地面を掘削してコンクリートを流し込んで基礎を形成する所謂コンクリート基礎が一般的である。
【0003】
前記コンクリート基礎による柱状物立設工法では、図7に示すように、掘削部に底盤15を設置しコンクリート型枠を仮設し、該型枠内にアンカーベース13とアンカーボルト12の下部を収納した状態でさらにコンクリート14を流し込んで基礎を形成し、上部アンカーベース11に柱状物1Cの取付部1Caを立設する工法であって、流し込んだコンクリートが硬化するまでの間、またコンクリートを養生する間、放置しておく必要があり、施工期間が長くなっている。
【0004】
さらに、コンクリートを使用するために、掘削施工のための土木工だけでなく、型枠工やコンクリート工等の専門家も必要となり、さらには各工程のプロセスや順序を管理する必要もある。
【0005】
また、このコンクリート基礎による柱状物の立設保持強度は、単に掘削した掘削部にコンクリートを流し込んだにすぎないために、不十分である。一般に土とコンクリートとはその接触部分においてなじまずに縁が切れ易い。そのため、道路に設置される柱状物に車等が衝突すると、その転倒モーメントにより基礎のコンクリートと土との間に間隙が生じて立設保持強度が低下する。
【0006】
そこで、立設保持強度を強化するために、地面に長尺な坑体を垂下埋設して、該坑体とアンカーボルトとをコンクリートにより一体化固定する立設工法が公開されている。(例えば、特許文献1参照)
【0007】
さらには、盛土を利用した土木工事として補強土を使用し、橋台や橋脚などの上部構造物を支持するための基礎構築体を形成する工法も知られている。(例えば、特許文献2参照)
【0008】
上記の特許文献2に記載の基礎構築体は、鉄筋コンクリートや鋼板からなる高剛性の基礎支持体上に、一定厚さの盛土層を複数積み重ねて、各盛土層間に、摩擦係数及び引張強度が大きいフラット若しくは略フラットな補強材を介装した基礎構築体であり、さらには、多層の盛土層と補強材とを貫通する複数本のアンカーを装着して、締め上げて高剛性の擬似躯体を形成する構成である。
【0009】
【特許文献1】
特開2000−234339号公報(第2−5頁、第1図)
【特許文献2】
特許第2597116号公報(第2−5頁、第1図)
【0010】
【発明が解決しようとする課題】
しかしながら上記特許文献1に記載の立設工法では、長尺な坑体としての鋼管を打ち込む作業が必要であり、また基礎コンクリートが硬化する期間工期が長くなることには変化がなく、保持強度は強化されるが依然として工事が長期化し大変であった。
【0011】
一般に、標識基部や照明灯基部等の柱状物を設置する道路内部には、水道管やガス管等の種々の地下埋設物が存在しており、基礎の形状をそれらの邪魔にならないように形成する必要がある等の制約を受けるために、前もって所定形状の基礎を用意しておくこともできず、現場での生コンクリートを流し込む基礎施工方法が採用されている。
【0012】
しかも、一旦コンクリート基礎により設置した柱状物を移動したり撤去するには、固まったコンクリートを破砕する必要があり、そのための専門家が必要であり、面倒であると共に困難であった。
【0013】
また、特許文献2に記載の補強土を使用した基礎構築体の形成方法では、土木工事の上部構造体を支持する基礎地盤を強化するものであって、道路の標識や照明灯等の柱状基部の設置工法に補強土を利用するものではない。
【0014】
前記の補強土による基礎構築体は、積層盛土を上下から締付けてプレストレスを加えると、積層された盛土にひずみが生じ、側方へ押出されようとするが、剛性のある補強材によりそのひずみを拘束し、前記補強材自身に引張プレストレスが導入される。その結果前記プレストレスにより積層盛土全体が高い剛性と強度を保持し又弾性化され擬似躯体を形成するものである。
【0015】
本発明の目的は、地面に標識や照明灯等を立設したり、圧送管等の管路を設置する設置工法において、土台となる基礎を形成する際に、前記基礎の形状に拘らずに短期間で施工することができると共に、設置する柱状物や管路の設置強度を向上することを可能とする柱状物・管路の設置工法および荷重導入補強土基礎を提供することである。
【0016】
【課題を解決するための手段】
上記の目的を達成するために請求項1に係る発明は、地面に標識基部や照明灯基部等の柱状物又は管路を設置する際に、設置位置周辺を掘削して掘削部を形成した後、該掘削部に高剛性の底盤を設置し、前記底盤上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上又は上方の盛土層上に配設する高剛性の上盤と、該上盤と前記底盤とを締結する緊張部材とを備え、前記緊張部材を介して盛土層全体に圧縮力を作用させて、前記高剛性の上盤より底盤に至る各盛土層及び補強材を一体化して基礎を形成すると共に、前記上盤上に前記柱状物又は管路を設置するか若しくは前記上盤に前記柱状基部が貫通する孔部を設けて前記基礎が前記柱状物を支持する構成とする柱状物・管路設置工法であることを特徴としている。
【0017】
上記の構成を有する請求項1に係る発明によれば、多層の盛土層と、各盛土層間に介装される補強材と、底盤と上盤とを緊張部材により締付けて一体化する構成であるので、所謂荷重導入補強土として構成される基礎に柱状物や管路を設置することになり、柱状物や管路の設置強度が強い設置工法とすることができる。また、生コンクリートを使用しないために工期が短くできる。
【0018】
請求項2に係る発明は、前記柱状物下部に取付フランジ部を設け、該取付フランジ部を前記上盤上に設けたネジ孔にネジ固定する構成としたことを特徴としている。
【0019】
上記の構成を有する請求項2に係る発明によれば、任意の柱状物を前記上盤に装着自在に構成することができる。
【0020】
請求項3に係る発明は、前記多層の盛土層と補強材及び前記上盤を貫通するように支柱支持部材を配設し、該支柱支持部材に前記柱状物を着脱自在に構成したことを特徴としている。
【0021】
上記の構成を有する請求項3に係る発明によれば、任意の柱状物を前記支柱支持部材に着脱自在に構成することができる。
【0022】
請求項4に係る発明は、前記緊張部材が前記上盤及び前記補強材を垂直に貫通して前記上盤と前記底盤とを締結する複数本のアンカー部材であることを特徴としている。
【0023】
上記の構成を有する請求項4に係る発明によれば、装着したアンカー部材を順次締め上げていくことで、多層の盛土層を圧縮固定することになり、強固な補強土を形成することができる。
【0024】
請求項5に係る発明は、前記緊張部材が前記支柱支持部材側に設けられたネジ部と前記上盤または上盤に載置する取付プレート側に設けられたネジ部との螺合によって構成されることを特徴としている。
【0025】
上記の構成を有する請求項5に係る発明によれば、前記取付プレートを支柱支持部材に螺合していくことで、多層の盛土層を圧縮固定することになり、強固な補強土を形成することができる。
【0026】
請求項6に係る発明は、前記盛土層が掘削残土である埋め戻し土から形成されていることを特徴としている。
【0027】
上記の構成を有する請求項6に係る発明によれば、掘削残土を再利用することで、余分な廃棄物を発生せず、また、輸送コスト等も削減できるので工事のコストを低減することができる。
【0028】
請求項7に係る発明は、基礎支持体となる底盤上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上又は上方の盛土層上に配設する高剛性の上盤と、該上盤と前記底盤とを締結する緊張部材とを備え、前記緊張部材を介して盛土層全体に圧縮力を作用させて、前記高剛性の上盤より底盤に至る各盛土層及び補強材を一体化して基礎を形成すると共に、前記上盤上に標識基部や照明灯基部等の柱状物又は管路を設置するか若しくは前記上盤に前記柱状物が貫通する孔部を設けて前記基礎が前記柱状物を支持する構成とする荷重導入補強土基礎であることを特徴としている。
【0029】
上記の構成を有する請求項7に係る発明によれば、基礎支持体となる底盤と、多層の盛土層と、各盛土層間に介装される補強材と、上盤とを緊張部材により締付けて一体化して構成される基礎に柱状物や管路を設置することで、強力な設置強度を有する荷重導入補強土基礎を得ることができる。
【0030】
請求項8に係る発明は、前記柱状物下部に取付フランジ部を設け、該取付フランジ部を前記上盤上に設けたネジ孔にネジ固定する構成としたことを特徴としている。
【0031】
上記の構成を有する請求項8に係る発明によれば、任意の柱状物を前記上盤に装着自在に構成することができる。
【0032】
請求項9に係る発明は、前記多層の盛土層と補強材及び前記上盤を貫通するように支柱支持部材を配設し、該支柱支持部材に前記柱状物を着脱自在に構成したことを特徴としている。
【0033】
上記の構成を有する請求項9に係る発明によれば、任意の柱状物を前記支柱支持部材に着脱自在に構成することができる。
【0034】
請求項10に係る発明は、前記緊張部材が前記上盤及び前記補強材を垂直に貫通して前記上盤と前記底盤とを締結する複数本のアンカー部材であることを特徴としている。
【0035】
上記の構成を有する請求項10に係る発明によれば、装着したアンカー部材を順次締め上げていくことで、多層の盛土層を圧縮固定することになり、強固な荷重導入補強土基礎を形成することができる。
【0036】
請求項11に係る発明は、前記緊張部材が前記支柱支持部材側に設けられたネジ部と前記上盤または上盤に載置する取付プレート側に設けられたネジ部との螺合によって構成されることを特徴としている。
【0037】
上記の構成を有する請求項11に係る発明によれば、前記取付プレートを支柱支持部材に螺合していくことで、多層の盛土層を圧縮固定することになり、強固な荷重導入補強土基礎を形成することができる。
【0038】
【発明の実施の形態】
以下、本発明に係る柱状物・管路設置工法および荷重導入補強土基礎の実施の形態について、図1から図7に基づいて説明する。
【0039】
図1は本発明に係る荷重導入補強土基礎を使用した設置物の一実施例を示す概略説明図であり、(a)は柱状物の立設状態を示し、(b)は管路の設置状態を示している。図2は緊張部材の底盤に対する装着部を示し、(a)は断面図であり、(b)は平面図である。図3には柱状物の支持構成を示し、(a)は上盤に取付ネジ部を形成し、前記柱状物下部をネジ固定する支持構成を示す斜視図であって、(b)は多層の盛土層及び補強材を貫通するように支柱支持部材を配設した支持構成を示す斜視図である。図4には荷重導入補強土基礎の種々の形状をした実施例を示し、(a)は円筒形の補強土基礎を示し、(b)は三角形の補強土基礎を示す。また、(c)は支柱支持部材と取付プレートとを螺合する構成とした基礎を示し、(d)は型鋼を利用した補強土基礎を示している。図5は柱状物設置工法の作業手順を示すブロック図であって、(a)は本発明に係る作業手順を示し、(b)は従来のコンクリート基礎による作業手順を示す。図6は補強土基礎を用いた設置工法の別実施例を示す断面図であり、(a)は袋状の補強材を用いた例であり、(b)は底盤を使用しない例である。図7は従来のコンクリート基礎を示す概略説明図である。
【0040】
図1から図3により本発明に係る補強土基礎を使用して設置される柱状物や管路について説明する。図1(a)には、道路等の地面の所定位置に標識基部や照明灯基部等の柱状物1を設置したところを示している。掘削部20に、底盤2と上盤3との間に掘削残土からなる盛土を多層積み重ねて盛土層4を形成する。この時に、各盛土層間に補強材5を介装させて一体化した(荷重導入補強土)基礎10に柱状物1を装着する構成である。
【0041】
上記基礎10は、鋼板等の高剛性の底盤2に設けられた長孔2aに、PC棒鋼からなる緊張部材6の矩形部6aを挿入して装着した後、最下層の盛土4dを造成して転圧機などで突き固めながら補強材5を敷設し、その上に次の盛土4cを造成しさらに突き固め、新たな補強材5を敷設しさらに盛土4b、補強材5、最上段の盛土層4aを順次積み重ね、最後に高剛性の上盤3を設置して形成したものである。
【0042】
この時に、補強材5として、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材(ジオテキスタイルやエキスパンドメタル等)を採用し、厚みの薄い多重の盛土層間に介装しながら、順次所定厚みの基礎10を形成するまで積み重ねていく構成である。この際、盛土層4として、掘削部20から掘削された残土を用いる構成としたので、余分な廃棄物を生じることもなく、また、残土の輸送を行う必要もない。
【0043】
前記補強材5の大きさは底盤2や上盤3等の同程度の大きさであるが、これよりも大きいサイズの補強材5aを採用し、各盛土層4を突き固める際に前記基礎10の周囲に掘削残土を埋め戻して、該埋め戻し土と前記盛土層4とを共に突き固めて一体化する構成としてもよい。このような構成とすると、基礎10と該基礎10の周囲の土との一体強度をさらに高めることができる。
【0044】
緊張部材6は、底盤2に設けられた長孔2aを挿通して装着されるアンカー部材であって、前記長孔2aに挿通自在な矩形部6aをその一端に備えている。前記矩形部6aを前記長孔2aに挿入した後で、緊張部材6を少し回転すると、図2(b)の破線に示すように、前記矩形部6aが長孔2a位置からずれて底盤2に当接して抜け止めされた構成となる。この状態で上盤3の上方に突き出た緊張部材6の他端部に形成されたネジ部にナット部材7を螺合させ締め上げることで、底盤2と上盤3と多層の盛土層4と補強材5とを堅結して一体化した(荷重導入補強土)基礎10を形成する工法である。
【0045】
前記緊張部材6の数量は、前記基礎10を形成するのに必要な締め付け力を発揮する程度の本数でよく、特に限定するものではない。
【0046】
ここで、前記ナット部材7を締めても、各盛土層がずれて横にはみ出ることがないようにその層を薄くしている。もちろん、各層間に配設した補強材5の摩擦保持力により横滑りを防止する構成であり、盛土層4の各層の厚みは10〜30cm程度が望ましい。この各層の厚みは土粒子の大きさに関係し、レキや砂質土のように土粒子の大きいものほど厚くできる。これは横ずれしようとする土粒子間の拘束力が大きくなるためである。
【0047】
また、上記ナット部材7を螺合させ締め上げる工程は、前記基礎10を地中に埋め込んだ状態で行うために、該基礎10の周囲の土を圧迫しながら、一体の基礎躯体として堅結される構成である。そのために、該基礎10を引き抜くことは困難であり、該基礎10に標識や照明灯等の柱状物1を設置した場合には、その柱状物1の立設保持強度が強くなる。
【0048】
図1(b)は圧送管等の管路1Pを設置する実施例であり、補強土による基礎10は図1(a)で説明したものと同等であり、同符号を付して詳細な説明は省略する。
【0049】
底盤2に最下層の盛土4dを造成して転圧機などで突き固めながら補強材5を敷設し、その上に次の盛土4cを造成しさらに突き固め、新たな補強材5を敷設しさらに盛土4b、補強材5、最上段の盛土層4aを順次積み重ね、最後に高剛性の上盤3を設置して形成した基礎10に、管路1Pをワイヤー1wにて固設する構成である。管路1Pは長尺なものであり、基礎10は長尺な管路1Pの所定ピッチ毎に配設すればよい。また、管路の長手方向軸線に沿った帯状の基礎としてもよい。
【0050】
図1(a)に示す柱状物1の固定方法は、上盤3に形成された取付ネジ孔部3aに、前記柱状物1の下部に設けた取付フランジ部1aをネジ固定する構成であり、前記基礎10に対して着脱自在な構成とされている。
【0051】
図3には柱状物を立設する別の実施例を示しており、(a)は比較的薄い上盤3Aに厚手の取付プレート3Bを配設して、緊張部材6により底盤2と盛土層4と補強材5とを一体的に締め上げて荷重導入補強土基礎を形成して、前記取付プレート3Bに設けた取付ネジ孔部3Baに柱状物1Aをネジ止めする構成を示している。しかし、厚手の取付プレート3Bを採用せずに、上盤3Aを剛性を高めた鋼板製や強化プラスチック製として取付ネジ孔部を設け、前記柱状物1Aをネジ止めする構成としてもよいことは前述した通りである。この際に、前記上盤3Aの形状も平板には限定されず、お椀状に湾曲した形状でもよく、底盤2との間で締付けて荷重導入補強土を形成する形状であればよい。
【0052】
またこの時に、上盤3Aよりも大きい底盤2C(図中の想像線に示す)を採用し全体台形状の荷重導入補強土基礎を形成してもよい。
【0053】
図3(b)に示す例は上盤3Cを貫通する鋼管8を埋め込み構成として基礎に一体化したものである。該鋼管8は多層の盛土層4と補強材5とを積み重ねて押し固めることで固定することもできるが、前もって底盤2に溶接あるいはネジ止め等で固定しておいてもよい。
【0054】
前記鋼管8は支柱支持部材であって、柱状物1Bを挿入自在な空隙部を有している。また、上盤3Cの上側に突出している前記鋼管8の上端部には螺着ネジ用の孔8aが設けられている。つまり、鋼管8に柱状物1Bを挿入して孔8aに螺着ネジを螺合して固定する構成である。
【0055】
また、鋼管8の上端部に雌ネジ部を形成して、雄ネジが形成された柱状物端部を装着する構成とすることも可能であり、柱状物の取付構造を特に限定するものではない。
【0056】
さらに、上盤3Cに設けた孔部3Caに柱状物1Bを直接挿入し、多層の盛土層4と補強材5と上盤3Cとを押し固めることで固定することもできる。
【0057】
図3(a)に相当する実施例として、底盤2と上盤3Aとにそれぞれ1m四方で厚み11mmの鋼板を、また、取付プレート3Bに80cm角で厚み40mmの鋼板を使用し、厚み30cm程の盛土層を5層重ねて、その層間にジオテキスタイルの補強材をそれぞれ敷設し、19mm径のPC棒鋼4本を緊張部材として一体的に締め上げて、全高1.5m程の補強土基礎を形成した。
【0058】
上記の全高1.5mの補強土基礎と略同形状のコンクリート基礎とで、土中に埋めた状態からの引き抜き試験を実施した。その結果、従来のコンクリート基礎では基礎自重の0.5〜1倍の引き抜き荷重で引き抜くことができたが、荷重導入補強土基礎においては基礎自重の3倍以上の引き抜き荷重が必要であった。この試験により本発明による荷重導入補強土基礎のせん断抵抗が非常に強大であることが確認された。
【0059】
図4には荷重導入補強土基礎の種々の形状を示す実施例を示している。(a)は円筒形の基礎10Aであり、円形の底盤2Aと同じく円形の上盤3Dとの間に、同様な円形の盛土4Aと補強材5Aを所定層積み重ねて形成したものである。(b)は三角柱形の基礎10Bであって、三角形の底盤2Bと同じく三角形の上盤3Eとの間に、同様な三角形の盛土4Bと補強材5Bを所定層積み重ねて形成したものである。
【0060】
上記の三角形の基礎10Bでは緊張部材6を3本使用しているが、この緊張部材6の数量は4本でもまた6本でもよく、特に限定するものではない。ただ、所定の寸法と所定数の盛土層の補強土基礎を構成する締め付け力を発揮する緊張部材であればよい。
【0061】
また、アンカーボルト等の緊張部材6により締付ける構成ではなく、バール等にて締付けて、アンカー頭部に設けた孔部に楔をかませる構成とすることもできる。要するに、荷重を導入して補強土基礎を構成した時に、締め付け荷重を保持する構成とすればよい。
【0062】
図4(c)は底盤2に固着される支柱支持部材8Aの上端部に雄ネジ部8Aaを形成し、上盤3Cから突き出た前記ネジ部8Aaに雌ネジ部3Gaを備える取付プレート3Gを螺合させて形成する補強土基礎10Cを示している。この構成では、アンカーボルトの替わりに取付プレート3Gを締め込んでいって、補強土基礎10Cを形成しているので、締め付け作業が一回でよいという効果を有する。この締め付け作業は大型のパイプレンチを使用して実施することができ、通常の土木工により実施可能である。もちろん、取付プレートの形状は図に示す円形には限定されず、4角形でもその他の多角形でもよい。
【0063】
また、前記取付プレート3Gには他物品を装着するためのネジ部が配設されていて、任意の柱状物や柱状基部を着脱自在な構成である。
【0064】
図4(d)には、上盤3に型鋼9を載置して4本の緊張部材6により荷重導入補強土基礎10Dを構成する例を示している。前記型鋼9にも他物品を装着するためのネジ部が配設されていて、任意の柱状物を着脱自在な構成である。
【0065】
上記の型鋼9を用いる基礎であっても、該基礎の中心軸部に別の支柱支持部材を埋め込み構成とし、該支柱支持部材に任意の柱状物を着脱自在な構成としてもよい。
【0066】
一般に標識基部や照明灯基部等の柱状物を設置する道路内部には、水道管やガス管等の種々の地下埋設物が存在しており、基礎の形状をそれらの邪魔にならないように形成する必要がある。場合によっては、上述した四角形や三角形や円形でもなく、五角形やその他の複雑な形状となる場合も考えられる。本発明に係る柱状物・管路設置工法によれば、所望の設置位置を掘削した後にその掘削形状に合致させて、底盤や上盤や補強材の形状を選定すればよく、任意の形状の基礎を構成することができる。
【0067】
上記荷重導入補強土基礎の大きさは、立設する物体の大きさと形状により、高さ5m程の大型の照明灯等では、1m角で高さ1.5m程の大きさが必要であるが、標識等の小型の立設物では30cm角の高さ30cm程の大きさの荷重導入補強土基礎で十分であることが確認された。そのために、本発明による荷重導入補強土基礎をそれぞれの形状に標準化して基礎セットとして準備しておくことも可能である。
【0068】
上記基礎セットは、所定形状で且つ所定の大きさの底盤2と上盤3と補強材5と緊張部材6等を1セットとして構成したものであり、必要に応じて支柱支持部材である鋼管8を含む場合もある。また、既に標準的な土を使用して盛土層を形成し、荷重導入補強土基礎として完成させたセットとして準備しておくことも可能である。
【0069】
図5により従来工法と本発明に係る柱状物立設工法との相違を説明する。図5(b)に示す従来のコンクリート基礎工法では、先ず柱状物の立設位置付近を掘削し(第1段階)、底ならしをし(第2段階)、型枠を設置(仮設)し(第3段階)、所定位置にアンカーボルト12を設置(第4段階)して生コンを打設する(第5段階)。その後で、コンクリートの硬化期間と養生期間を経過した後(一般に1週間以上)で、型枠を取り外し(第6段階)、その跡を埋め戻して(第7段階)、最後に柱状物10を立設(設置)する(第8段階)。
【0070】
つまり、全ての作業工程は8段階の工程が必要であり、さらに全8工程を連続的に行うことはできず、工期が長くなっている。また、掘削のための土木工の他に、型枠工やコンクリート工が必要となり、各工程のプロセスや順序を管理する必要もある。さらには、コンクリートの硬化期間と養生期間の間は、道路上の安全管理が必要となり、そのための設備やガードマンが必要な場合もある。
【0071】
図5(a)に示す本発明に係る柱状物立設工法では、先ず柱状物の立設位置付近を掘削し(第1段階)、底ならしをし(第2段階)、底盤を設置する(第3段階)。この時に、緊張部材を装着固定しておく。次いで基礎を作成(第4段階)する。この基礎作成とは、上述したように、多層の盛土を転圧しながら突き固めて、各層毎に補強材を敷設して作成するものである。さらに、上盤を設置し(第5段階)、緊張部材を締め上げて圧縮した後、一旦前記緊張部材を緩めて上盤を取り外して残土を積み足して水平化を施工する。水平状態を確認した後、再度上盤を設置し、緊張部材を締め直して、最後に柱状物を立設する(第6段階)工程である。
【0072】
上記のように、従来のコンクリート基礎工法では合計8段階の作業工程が必要であったのが、本発明に係る柱状物立設工法では合計6段階の作業工程に短縮することができる。さらには、生コンを使用しないために、コンクリートの硬化期間や養生期間を考慮する必要もなく、全工程を一連の連続工程として作業することができる。
【0073】
また、コンクリートを使用しないために、型枠工やコンクリート工等の専門家を必要とせず、土木工のみでよく効率的である。そして、コンクリートを使用しないことは自然にやさしい工法ともいえ、環境保全にも好適である。
【0074】
つまり、上記の本発明に係る柱状物立設工法における各工程は連続的に行うことができるので、工期を1〜2日に短縮することができる。また、さらには土木工以外の特別な専門家を必要としないので、工事コストも低く押えることも可能である。
【0075】
さらには、掘削残土である埋め戻し土を利用して、多層の盛土層を形成して基礎を構成するので、掘削残土を廃棄する必要もなく、また搬送する必要もないことになり、この点からも環境に優しく低コスト化が達成可能である。また、埋め戻し土からなる多層の盛土層から構成される基礎を、地中に埋めた状態で締め上げる構成であるので、前記盛土層と周囲の土との接触状態が堅固になり、前記基礎を傾けたり引き抜く力が加わっても、その荷重に抗する抵抗が増加し、保持力が強固な基礎を得ることができる。
【0076】
また、この時に底盤の大きさを大きくした全体台形状の荷重導入補強土基礎とすれば、該基礎を傾けたり引き抜く荷重に抗する抵抗がさらに増加し、保持力がさらに強固な基礎を得ることができる。
【0077】
図6には補強土による柱状物立設工法の別実施例を示しており、(a)は袋詰めされた補強土基礎の例であって、袋状の補強材5Cもしくは袋状の不織布等に土を詰めてフラットな補強材を介装させて構成した補強土基礎である。この例では、一旦形成された盛土層4Cが雨水や流水等により流出することがなく、長期間に渡って安定した基礎を構成するものである。この時に底盤2と同程度の大きさの補強材5Cもしくは袋状の不織布等を用いてもよいし、これよりも小さい補強材5Dもしくは袋状の不織布等に袋詰めしたものを複数載置する構成としてもよい。
【0078】
また、図6(b)に示す例は、通常土22のすぐ下に硬い地盤や岩盤層21が存在している場合には、底盤2を不要とし、緊張部材としてスクリューアンカー6Aを前記岩盤層21にねじ込んで、盛土層4Dと補強材5を複数層積み重ねて補強土基礎を形成したものである。またこの時に、補強材として前記補強材5C、5Dを用いて袋詰め状の盛土層としてもよいのは明らかである。
【0079】
本発明に係る荷重導入補強土基礎は掘削残土を盛土層に利用するので、軟弱な土質の場合には堅固な基礎を形成することができない。特に有機分を多く含む腐植土や水分の多い粘性土等の場合は、基本的に盛土材としては不向きである。しかしこういう時に、石灰やセメント材を少量混ぜた盛土層として補強土基礎を構成すると、緊張部材により締め上げておくとそのまま固まるので、十分堅固な基礎とすることが可能である。しかし、この場合には、体積収縮が生じるので再緊張が必要となる。また、袋詰め状の盛土層とすれば前記と同様に基礎構築作業が容易となる。
【0080】
【発明の効果】
上記したように本発明によれば、工期が短く環境にやさしい、任意の柱状物等を設置自在で且つ柱状物や管路の設置強度が強い設置工法を得ることができる。
【0081】
また、基礎支持体となる底盤と、多層の盛土層と、各盛土層間に介装される補強材と、上盤とを緊張部材により締付けて一体化して構成される荷重導入補強土で構成される基礎を得ることができる。
【0082】
さらには、基礎を構成する補強土を締め上げて周囲の土と一体化するので、設置される柱状物等の保持強度をさらに強固にすることができる。
【図面の簡単な説明】
【図1】本発明に係る荷重導入補強土基礎を使用した設置物の一実施例を示す概略説明図であり、(a)は柱状物の立設状態を示し、(b)は管路の設置状態を示す。
【図2】緊張部材の底盤に対する装着部を示し、(a)は断面図であり、(b)は平面図である。
【図3】柱状物の支持構成を示し、(a)は上盤に取付ネジ部を形成し、柱状物下部をネジ固定する支持構成を示す斜視図であって、(b)は多層の盛土層及び補強材を貫通するように支柱支持部材を配設した支持構成を示す斜視図である。
【図4】荷重導入補強土基礎の形状を異ならせた別実施例を示し、(a)は円筒形の補強土基礎を示し、(b)は三角形の補強土基礎を示す。(c)は支柱支持部材と取付プレートとを螺合する構成とした基礎を示し、(d)は型鋼を利用した補強土基礎を示している。
【図5】柱状物立設工法の作業手順を示すブロック図であって、(a)は本発明に係る作業手順を示し、(b)は従来のコンクリート基礎による作業手順を示す。
【図6】荷重導入補強土基礎を用いた立設工法の別実施例を示す断面図であり、(a)は袋状の補強材を用いた例であり、(b)は底盤を使用しない例である。
【図7】従来のコンクリート基礎を示す概略説明図である。
【符号の説明】
1,1A、1B 柱状物
1P 管路
1a 取付フランジ部
2 底盤
3 上盤
3Ca 孔部
4 盛土層
5 補強材
6 緊張部材
8 鋼管(支柱支持部材)
10 (荷重導入補強土)基礎
12 アンカーボルト
14 コンクリート
20 掘削部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a columnar / pipe installation method and a foundation in which a part of a road is excavated to bury a foundation, and a column or a pipe such as a support, a pole or a sign base or a lighting base is installed on the foundation. Things.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when erecting (installing) pillars or poles or pillars such as sign bases and lighting lamp bases on the ground, a so-called concrete foundation that excavates the ground near the installation position and pours concrete to form a foundation. General.
[0003]
In the method of erecting a columnar object using the concrete foundation, as shown in FIG. 7, a bottom board 15 is installed in an excavated portion, a concrete formwork is temporarily provided, and the anchor base 13 and a lower portion of the anchor bolt 12 are accommodated in the formwork. In this state, the concrete 14 is further poured to form a foundation, and the mounting portion 1Ca of the columnar object 1C is erected on the upper anchor base 11 until the poured concrete is hardened and while the concrete is cured. , It is necessary to leave it, and the construction period is long.
[0004]
Furthermore, in order to use concrete, not only civil engineering for excavation work but also specialists such as formwork and concrete work are required, and it is also necessary to manage the process and sequence of each process.
[0005]
Further, the standing strength of the columnar object by the concrete foundation is insufficient because the concrete is simply poured into the excavated portion. In general, the soil and the concrete are easily cut off at the contact portion without contact. Therefore, when a car or the like collides with a columnar object installed on a road, a gap is created between the foundation concrete and the soil due to the overturning moment, and the standing holding strength is reduced.
[0006]
Therefore, in order to enhance the standing holding strength, there has been disclosed a standing construction method in which a long pit is vertically buried in the ground and the pit and the anchor bolt are integrally fixed by concrete. (For example, see Patent Document 1)
[0007]
Furthermore, there is also known a construction method in which reinforcing soil is used as civil engineering work using embankment to form a foundation structure for supporting an upper structure such as an abutment or a pier. (For example, see Patent Document 2)
[0008]
The foundation structure described in Patent Literature 2 has a plurality of embankment layers having a constant thickness stacked on a high-rigidity foundation support made of reinforced concrete or steel plate, and has a large friction coefficient and a large tensile strength between the embankment layers. It is a foundation structure with a flat or almost flat reinforcing material interposed, and furthermore, a plurality of anchors penetrating the multilayer embankment layer and the reinforcing material are attached and tightened to form a high rigidity pseudo body Configuration.
[0009]
[Patent Document 1]
JP-A-2000-234339 (pages 2 to 5, FIG. 1)
[Patent Document 2]
Japanese Patent No. 2597116 (pages 2 to 5, FIG. 1)
[0010]
[Problems to be solved by the invention]
However, in the upright construction method described in Patent Literature 1, it is necessary to drive a steel pipe as a long pit, and there is no change in that the period of time during which the foundation concrete hardens becomes longer, and the holding strength is not changed. The construction was prolonged, but the construction was long and difficult.
[0011]
Generally, various underground objects such as water pipes and gas pipes are present inside the road where pillars such as sign bases and lighting bases are installed, and the shape of the foundation is formed so as not to obstruct them. Due to restrictions such as the necessity of performing concrete work, it is not possible to prepare a foundation of a predetermined shape in advance, and a foundation construction method of pouring ready-mixed concrete on site has been adopted.
[0012]
Moreover, in order to move or remove the pillars once installed on the concrete foundation, it is necessary to crush the hardened concrete, which requires an expert, which is troublesome and difficult.
[0013]
Further, the method of forming a foundation structure using reinforcing soil described in Patent Literature 2 reinforces a foundation ground that supports an upper structure of civil engineering work, and includes a pillar base such as a road sign or a lighting lamp. It does not use reinforced soil for the construction method.
[0014]
When the pre-stress is applied by tightening the laminated embankment from above and below, the foundation structure with the above-mentioned reinforced soil is distorted in the laminated embankment and tends to be extruded to the side, but the rigid reinforcing material causes the distortion. And a tensile prestress is introduced into the reinforcing material itself. As a result, the whole embankment retains high rigidity and strength by the pre-stress and is elasticized to form a pseudo frame.
[0015]
An object of the present invention is to provide an installation method for setting up a sign or an illumination lamp on the ground or installing a pipeline such as a pumping pipe, when forming a foundation serving as a base, regardless of the shape of the foundation. An object of the present invention is to provide a method of installing columnar objects and pipelines and a load-introducing reinforcing soil foundation that can be constructed in a short period of time and that can improve the installation strength of columns and pipelines to be installed.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is to excavate around an installation position to form an excavation portion when installing a columnar object or a pipe such as a sign base or an illumination lamp base on the ground. A high-rigid bottom plate is installed in the excavated portion, and a multi-layered embankment layer is provided on the bottom plate, and a flat or substantially flat mesh-like or lattice-like reinforcing material interposed between the respective embankment layers and having a large friction coefficient and tensile strength. And a high-rigidity upper plate disposed on the uppermost or upper embankment layer, and a tension member for fastening the upper plate and the bottom plate, and a compressive force acts on the entire embankment layer via the tension member. Then, while embedding each embankment layer and reinforcing material from the high rigidity upper plate to the bottom plate to form a foundation, and installing the columnar object or conduit on the upper plate or the upper plate The base supports the column by providing a hole through which the column base passes It is characterized by a columnar object-line installation method to formed.
[0017]
According to the invention according to claim 1 having the above configuration, a multilayer embankment layer, a reinforcing material interposed between the embankment layers, and a bottom plate and an upper plate are tightened by a tension member to be integrated. Therefore, the columnar object or the pipeline is installed on the foundation configured as the so-called load-introducing reinforcing soil, and the installation method in which the installation strength of the columnar object or the pipeline is strong can be achieved. Also, the construction period can be shortened because fresh concrete is not used.
[0018]
The invention according to claim 2 is characterized in that a mounting flange portion is provided below the columnar object, and the mounting flange portion is screwed to a screw hole provided on the upper panel.
[0019]
According to the invention according to claim 2 having the above configuration, an arbitrary columnar object can be configured to be freely attached to the upper panel.
[0020]
The invention according to claim 3 is characterized in that a pillar support member is disposed so as to penetrate the multilayer embankment layer, the reinforcing material, and the upper panel, and the pillar is detachably attached to the pillar support member. And
[0021]
According to the invention according to claim 3 having the above configuration, an arbitrary columnar object can be configured to be detachable from the support member.
[0022]
The invention according to claim 4 is characterized in that the tension member is a plurality of anchor members that vertically penetrate the upper plate and the reinforcing member and fasten the upper plate and the bottom plate.
[0023]
According to the invention according to claim 4 having the above configuration, by sequentially tightening the attached anchor members, the multilayer embankment layer is compressed and fixed, and a strong reinforcing soil can be formed. .
[0024]
In the invention according to claim 5, the tension member is formed by screwing a screw portion provided on the column support member side and a screw portion provided on the upper plate or a mounting plate side mounted on the upper plate. It is characterized by that.
[0025]
According to the invention according to claim 5 having the above configuration, by screwing the mounting plate to the column support member, the multilayer embankment layer is fixed by compression, and a strong reinforcing soil is formed. be able to.
[0026]
The invention according to claim 6 is characterized in that the embankment layer is formed from backfill soil which is excavated soil.
[0027]
According to the invention according to claim 6 having the above-described configuration, by reusing the excavated soil, no extra waste is generated, and the transportation cost and the like can be reduced, so that the construction cost can be reduced. it can.
[0028]
The invention according to claim 7 is characterized in that a multilayer embankment layer is provided on a bottom base serving as a base support, and a flat or substantially flat mesh or grid-like reinforcing material interposed between the embankment layers and having a large friction coefficient and tensile strength. A high rigidity upper plate disposed on the uppermost or upper embankment layer, and a tension member for fastening the upper plate and the bottom plate, and applying a compressive force to the entire embankment layer via the tension member. In addition, together with the embankment layer and the reinforcing material from the high rigidity upper part to the bottom part and the reinforcing material are integrated to form a foundation, and a columnar object or a pipe such as a sign base or a lighting base is installed on the upper part. Alternatively, the upper base is provided with a hole through which the columnar material penetrates, and the foundation is a load-introducing reinforcing soil foundation configured to support the columnar material.
[0029]
According to the invention according to claim 7 having the above configuration, the bottom plate serving as the base support, the multilayer embankment layer, the reinforcing material interposed between the embankment layers, and the upper plate are tightened by the tension member. By installing pillars and pipes on an integrated foundation, a load-introducing reinforced soil foundation having strong installation strength can be obtained.
[0030]
The invention according to claim 8 is characterized in that a mounting flange portion is provided below the columnar object, and the mounting flange portion is screwed to a screw hole provided on the upper panel.
[0031]
According to the invention according to claim 8 having the above configuration, an arbitrary columnar object can be configured to be freely attached to the upper panel.
[0032]
The invention according to claim 9 is characterized in that a pillar support member is disposed so as to penetrate the multilayer embankment layer, the reinforcing material, and the upper panel, and the pillar-shaped member is detachably attached to the pillar support member. And
[0033]
According to the ninth aspect having the above-described configuration, an arbitrary columnar object can be configured to be detachably attached to the support member.
[0034]
The invention according to claim 10 is characterized in that the tension member is a plurality of anchor members that vertically penetrate the upper plate and the reinforcing member and fasten the upper plate and the bottom plate.
[0035]
According to the invention according to claim 10 having the above configuration, the multilayered embankment layer is compressed and fixed by sequentially tightening the attached anchor members, and a strong load-introducing reinforcing soil foundation is formed. be able to.
[0036]
According to an eleventh aspect of the present invention, the tension member is formed by screwing a screw portion provided on the column support member side and a screw portion provided on the upper plate or a mounting plate mounted on the upper plate. It is characterized by that.
[0037]
According to the invention according to claim 11 having the above configuration, by screwing the mounting plate to the column support member, the multilayer embankment layer is fixed by compression, and a strong load-introducing reinforcing soil foundation is provided. Can be formed.
[0038]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a columnar / pipeline installation method and a load introducing reinforced soil foundation according to the present invention will be described with reference to FIGS. 1 to 7.
[0039]
FIG. 1 is a schematic explanatory view showing one embodiment of an installed object using a load-introducing reinforcing soil foundation according to the present invention. FIG. 1 (a) shows a standing state of a columnar object, and FIG. The state is shown. 2A and 2B show a mounting portion of the tension member to the bottom plate, wherein FIG. 2A is a sectional view and FIG. 2B is a plan view. 3A and 3B are perspective views illustrating a support structure for supporting a columnar object, in which FIG. 3A illustrates a support structure in which a mounting screw portion is formed on an upper panel and a lower portion of the columnar object is fixed with screws. It is a perspective view which shows the support structure in which the support | pillar support member was arrange | positioned so that the embankment layer and the reinforcing material might be penetrated. FIGS. 4A and 4B show examples of various shapes of the load-introducing reinforcing soil foundation. FIG. 4A shows a cylindrical reinforcing soil foundation, and FIG. 4B shows a triangular reinforcing soil foundation. Also, (c) shows a foundation in which the column support member and the mounting plate are screwed together, and (d) shows a reinforced soil foundation using a shape steel. FIGS. 5A and 5B are block diagrams showing the work procedure of the columnar object installation method, wherein FIG. 5A shows the work procedure according to the present invention, and FIG. 5B shows the work procedure using a conventional concrete foundation. 6A and 6B are cross-sectional views showing another embodiment of the installation method using the reinforced soil foundation. FIG. 6A is an example using a bag-like reinforcing material, and FIG. 6B is an example not using a bottom plate. FIG. 7 is a schematic explanatory view showing a conventional concrete foundation.
[0040]
1 to 3, a description will be given of a columnar object and a pipe installed using the reinforced soil foundation according to the present invention. FIG. 1A shows a state where a columnar object 1 such as a sign base or a lighting base is installed at a predetermined position on the ground such as a road. In the excavation part 20, the embankment made of the excavated soil is stacked in multiple layers between the bottom plate 2 and the upper plate 3 to form the embankment layer 4. At this time, the columnar object 1 is mounted on a foundation 10 in which a reinforcing material 5 is interposed between the embankment layers and integrated (load-introducing reinforcing soil).
[0041]
The foundation 10 is formed by inserting the rectangular portion 6a of the tension member 6 made of PC steel into the long hole 2a provided in the high rigid bottom plate 2 such as a steel plate, and then forming the lowermost embankment 4d. Reinforcing material 5 is laid while compacting with a rolling machine, etc., and the next embankment 4c is formed thereon, further compacted, new reinforcing material 5 is laid, and further embankment 4b, reinforcing material 5, and top embankment layer 4a are laid. Are sequentially stacked, and finally, a high-rigidity upper plate 3 is installed.
[0042]
At this time, a flat or substantially flat net-like or lattice-like reinforcing material (geotextile, expanded metal, or the like) having a large coefficient of friction and tensile strength is adopted as the reinforcing material 5, and is interposed between multiple embankment layers having a small thickness. , The bases 10 are sequentially stacked until a base 10 having a predetermined thickness is formed. At this time, since the remaining soil excavated from the excavation part 20 is used as the embankment layer 4, no extra waste is generated, and there is no need to transport the remaining soil.
[0043]
The size of the reinforcing material 5 is substantially the same as the size of the bottom plate 2 and the upper plate 3. However, when the reinforcing material 5 a having a larger size is employed and the embankment layer 4 is compacted, And the backfill soil and the embankment layer 4 may be tamped together and integrated. With such a configuration, the integral strength of the foundation 10 and the soil around the foundation 10 can be further increased.
[0044]
The tension member 6 is an anchor member that is attached by being inserted through a long hole 2a provided in the bottom panel 2, and has a rectangular portion 6a that can be inserted into the long hole 2a at one end. When the tension member 6 is slightly rotated after the rectangular portion 6a is inserted into the long hole 2a, the rectangular portion 6a is displaced from the position of the long hole 2a and moves to the bottom plate 2 as shown by a broken line in FIG. The configuration is such that it comes into contact and is prevented from falling off. In this state, the nut member 7 is screwed into a screw portion formed at the other end of the tension member 6 protruding above the upper plate 3 and tightened up, so that the bottom plate 2, the upper plate 3, the multilayer embankment layer 4 and This is a method of forming a foundation 10 that is tightly integrated with a reinforcing material 5 (load-introducing reinforcing soil).
[0045]
The number of the tension members 6 may be such a number as to exert a tightening force necessary for forming the base 10, and is not particularly limited.
[0046]
Here, even if the nut member 7 is tightened, the layers are thinned so that the embankment layers do not shift and protrude sideways. Of course, the structure is such that the slippage is prevented by the friction holding force of the reinforcing material 5 disposed between the layers, and the thickness of each layer of the embankment layer 4 is desirably about 10 to 30 cm. The thickness of each layer is related to the size of the soil particles, and the larger the soil particles, such as reki or sandy soil, the greater the thickness. This is because the restraining force between the soil particles that are about to shift sideways increases.
[0047]
In addition, the step of screwing and tightening the nut member 7 is performed in a state where the foundation 10 is buried in the ground, so that the soil around the foundation 10 is pressed and tightly connected as an integral foundation frame. Configuration. Therefore, it is difficult to pull out the foundation 10, and when the pillar 1 such as a sign or an illumination lamp is installed on the foundation 10, the standing and holding strength of the pillar 1 increases.
[0048]
FIG. 1 (b) shows an embodiment in which a pipeline 1P such as a pressure feed pipe is installed, and a foundation 10 made of reinforcing soil is the same as that described in FIG. 1 (a). Is omitted.
[0049]
A lower layer embankment 4d is formed on the bottom 2 and a reinforcing material 5 is laid while compacting with a rolling machine or the like, and the next embankment 4c is formed thereon, further compacted, a new reinforcing material 5 is laid, and further embankment is laid. 4b, the reinforcing material 5, and the uppermost embankment layer 4a are sequentially stacked, and finally, a pipe 1P is fixed with a wire 1w on a foundation 10 formed by installing a high rigid upper plate 3. The pipe 1P is long, and the foundation 10 may be provided at every predetermined pitch of the long pipe 1P. It may also be a band-like base along the longitudinal axis of the conduit.
[0050]
The method of fixing the columnar object 1 shown in FIG. 1A is a structure in which the mounting flange portion 1a provided at the lower portion of the columnar object 1 is screw-fixed to the mounting screw hole 3a formed in the upper panel 3. It is configured to be detachable from the base 10.
[0051]
3A and 3B show another embodiment in which a columnar object is erected. FIG. 3A shows a comparative example in which a relatively thin upper plate 3A is provided with a thick mounting plate 3B, and a tension member 6 and a bottom plate 2 and an embankment layer. 4 and a reinforcing member 5 are integrally tightened to form a load-introducing reinforcing soil foundation, and a columnar object 1A is screwed into a mounting screw hole 3Ba provided in the mounting plate 3B. However, it is also possible to adopt a configuration in which the upper plate 3A is made of a steel plate or a reinforced plastic having increased rigidity without using the thick mounting plate 3B, and a mounting screw hole is provided, and the columnar object 1A is screwed. It is as expected. At this time, the shape of the upper plate 3A is not limited to a flat plate, but may be a bowl-shaped shape, or any shape that can be tightened with the bottom plate 2 to form the load-introducing reinforcing soil.
[0052]
At this time, a bottom plate 2C (shown by an imaginary line in the figure) larger than the upper plate 3A may be employed to form a load-introducing reinforcing soil base having a trapezoidal shape as a whole.
[0053]
In the example shown in FIG. 3 (b), a steel pipe 8 penetrating through the upper plate 3C is integrated into a foundation as an embedded structure. The steel pipe 8 can be fixed by stacking and embedding the multilayer embankment layer 4 and the reinforcing material 5, but may be fixed to the bottom plate 2 in advance by welding or screwing.
[0054]
The steel pipe 8 is a column supporting member, and has a gap portion into which the columnar object 1B can be inserted. A hole 8a for a screw is provided at the upper end of the steel pipe 8 protruding above the upper panel 3C. That is, the columnar object 1B is inserted into the steel pipe 8, and a screw is screwed into the hole 8a and fixed.
[0055]
Further, it is also possible to form a female screw portion at the upper end of the steel pipe 8 and attach the end of the columnar object on which the male screw is formed, and the mounting structure of the columnar object is not particularly limited. .
[0056]
Furthermore, the columnar object 1B can be directly inserted into the hole 3Ca provided in the upper panel 3C, and the multilayered embankment layer 4, the reinforcing material 5, and the upper panel 3C can be fixed by pressing.
[0057]
As an example corresponding to FIG. 3 (a), a steel plate of 1 mm square and 11 mm thick is used for the bottom plate 2 and the upper plate 3A, and a steel plate of 80 cm square and 40 mm thick is used for the mounting plate 3B. 5 layers of embankments are laid, geotextile reinforcing materials are laid between the layers, and four 19 mm diameter PC steel bars are tightened together as tension members to form a reinforced soil foundation with a total height of about 1.5 m. did.
[0058]
With the above-mentioned reinforced soil foundation having a total height of 1.5 m and a concrete foundation having substantially the same shape, a pull-out test was performed from a state where the foundation was buried in the soil. As a result, the conventional concrete foundation could be pulled out with a pulling load of 0.5 to 1 times its own weight, but the load-introduced reinforced soil foundation required a pulling load of at least 3 times its own weight. This test confirmed that the shear resistance of the load-introduced reinforced soil foundation according to the present invention was very large.
[0059]
FIG. 4 shows an embodiment showing various shapes of the load introducing reinforcing soil foundation. (A) is a cylindrical foundation 10A, which is formed by stacking a predetermined circular embankment 4A and a reinforcing material 5A between a circular bottom plate 2A and a circular upper plate 3D. (B) is a triangular prism-shaped foundation 10B, which is formed by stacking a predetermined triangular embankment 4B and a reinforcing material 5B between a triangular base 2B and a triangular upper base 3E in a predetermined layer.
[0060]
Although three tension members 6 are used in the triangular foundation 10B, the number of the tension members 6 may be four or six, and is not particularly limited. However, any tension member may be used as long as it has a predetermined size and a predetermined number of embankment layers and exhibits a tightening force constituting a reinforcing soil foundation.
[0061]
Further, instead of the structure in which the tension member 6 such as an anchor bolt is used for tightening, a structure in which the hole is provided in the anchor head and a wedge is bitten by using a bar or the like may be used. In short, what is necessary is just to make it the structure which hold | maintains a tightening load, when a load is introduce | transduced and a reinforced soil foundation is comprised.
[0062]
FIG. 4 (c) shows a male screw 8Aa formed at the upper end of a column support member 8A fixed to the bottom plate 2, and a screw mounting plate 3G having a female screw 3Ga on the screw 8Aa protruding from the upper plate 3C. It shows a reinforcing soil foundation 10C formed by combining them. In this configuration, the mounting plate 3G is tightened in place of the anchor bolt to form the reinforcing soil foundation 10C, so that there is an effect that the tightening operation only needs to be performed once. This tightening operation can be performed using a large pipe wrench, and can be performed by ordinary civil engineering. Of course, the shape of the mounting plate is not limited to the circle shown in the figure, and may be a quadrangle or another polygon.
[0063]
Further, the mounting plate 3G is provided with a screw portion for mounting another article, so that an arbitrary columnar object or columnar base can be detachably attached.
[0064]
FIG. 4D shows an example in which a shape steel 9 is placed on the upper platen 3 and the load introducing reinforcing soil foundation 10D is constituted by four tension members 6. The die 9 is also provided with a screw portion for mounting other articles, and is configured such that an arbitrary columnar object can be freely attached and detached.
[0065]
Even in the case of a foundation using the above-mentioned steel mold 9, another pillar supporting member may be embedded in the center shaft portion of the foundation, and an arbitrary columnar material may be detachably attached to the pillar supporting member.
[0066]
In general, various underground objects such as water pipes and gas pipes exist inside the road where pillars such as sign bases and lighting lamp bases are installed, and the shape of the foundation is formed so as not to obstruct them. There is a need. In some cases, the shape is not a square, a triangle, or a circle, but may be a pentagon or other complicated shapes. According to the columnar / pipe installation method according to the present invention, after excavating a desired installation position, the shape of the bottom plate, the upper plate, and the reinforcing material may be selected in accordance with the excavation shape, and the shape of the arbitrary shape may be selected. The foundation can be constructed.
[0067]
According to the size and shape of the object to be erected, the size of the load-introducing reinforcing soil foundation is required to be as large as about 1 m square and about 1.5 m high for a large lighting lamp or the like having a height of about 5 m. It has been confirmed that a 30 cm square, load-introducing reinforced soil foundation having a height of about 30 cm is sufficient for small standing objects such as signs. For this purpose, the load-introducing reinforcing soil foundation according to the present invention can be standardized to each shape and prepared as a foundation set.
[0068]
The base set includes a bottom plate 2, an upper plate 3, a reinforcing member 5, a tension member 6 and the like having a predetermined shape and a predetermined size as one set. May be included. It is also possible to form an embankment layer using standard soil and prepare it as a set completed as a load-introducing reinforcing soil foundation.
[0069]
Referring to FIG. 5, the difference between the conventional construction method and the pillar-standing construction method according to the present invention will be described. In the conventional concrete foundation method shown in FIG. 5 (b), first, the vicinity of the standing position of the columnar material is excavated (first stage), the bottom is leveled (second stage), and the formwork is installed (temporarily). (Third stage), the anchor bolts 12 are installed at predetermined positions (Fourth stage), and the ready-mixed concrete is cast (Fifth stage). Thereafter, after the hardening period and the curing period of the concrete have passed (generally one week or more), the formwork is removed (sixth stage), and the trace is backfilled (seventh stage). Erect (install) (8th stage).
[0070]
In other words, all work processes require eight stages, and all eight processes cannot be performed continuously, resulting in a long construction period. Also, in addition to civil engineering for excavation, formwork and concrete work are required, and it is also necessary to manage the process and sequence of each process. Further, during the period of hardening and curing of concrete, safety management on the road is required, and equipment and guards may be required for that.
[0071]
In the method for erecting a pillar according to the present invention shown in FIG. 5 (a), first, the vicinity of the standing position of the pillar is excavated (first stage), the bottom is leveled (second stage), and the base is installed. (3rd stage). At this time, the tension member is attached and fixed. Next, a foundation is created (fourth stage). As described above, the foundation is created by compacting a multi-layered embankment while rolling it and laying a reinforcing material for each layer. Further, the upper plate is installed (fifth stage), and after tightening and compressing the tension member, the tension member is once loosened, the upper plate is removed, and the remaining soil is added to perform leveling. After confirming the horizontal state, the upper plate is installed again, the tension members are retightened, and finally the columnar material is erected (sixth stage).
[0072]
As described above, the conventional concrete foundation method requires a total of eight work steps, but the columnar erection method according to the present invention can reduce the work steps to a total of six work steps. Further, since the ready-mixed concrete is not used, there is no need to consider the hardening period and the curing period of the concrete, and the entire process can be operated as a series of continuous processes.
[0073]
In addition, since concrete is not used, there is no need for specialists such as formwork and concrete works, and only civil works are efficient. And it can be said that not using concrete is a naturally friendly construction method, and is also suitable for environmental conservation.
[0074]
That is, since the respective steps in the above-described column-standing article construction method according to the present invention can be continuously performed, the construction period can be shortened to one to two days. Further, since no special expert other than civil engineering is required, the construction cost can be kept low.
[0075]
Furthermore, since the backfill soil, which is excavated soil, is used to form a multi-layered embankment layer to form the foundation, there is no need to dispose and transport the excavated soil. Therefore, environmentally friendly and low cost can be achieved. In addition, since the foundation composed of a multi-layered embankment layer made of backfill soil is buried in the ground and tightened, the contact state between the embankment layer and the surrounding soil becomes firm, Even if a force is applied to incline or pull out, the resistance against the load increases, and a foundation having a strong holding force can be obtained.
[0076]
In addition, at this time, if a load trapping reinforcement foundation having a trapezoidal shape in which the size of the bottom plate is increased is used, the resistance against the load of tilting or pulling out the foundation further increases, and a foundation having a stronger holding force can be obtained. Can be.
[0077]
FIG. 6 shows another embodiment of the method of erecting columnar objects using reinforcing soil. FIG. 6 (a) shows an example of a bag-filled reinforcing soil foundation, such as a bag-like reinforcing material 5C or a bag-like nonwoven fabric. This is a reinforced soil foundation constructed by filling the soil with a flat reinforcing material. In this example, the embankment layer 4C once formed does not flow out due to rainwater, running water or the like, and forms a stable foundation for a long period of time. At this time, a reinforcing material 5C or a bag-shaped nonwoven fabric having the same size as the bottom plate 2 may be used, or a plurality of smaller reinforcing materials 5D or bag-shaped nonwoven fabrics may be placed. It may be configured.
[0078]
Further, in the example shown in FIG. 6B, when the hard ground or the bedrock layer 21 exists immediately below the ordinary soil 22, the bottom bed 2 is unnecessary, and the screw anchor 6A is used as a tension member and the bedrock layer 6A is used. 21, the embankment layer 4D and the reinforcing material 5 are stacked in a plurality of layers to form a reinforcing soil foundation. At this time, it is clear that the reinforcing material 5C or 5D may be used as the reinforcing material to form a bag-filled embankment layer.
[0079]
Since the load-introduced reinforced soil foundation according to the present invention uses excavated soil as an embankment layer, a solid foundation cannot be formed in the case of soft soil. Especially in the case of humus soil containing a large amount of organic matter or cohesive soil having a large amount of water, it is basically unsuitable as an embankment material. However, in such a case, if the reinforcing soil foundation is formed as an embankment layer in which a small amount of lime or cement material is mixed, the foundation is solidified as it is when tightened by a tension member, so that a sufficiently solid foundation can be obtained. However, in this case, reconstriction is required because of volume contraction. In addition, if the embankment layer is a bag-filled embankment, the foundation construction work is facilitated in the same manner as described above.
[0080]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an installation method that has a short construction period, is environmentally friendly, can freely install any columnar object or the like, and has a strong installation strength of the columnar object or the pipeline.
[0081]
Further, it is composed of a bottom base serving as a base support, a multilayer embankment layer, a reinforcing material interposed between the embankment layers, and a load-introducing reinforcing soil formed by integrating the upper base with a tension member to be integrated. A good foundation.
[0082]
Further, since the reinforcing soil constituting the foundation is tightened and integrated with the surrounding soil, the holding strength of the installed columnar object or the like can be further increased.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view showing one embodiment of an installed object using a load-introducing reinforcing soil foundation according to the present invention, wherein (a) shows a standing state of a columnar object, and (b) shows a pipe line. Indicates the installation state.
FIGS. 2A and 2B show a mounting portion of a tension member to a bottom plate, where FIG. 2A is a cross-sectional view and FIG. 2B is a plan view.
3A and 3B are perspective views illustrating a support structure for supporting a columnar object, in which FIG. 3A is a perspective view illustrating a support structure in which a mounting screw portion is formed on an upper plate and a lower portion of the columnar object is fixed by screws; It is a perspective view which shows the support structure which arrange | positioned the support | pillar support member so that a layer and a reinforcement material might be penetrated.
FIGS. 4A and 4B show another embodiment in which the shape of the load-introducing reinforcing soil foundation is changed, wherein FIG. 4A shows a cylindrical reinforcing soil foundation and FIG. 4B shows a triangular reinforcing soil foundation. (C) shows a foundation in which the column support member and the mounting plate are screwed together, and (d) shows a reinforced soil foundation using a shape steel.
FIG. 5 is a block diagram showing a work procedure of a columnar-standing construction method, in which (a) shows a work procedure according to the present invention, and (b) shows a work procedure using a conventional concrete foundation.
FIGS. 6A and 6B are cross-sectional views showing another example of an upright construction method using a load-introducing reinforcing soil foundation, wherein FIG. 6A is an example using a bag-like reinforcing material, and FIG. It is an example.
FIG. 7 is a schematic explanatory view showing a conventional concrete foundation.
[Explanation of symbols]
1,1A, 1B pillar
1P pipeline
1a Mounting flange
2 Bottom plate
3 Upper panel
3Ca hole
4 Embankment layer
5 Reinforcement
6 Tension members
8 Steel pipes (post support members)
10 (Load introduction reinforcement soil) Foundation
12 anchor bolt
14 Concrete
20 Drilling unit

Claims (11)

地面に標識基部や照明灯基部等の柱状物又は管路を設置する際に、設置位置周辺を掘削して掘削部を形成した後、該掘削部に高剛性の底盤を設置し、前記底盤上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上又は上方の盛土層上に配設する高剛性の上盤と、該上盤と前記底盤とを締結する緊張部材とを備え、前記緊張部材を介して盛土層全体に圧縮力を作用させて、前記高剛性の上盤より底盤に至る各盛土層及び補強材を一体化して基礎を形成すると共に、前記上盤上に前記柱状物又は管路を設置するか、若しくは前記上盤に前記柱状物が貫通する孔部を設けて前記基礎が前記柱状物を支持する構成とすることを特徴とする柱状物・管路設置工法。When installing pillars or pipes such as sign bases and lighting lamp bases on the ground, after excavating around the installation position to form a digging part, installing a high rigid bottom plate on the digging part, A multi-layered embankment layer, a flat or substantially flat mesh or grid-like reinforcing material interposed between each embankment layer and having a large friction coefficient and tensile strength, and a high-rigidity An upper plate and a tension member for fastening the upper plate and the bottom plate, and a compressive force is applied to the entire embankment layer through the tension member, thereby forming each embankment layer from the high rigidity upper plate to the bottom plate. And a reinforcing material are integrated to form a foundation, and the column or the pipe is installed on the upper panel, or a hole through which the column penetrates is provided in the upper panel, and the foundation is the column-shaped. A method of installing columns and conduits, characterized in that it is configured to support objects. 前記柱状物下部に取付フランジ部を設け、該取付フランジ部を前記上盤上に設けたネジ孔にネジ固定する構成としたことを特徴とする請求項1に記載の柱状物・管路設置工法。2. A method according to claim 1, wherein a mounting flange portion is provided at a lower portion of the column, and the mounting flange is fixed to a screw hole provided on the upper panel by screws. . 前記多層の盛土層と補強材及び前記上盤を貫通するように支柱支持部材を配設し、該支柱支持部材に前記柱状物を着脱自在に構成したことを特徴とする請求項1に記載の柱状物・管路設置工法。2. The support according to claim 1, wherein a support member is provided so as to penetrate the multilayer embankment layer, the reinforcing material, and the upper panel, and the column is detachably attached to the support member. 3. Pillar and pipeline installation method. 前記緊張部材が前記上盤及び前記補強材を垂直に貫通して前記上盤と前記底盤とを締結する複数本のアンカー部材であることを特徴とする請求項1から3のいずれかに記載の柱状物・管路設置工法。The said tension member is a plurality of anchor members which penetrate the said upper board and the said reinforcing material perpendicularly, and fasten the said upper board and the said bottom board, The Claim 1 characterized by the above-mentioned. Pillar and pipeline installation method. 前記緊張部材が前記支柱支持部材側に設けられたネジ部と前記上盤または上盤に載置する取付プレート側に設けられたネジ部との螺合によって構成されることを特徴とする請求項3に記載の柱状物・管路設置工法。The said tension member is comprised by the screwing of the screw part provided in the said support member side, and the screw part provided in the said upper plate or the mounting plate side mounted in an upper plate, The Claims characterized by the above-mentioned. 3. The method for installing a pillar / pipe according to 3. 前記盛土層が掘削残土である埋め戻し土から形成されていることを特徴とする請求項1から5のいずれかに記載の柱状物・管路設置工法。The method according to any one of claims 1 to 5, wherein the embankment layer is formed from backfill soil as excavated soil. 基礎支持体となる底盤上に多層の盛土層と、各盛土層間に介装され、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材と、最上又は上方の盛土層上に配設する高剛性の上盤と、該上盤と前記底盤とを締結する緊張部材とを備え、前記緊張部材を介して盛土層全体に圧縮力を作用させて、前記高剛性の上盤より底盤に至る各盛土層及び補強材を一体化して基礎を形成すると共に、前記上盤上に標識基部や照明灯基部等の柱状物又は管路を設置するか、若しくは前記上盤に前記柱状物が貫通する孔部を設けて前記基礎が前記柱状物を支持する構成とすることを特徴とする荷重導入補強土基礎。A multi-layered embankment layer on the base that serves as a foundation support, a flat or substantially flat mesh or grid-like reinforcing material interposed between each embankment layer and having a large friction coefficient and tensile strength, and an uppermost or upper embankment layer And a tension member for fastening the upper plate and the bottom plate, and a compressive force is applied to the entire embankment layer through the tension member to thereby provide the high rigid upper plate. Along with forming the foundation by integrating each embankment layer and the reinforcing material to the lower base, a pillar or a pipe such as a sign base or a lighting base is installed on the upper base, or the column base is provided on the upper base. A load-introducing reinforced soil foundation, wherein a hole is provided through which an object penetrates, and the foundation supports the columnar object. 前記柱状物下部に取付フランジ部を設け、該取付フランジ部を前記上盤上に設けたネジ孔にネジ固定する構成としたことを特徴とする請求項7に記載の荷重導入補強土基礎。The load-introducing reinforcing soil base according to claim 7, wherein a mounting flange portion is provided at a lower portion of the columnar object, and the mounting flange portion is screwed to a screw hole provided on the upper panel. 前記多層の盛土層と補強材及び前記上盤を貫通するように支柱支持部材を配設し、該支柱支持部材に前記柱状物を着脱自在に構成したことを特徴とする請求項7に記載の荷重導入補強土基礎。8. The support according to claim 7, wherein a support member is provided so as to penetrate the multilayer embankment layer, the reinforcing material, and the upper panel, and the column is detachably attached to the support member. Load-introduced reinforced soil foundation. 前記緊張部材が前記上盤及び前記補強材を垂直に貫通して前記上盤と前記底盤とを締結する複数本のアンカー部材であることを特徴とする請求項7から9のいずれかに記載の荷重導入補強土基礎。The said tension | tensile_strength member is a several anchor member which penetrates the said upper board and the said reinforcing material perpendicularly, and fastens the said upper board and the said bottom board, The one in any one of Claim 7 to 9 characterized by the above-mentioned. Load-introduced reinforced soil foundation. 前記緊張部材が前記支柱支持部材側に設けられたネジ部と前記上盤または上盤に載置する取付プレート側に設けられたネジ部との螺合によって構成されることを特徴とする請求項9に記載の荷重導入補強土基礎。The said tension member is comprised by the screwing of the screw part provided in the said support member side, and the screw part provided in the said upper plate or the mounting plate side mounted in an upper plate, The Claims characterized by the above-mentioned. 9. The load-introduced reinforced soil foundation according to 9.
JP2002352286A 2002-12-04 2002-12-04 Pipe line installation method for columnar article and load introduction reinforcement foundation Pending JP2004183347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352286A JP2004183347A (en) 2002-12-04 2002-12-04 Pipe line installation method for columnar article and load introduction reinforcement foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352286A JP2004183347A (en) 2002-12-04 2002-12-04 Pipe line installation method for columnar article and load introduction reinforcement foundation

Publications (1)

Publication Number Publication Date
JP2004183347A true JP2004183347A (en) 2004-07-02

Family

ID=32753937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352286A Pending JP2004183347A (en) 2002-12-04 2002-12-04 Pipe line installation method for columnar article and load introduction reinforcement foundation

Country Status (1)

Country Link
JP (1) JP2004183347A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812842A (en) * 2010-04-22 2010-08-25 霍宏斌 Tensionless filling pile structure
CN101672039B (en) * 2008-09-11 2012-01-25 三井造船株式会社 Infrastructure of tower shaped structure
CN102767190A (en) * 2012-07-18 2012-11-07 北京金风科创风电设备有限公司 Tower foundation and method for manufacturing same
CN103114604A (en) * 2012-03-09 2013-05-22 中国水电顾问集团西北勘测设计研究院 Prestressed concrete tubular type wind generating set foundation
CN104343129A (en) * 2013-08-06 2015-02-11 江苏金海新能源科技有限公司 Reversing formwork for manufacturing cast-in-situ prestressed concrete cylindrical fan foundation
CN104631486A (en) * 2014-12-30 2015-05-20 上海宝钢工程咨询有限公司 Independent plinth construction method in narrow environment
KR101778018B1 (en) * 2017-03-13 2017-09-13 강일형 Reinforcement soil block mold and manufacturing method for reinforcement soil block using the same
CN107190761A (en) * 2017-07-05 2017-09-22 中交天航环保工程有限公司 A kind of artificial bamboo raft cofferdam and its process for constructing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672039B (en) * 2008-09-11 2012-01-25 三井造船株式会社 Infrastructure of tower shaped structure
CN101812842A (en) * 2010-04-22 2010-08-25 霍宏斌 Tensionless filling pile structure
CN103114604A (en) * 2012-03-09 2013-05-22 中国水电顾问集团西北勘测设计研究院 Prestressed concrete tubular type wind generating set foundation
CN103114604B (en) * 2012-03-09 2015-04-22 中国电建集团西北勘测设计研究院有限公司 Prestressed concrete tubular type wind generating set foundation
CN102767190A (en) * 2012-07-18 2012-11-07 北京金风科创风电设备有限公司 Tower foundation and method for manufacturing same
CN104343129A (en) * 2013-08-06 2015-02-11 江苏金海新能源科技有限公司 Reversing formwork for manufacturing cast-in-situ prestressed concrete cylindrical fan foundation
CN104631486A (en) * 2014-12-30 2015-05-20 上海宝钢工程咨询有限公司 Independent plinth construction method in narrow environment
KR101778018B1 (en) * 2017-03-13 2017-09-13 강일형 Reinforcement soil block mold and manufacturing method for reinforcement soil block using the same
CN107190761A (en) * 2017-07-05 2017-09-22 中交天航环保工程有限公司 A kind of artificial bamboo raft cofferdam and its process for constructing

Similar Documents

Publication Publication Date Title
KR101696916B1 (en) Construction method of permanent wall with retaining wall combined PHC pile and steel pipe
CN103958780B (en) The method for forming cementing retaining wall
CN206859232U (en) A kind of inclined steel-pipe pile anchor structure
JP2006225926A (en) Banking construction method utilizing backfilling material such as fluidized soil, pit sand, local soil and crushed stone
CN109235490B (en) Retaining wall and construction method thereof
JP2010090608A (en) Method for constructing underground space and structure of the underground space
JP2007291707A (en) Bank structure and method of constructing the same
JP2002242186A (en) Bank structure constructing method
JP2004183347A (en) Pipe line installation method for columnar article and load introduction reinforcement foundation
JP2020070705A (en) Method for constructing lightweight fill retaining wall structure
JP2005009210A (en) Reinforced structure of masonry wall and its reinforcing method
KR102223856B1 (en) Foundation structure of waste landfill site and construction method thereof
KR100603888B1 (en) Construction method of reinforced earth abutment in post tensioning system
JP5124007B2 (en) Retaining wall construction method
JP3107716B2 (en) Soil retaining wall
KR102156277B1 (en) Basic file construction method of soft ground and thereof foundation file device
JP3914073B2 (en) Dry block, molding frame, molding method, reinforced soil structure using dry block
JP2597116B2 (en) Embankment foundation and its construction method
JP2001329545A (en) Bridge pier foundation construction method and floor slab for bridge pier
KR100573371B1 (en) The site other opinion picket spatial-temporal method which applies the meritorious metal tubing
JP2005350884A (en) Method for widening road and the like, and wall surface panel
JP4153826B2 (en) Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure
KR101047257B1 (en) Construction method of earth wall using composite sheet pile
JPH1082055A (en) Method of earthquake-resisting pile foundation construction
JPH0739666B2 (en) Permeable temporary earth retaining material, permeable frame structure and concrete wall construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930