JP2004179918A - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP2004179918A
JP2004179918A JP2002343131A JP2002343131A JP2004179918A JP 2004179918 A JP2004179918 A JP 2004179918A JP 2002343131 A JP2002343131 A JP 2002343131A JP 2002343131 A JP2002343131 A JP 2002343131A JP 2004179918 A JP2004179918 A JP 2004179918A
Authority
JP
Japan
Prior art keywords
solid
state imaging
housing
wiring board
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343131A
Other languages
Japanese (ja)
Inventor
Kazumi Musha
和美 武者
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Original Assignee
Miyota KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK filed Critical Miyota KK
Priority to JP2002343131A priority Critical patent/JP2004179918A/en
Publication of JP2004179918A publication Critical patent/JP2004179918A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent unnecessary light from laterally entering a solid-state imaging element mounted on a glass wiring board and exerting an adverse influence on the operation of the solid-state imaging element, to simplify a process of bonding a housing and the glass wiring board together, and to improve the reliability of the bonding of the solid-state imaging device consisting at least of the housing, a lens, an infrared-ray cutting filter, the glass wiring board, and the solid-state imaging element mounted on the glass wiring board. <P>SOLUTION: The solid-state imaging device is provided at a housing end with a recessed part where the glass wiring board mounted with the solid-state imaging element is disposed and stored, and also provided with a guide part for laterally sliding and inserting the glass wiring board into the recessed part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体撮像装置に関するものである。
【0002】
【従来の技術】
図1は、従来の固体撮像装置を示した図で、(a)正面断面図、(b)側面断面図、(c)下面図、(d)下面斜視図である。以下、図1に従い、従来の固体撮像装置の構成について説明する。
【0003】
レンズホルダー7内部にレンズ6が、レンズストッパー9により固定されており、前記レンズホルダー7はネジ機構8により筐体1にねじ込み固定されている。筐体1の内部には、赤外線カットフィルター2が接着部10において接着固定されている。筐体1端部には、一体形成型のガイドピン11が複数設けられており、それを固体撮像素子4が搭載され、Flex配線基板5が接着固定されたガラス配線基板3に設けられた抜き穴12に挿入する事により、前記ガラス配線基板3が位置決めされ、接着剤(図示無し)を介して筐体に接着固定されている。
【0004】
上述のように、内部にレンズ6を保持したレンズホルダー7は、ネジ機構8により筐体1にねじ込み固定されており、上下移動可能となっている。これは、固体撮像装置製作の最終工程において、レンズと固体撮像素子間の距離を変える事により、レンズの焦点調整を行うためである。
【0005】
【発明が解決しようとする課題】
以上のように従来技術においては、固体撮像素子が配線基板の下面に取り付けられるため、配線基板には透明なガラス基板を用いており、入射光はガラス基板を透過して固体撮像素子に入射する。しかし、この構成ではガラス配線基板に横方向から余計な光が進入し、結果的として固体撮像素子の作動に悪影響を及ぼす可能性がある。
【0006】
また、筐体にガラス配線基板を接着する際には、筐体を下向き(レンズを下向き、赤外線カットフィルターを上向き)に置き、固体撮像素子が搭載されたガラス配線基板を位置決め、固定した後、四方向に渡り接着剤を塗布し、筐体に接着している。この方法によると、筐体に対しガラス配線基板を水平に接着出来ない場合が多く、更に接着剤が硬化するまで治具等によりガラス配線基板が筐体から浮かないようにしなければならない。
【0007】
本発明は、ガラス配線基板に搭載された固体撮像素子に横方向からの余計な光が進入するのを防止すると共に、筐体とガラス配線基板の接着工程の簡略化、及びその接着の信頼性を高めた構成の固体撮像装置を提供する事を目的とする。
【0008】
【課題を解決するための手段】
少なくとも筐体と、該筐体に保持されるレンズホルダーと、該レンズホルダー内部に保持されるレンズと、前記筐体内部に保持される赤外線カットフィルターと、ガラス配線基板と、該ガラス配線基板に搭載された固体撮像素子とで構成される固体撮像装置であって、前記筐体に前記固体撮像素子が搭載された前記ガラス配線基板を位置決め収納する凹部を形成した事を特徴とする固体撮像装置とする。
【0009】
少なくとも筐体と、該筐体内部に保持されるレンズと、赤外線カットフィルターと、ガラス配線基板と、該ガラス配線基板に搭載された固体撮像素子と、前記筐体に形成された、前記固体撮像素子が搭載された前記ガラス配線基板を位置決め収納する凹部とで構成される固体撮像装置であって、前記凹部に、前記固体撮像素子が搭載された前記ガラス配線基板を横からスライド挿入させるためのガイド部を設けた事を特徴とする固体撮像装置とする。
【0010】
【発明の実施の形態】
図2は、本発明の第1実施形態である請求項1記載の固体撮像装置を示した図で、(a)正面断面図、(b)側面断面図、(c)下面図、(d)下面斜視図である。 以下、図2に従い、本発明の第1実施形態である請求項1記載の固体撮像装置について説明する。
【0011】
レンズホルダー19内部にレンズ18が、レンズストッパー21により固定されており、前記レンズホルダー19はネジ機構20により筐体13にねじ込み固定されている。筐体13内部には、赤外線カットフィルター14が接着部22において接着固定されており、その下側の筐体13端部には、ガラス配線基板15に横方向から余計な光が進入するのを防止するための凹部23が形成されている。そして、固体撮像素子16が搭載され、Flex配線基板17が接着固定されたガラス配線基板15が、前記凹部23に位置決めされ、前記凹部に塗布された接着剤24を介して接着固定されている。
【0012】
ガラス配線基板15を筐体13に接着する際は、筐体13を下向き(レンズを下向き、赤外線カットフィルターを上向き)に置き、固体撮像素子16が搭載されたガラス配線基板15を凹部23に位置決めした後、前記凹部23に接着剤24を塗布し、治具等により接着剤が固化するまで固定する。
【0013】
ガラス配線基板15を筐体13に接着する際の接着剤塗布位置は、凹部23全体であっても部分的であっても構わず、十分な接着強度が得られ、受光領域に影響を及ぼさない範囲内であれば、その塗布量や塗布位置についての特別な限定は無い。
【0014】
また、凹部の形状に関しても、余計な光の進入を防止出来るのであればどのような形状でも構わず、特に限定は無い。
【0015】
赤外線カットフィルター14は、透明基板に赤外線を遮断するフィルター膜が蒸着された構成になっている。そのため、筐体13に赤外線カットフィルター14を接着する際、蒸着面を接着面にすると十分な接着強度が得られない事があるため、蒸着面と反対の面を接着面とする事が望ましい。
【0016】
また、接着剤塗布量のばらつきにより、接着剤が赤外線カットフィルター14の受光領域にはみ出すのを防止するため、接着部22又は、その周辺の筐体部分に溝部(図示無し)を設け、余分な接着剤を溜める構成としても良い。
【0017】
図3は、本発明の第2実施形態である請求項2記載の固体撮像装置を示した図で、(a)正面断面図、(b)側面断面図、(c)下面図、(d)下面斜視図である。 以下、図3に従い、本発明の第2実施形態である請求項2記載の固体撮像装置について説明する。
【0018】
基本的な構成は、第1実施形態と同様である。特徴としては、ネジ機構を無くし、レンズホルダーと筐体を一体形成すると共に、筐体25に形成された凹部28に、固体撮像素子27が搭載されたガラス配線基板26をスライド挿入させるためのガイド部29を設けた事である。筐体25にガラス配線基板26を接着させる際には、まず、前記ガイド部29に沿って固体撮像素子27が搭載されたガラス配線基板26を筐体25の凹部28にスライド挿入し、位置決めをする。挿入が終わり位置決めが完了したら、接着剤30を挿入口付近に塗布し、固定する。
【0019】
接着剤の塗布位置は、必ずしも上述のようにする必要は無く、第1実施形態の場合と同様に、十分な接着強度が得られ、受光領域に影響を及ぼさない範囲内であれば、その塗布量や塗布位置についての特別な限定は無い。
【0020】
ガイド部の形状に関しても、ガラス配線基板の安定した挿入、位置決めが出来るのであれば、どのような形状でも構わず、特に限定は無い。
【0021】
また、赤外線カットフィルターの接着部に溝部を設ける等、第1実施形態で述べた内容の構成は、第2実施形態においても実施可能である事は言うまでも無い。
【0022】
【発明の効果】
請求項1記載の発明においては、筐体に凹部を設け、そこに固体撮像素子を搭載したガラス配線基板を収納する事により、横方向からの余計な光が固体撮像素子に進入するのを防止する事が出来る。また、請求項2記載の発明においては、筐体に形成された凹部に、固体撮像素子が搭載されたガラス配線基板を横からスライド挿入するためのガイド部を設ける事により、接着工程を簡略化する事が出来る。
【0023】
更に、従来技術において問題となっていた、筐体とガラス配線基板の接着時におけるガラス配線基板の浮きや傾きのばらつきを抑制する事が出来るため、レンズの焦点調整をする必要が無くなり、ネジ機構が不要となるため、結果的にその分の部品数を減らす事が出来る。
【図面の簡単な説明】
【図1】従来例の固体撮像装置を示した図で、(a)正面断面図、(b)側面断面図、(c)下面図、(d)下面斜視図である。
【図2】本発明の第1実施形態を示した図で、(a)正面断面図、(b)側面断面図、(c)下面図、(d)下面斜視図である。
【図3】本発明の第2実施形態を示した図で、(a)正面断面図、(b)側面断面図、(c)下面図、(d)下面斜視図である。
【符号の説明】
1 筐体
2 赤外線カットフィルター
3 ガラス配線基板
4 固体撮像素子
5 Flex配線基板
6 レンズ
7 レンズホルダー
8 ネジ機構
9 レンズストッパー
10 接着部
11 ガイドピン
12 抜き穴
13 筐体
14 赤外線カットフィルター
15 ガラス配線基板
16 固体撮像素子
17 Flex配線基板
18 レンズ
19 レンズホルダー
20 ネジ機構
21 レンズストッパー
22 接着部
23 凹部
24 接着剤
25 筐体
26 ガラス配線基板
27 固体撮像素子
28 凹部
29 ガイド部
30 接着剤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device.
[0002]
[Prior art]
FIG. 1 is a view showing a conventional solid-state imaging device, in which (a) is a front sectional view, (b) is a side sectional view, (c) is a bottom view, and (d) is a bottom perspective view. Hereinafter, the configuration of a conventional solid-state imaging device will be described with reference to FIG.
[0003]
The lens 6 is fixed inside the lens holder 7 by a lens stopper 9, and the lens holder 7 is screwed and fixed to the housing 1 by a screw mechanism 8. An infrared cut filter 2 is bonded and fixed to the inside of the housing 1 at a bonding portion 10. A plurality of integrally formed guide pins 11 are provided at the end of the housing 1, and a plurality of guide pins 11 are mounted on the glass wiring board 3 to which the solid-state imaging device 4 is mounted and the flex wiring board 5 is adhered and fixed. By inserting the glass wiring board 3 into the hole 12, the glass wiring board 3 is positioned and adhered and fixed to the housing via an adhesive (not shown).
[0004]
As described above, the lens holder 7 holding the lens 6 therein is screwed and fixed to the housing 1 by the screw mechanism 8, and can be moved up and down. This is to adjust the focus of the lens by changing the distance between the lens and the solid-state imaging device in the final process of manufacturing the solid-state imaging device.
[0005]
[Problems to be solved by the invention]
As described above, in the related art, since the solid-state imaging device is attached to the lower surface of the wiring substrate, a transparent glass substrate is used for the wiring substrate, and incident light passes through the glass substrate and enters the solid-state imaging device. . However, in this configuration, extra light may enter the glass wiring board from the lateral direction, and as a result, the operation of the solid-state imaging device may be adversely affected.
[0006]
Also, when bonding the glass wiring board to the housing, place the housing downward (the lens is facing down and the infrared cut filter is facing up), and after positioning and fixing the glass wiring board on which the solid-state imaging device is mounted, An adhesive is applied in four directions and adhered to the housing. According to this method, in many cases, the glass wiring board cannot be horizontally bonded to the housing, and further, the glass wiring board must be prevented from floating from the housing by a jig or the like until the adhesive is cured.
[0007]
The present invention prevents extraneous light from entering the solid-state imaging device mounted on the glass wiring board from the lateral direction, simplifies the bonding process between the housing and the glass wiring board, and improves the reliability of the bonding. It is an object of the present invention to provide a solid-state imaging device having a configuration in which the height is increased.
[0008]
[Means for Solving the Problems]
At least a housing, a lens holder held by the housing, a lens held inside the lens holder, an infrared cut filter held inside the housing, a glass wiring board, and a glass wiring board. A solid-state imaging device comprising a mounted solid-state imaging device, wherein a recess for positioning and housing the glass wiring board on which the solid-state imaging device is mounted is formed in the housing. And
[0009]
At least a housing, a lens held inside the housing, an infrared cut filter, a glass wiring substrate, a solid-state imaging device mounted on the glass wiring substrate, and the solid-state imaging device formed on the housing. A concave portion for positioning and housing the glass wiring board on which the element is mounted, wherein the glass wiring board on which the solid-state imaging element is mounted is slidably inserted into the concave portion from the side. A solid-state imaging device is provided with a guide portion.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 2A and 2B are views showing the solid-state imaging device according to the first embodiment of the present invention, wherein FIG. 2A is a front sectional view, FIG. 2B is a side sectional view, FIG. It is a bottom perspective view. Hereinafter, a solid-state imaging device according to a first embodiment of the present invention will be described with reference to FIG.
[0011]
The lens 18 is fixed inside the lens holder 19 by a lens stopper 21, and the lens holder 19 is screwed and fixed to the housing 13 by a screw mechanism 20. An infrared cut filter 14 is adhesively fixed inside the housing 13 at an adhesive portion 22, and an end of the housing 13 below the infrared cut filter 14 is used to prevent extra light from entering the glass wiring board 15 from the lateral direction. A recess 23 is formed to prevent this. Then, the glass wiring board 15 on which the solid-state imaging element 16 is mounted and the flex wiring board 17 is bonded and fixed is positioned in the concave portion 23 and is bonded and fixed via the adhesive 24 applied to the concave portion.
[0012]
When bonding the glass wiring substrate 15 to the housing 13, the housing 13 is placed downward (the lens is directed downward and the infrared cut filter is directed upward), and the glass wiring substrate 15 on which the solid-state imaging device 16 is mounted is positioned in the concave portion 23. After that, an adhesive 24 is applied to the concave portion 23 and fixed by a jig or the like until the adhesive is solidified.
[0013]
The adhesive application position when the glass wiring board 15 is adhered to the housing 13 may be the whole or a part of the concave portion 23, a sufficient adhesive strength is obtained, and the light receiving area is not affected. There is no particular limitation on the application amount and application position within the range.
[0014]
Further, the shape of the concave portion is not particularly limited as long as unnecessary light can be prevented from entering.
[0015]
The infrared cut filter 14 has a configuration in which a filter film for blocking infrared rays is deposited on a transparent substrate. Therefore, when bonding the infrared cut filter 14 to the housing 13, if the vapor deposition surface is set as the bonding surface, a sufficient bonding strength may not be obtained. Therefore, it is desirable to set the surface opposite to the vapor deposition surface as the bonding surface.
[0016]
Further, in order to prevent the adhesive from protruding into the light receiving region of the infrared cut filter 14 due to a variation in the amount of the applied adhesive, a groove (not shown) is provided in the adhesive portion 22 or a housing portion around the adhesive portion 22 to provide an extra portion. It is good also as a structure which stores an adhesive agent.
[0017]
FIGS. 3A and 3B show a solid-state imaging device according to a second embodiment of the present invention, in which FIG. 3A is a front sectional view, FIG. 3B is a side sectional view, FIG. It is a bottom perspective view. Hereinafter, a solid-state imaging device according to a second embodiment of the present invention will be described with reference to FIG.
[0018]
The basic configuration is the same as in the first embodiment. A feature is that a screw mechanism is eliminated, a lens holder and a housing are integrally formed, and a guide for slidingly inserting a glass wiring board 26 on which a solid-state imaging device 27 is mounted into a recess 28 formed in the housing 25. That is, the unit 29 is provided. When bonding the glass wiring board 26 to the housing 25, first, the glass wiring board 26 on which the solid-state imaging device 27 is mounted is slid and inserted into the concave portion 28 of the housing 25 along the guide portion 29 to perform positioning. I do. When the insertion is completed and the positioning is completed, the adhesive 30 is applied near the insertion opening and fixed.
[0019]
The application position of the adhesive is not necessarily required to be as described above. As in the case of the first embodiment, as long as sufficient adhesive strength is obtained and the light receiving region is not affected, the application position is not limited. There is no particular limitation on the amount or application position.
[0020]
Regarding the shape of the guide portion, any shape may be used as long as stable insertion and positioning of the glass wiring board can be performed, and there is no particular limitation.
[0021]
Needless to say, the configuration described in the first embodiment, such as providing a groove in the bonding portion of the infrared cut filter, can also be implemented in the second embodiment.
[0022]
【The invention's effect】
According to the first aspect of the present invention, by providing a concave portion in the housing and housing a glass wiring board on which the solid-state imaging device is mounted, unnecessary light from the lateral direction is prevented from entering the solid-state imaging device. You can do it. According to the second aspect of the present invention, the bonding step is simplified by providing a guide portion for slidingly inserting the glass wiring board on which the solid-state imaging device is mounted from the side into the recess formed in the housing. You can do it.
[0023]
Furthermore, since the floating and inclination variations of the glass wiring board at the time of bonding the housing and the glass wiring board, which are problems in the prior art, can be suppressed, it is not necessary to adjust the focus of the lens, and the screw mechanism Is unnecessary, so that the number of parts can be reduced as a result.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional solid-state imaging device, in which (a) is a front sectional view, (b) is a side sectional view, (c) is a bottom view, and (d) is a bottom perspective view.
FIG. 2 is a view showing the first embodiment of the present invention, in which (a) is a front sectional view, (b) is a side sectional view, (c) is a bottom view, and (d) is a bottom perspective view.
FIG. 3 is a view showing a second embodiment of the present invention, in which (a) is a front sectional view, (b) is a side sectional view, (c) is a bottom view, and (d) is a bottom perspective view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 2 Infrared cut filter 3 Glass wiring board 4 Solid-state image sensor 5 Flex wiring board 6 Lens 7 Lens holder 8 Screw mechanism 9 Lens stopper 10 Adhesive part 11 Guide pin 12 Drilled hole 13 Housing 14 Infrared cut filter 15 Glass wiring board 16 Solid-state image sensor 17 Flex wiring board 18 Lens 19 Lens holder 20 Screw mechanism 21 Lens stopper 22 Adhesive part 23 Concave part 24 Adhesive 25 Housing 26 Glass wiring board 27 Solid-state image sensor 28 Concave part 29 Guide part 30 Adhesive

Claims (2)

少なくとも筐体と、該筐体に保持されるレンズホルダーと、該レンズホルダー内部に保持されるレンズと、前記筐体内部に保持される赤外線カットフィルターと、ガラス配線基板と、該ガラス配線基板に搭載された固体撮像素子とで構成される固体撮像装置であって、前記筐体に前記固体撮像素子が搭載された前記ガラス配線基板を位置決め収納する凹部を形成した事を特徴とする固体撮像装置。At least a housing, a lens holder held by the housing, a lens held inside the lens holder, an infrared cut filter held inside the housing, a glass wiring board, and a glass wiring board. A solid-state imaging device comprising a mounted solid-state imaging device, wherein a recess for positioning and housing the glass wiring board on which the solid-state imaging device is mounted is formed in the housing. . 少なくとも筐体と、該筐体内部に保持されるレンズと、赤外線カットフィルターと、ガラス配線基板と、該ガラス配線基板に搭載された固体撮像素子と、前記筐体に形成された、前記固体撮像素子が搭載された前記ガラス配線基板を位置決め収納する凹部とで構成される固体撮像装置であって、前記凹部に、前記固体撮像素子が搭載された前記ガラス配線基板を横からスライド挿入させるためのガイド部を設けた事を特徴とする固体撮像装置。At least a housing, a lens held inside the housing, an infrared cut filter, a glass wiring substrate, a solid-state imaging device mounted on the glass wiring substrate, and the solid-state imaging device formed on the housing. A concave portion for positioning and housing the glass wiring board on which the element is mounted, wherein the glass wiring board on which the solid-state imaging element is mounted is slidably inserted into the concave portion from the side. A solid-state imaging device having a guide portion.
JP2002343131A 2002-11-27 2002-11-27 Solid-state imaging device Pending JP2004179918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343131A JP2004179918A (en) 2002-11-27 2002-11-27 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343131A JP2004179918A (en) 2002-11-27 2002-11-27 Solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2004179918A true JP2004179918A (en) 2004-06-24

Family

ID=32704980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343131A Pending JP2004179918A (en) 2002-11-27 2002-11-27 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2004179918A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818502B1 (en) 2006-10-23 2008-03-31 삼성전기주식회사 A camera module package
JP2009177286A (en) * 2008-01-22 2009-08-06 Rohm Co Ltd Manufacturing process of image sensor module, and image sensor module
KR101220651B1 (en) * 2011-09-21 2013-01-10 엘지이노텍 주식회사 Camera module and method for assembling the same
US11543725B2 (en) 2006-07-18 2023-01-03 E Ink California, Llc Flexible controlled-release film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543725B2 (en) 2006-07-18 2023-01-03 E Ink California, Llc Flexible controlled-release film
KR100818502B1 (en) 2006-10-23 2008-03-31 삼성전기주식회사 A camera module package
JP2009177286A (en) * 2008-01-22 2009-08-06 Rohm Co Ltd Manufacturing process of image sensor module, and image sensor module
KR101220651B1 (en) * 2011-09-21 2013-01-10 엘지이노텍 주식회사 Camera module and method for assembling the same

Similar Documents

Publication Publication Date Title
US5998878A (en) Image sensor assembly and packaging method
US5861654A (en) Image sensor assembly
JP4555732B2 (en) Imaging device
JP2005322911A (en) Assembly containing optical components and assembly method therefor
CN109581785B (en) Camera module for reducing stray light and photosensitive assembly thereof
JP2007523568A5 (en)
US20070057166A1 (en) Optical module
DE602004018852D1 (en) Manufacturing method for a camera module
JPH09181287A (en) Light receiving device and manufacture thereof
JP3931476B2 (en) Optical sensor and optical unit
JP2007233262A (en) Imaging apparatus and personal digital assistant
US20030048378A1 (en) Imaging device module package
JPH11121771A (en) Micro-photonics module with partition wall
JPH09232548A (en) Solid state image device
JP2000241696A (en) Holding/mounting method for optical sensor package
JPH11345955A (en) Integrated lens solid-state image sensor and method and device for mounting lens thereof
JP2004179918A (en) Solid-state imaging device
JP2006126800A (en) Camera module
KR20050000722A (en) Small camera optical system
JP4075144B2 (en) Manufacturing method of imaging apparatus
JP4764369B2 (en) The camera module
JP2007156537A (en) Image detection device
JP2007147729A (en) Camera module
JP5737199B2 (en) Optical module and manufacturing method thereof
JP2004201328A (en) Image sensor positioning system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080728