JP2004179514A - Heat resistant adhesive film for printed circuit board, and manufacturing method thereof - Google Patents

Heat resistant adhesive film for printed circuit board, and manufacturing method thereof Download PDF

Info

Publication number
JP2004179514A
JP2004179514A JP2002345919A JP2002345919A JP2004179514A JP 2004179514 A JP2004179514 A JP 2004179514A JP 2002345919 A JP2002345919 A JP 2002345919A JP 2002345919 A JP2002345919 A JP 2002345919A JP 2004179514 A JP2004179514 A JP 2004179514A
Authority
JP
Japan
Prior art keywords
resin
printed circuit
circuit board
adhesive film
resistant adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345919A
Other languages
Japanese (ja)
Other versions
JP4145640B2 (en
Inventor
Nobuyuki Furukawa
信之 古川
Yukihiro Wada
幸裕 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2002345919A priority Critical patent/JP4145640B2/en
Publication of JP2004179514A publication Critical patent/JP2004179514A/en
Application granted granted Critical
Publication of JP4145640B2 publication Critical patent/JP4145640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant adhesive film for a printed circuit board in which soldering heat resistance, mechanical characteristics and adhesion are excellent and non-haloganated flame resistance is improved. <P>SOLUTION: The heat resistant adhesive film for the printed circuit board is composed of a resin composition containing a thermosetting resin having a dihydroxadyne ring condensed with an aromatic hydrocarbon ring in 1-50 wt.% and an epoxy resin in 1-50 wt.% with respect to a polyimide resin in 100 wt.%. It is advantageous that the polyimide resin has a polysiloxane chain and contains a repeating unit within the range from 0.1 to 10 mol %, represented by a general formula (1) (Ar<SB>1</SB>is a quadrivalent aromatic group, Ar<SB>2</SB>is a tervalent aromatic group, R<SB>1</SB>is -OH, -COOH, -NH<SB>2</SB>, -SH, -CONH<SB>2</SB>or hydrocarbon group of which the number of carbons is 1 to 6, and (i) indicates an integer of 1 to 4). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プリント回路基板用耐熱性接着フィルムに関し、特に耐熱性、硬化特性、接着特性に優れ、ジヒドロキサジン環を有するジヒドロキサジン樹脂(以下、BXZ樹脂ともいう)を使用した新規なプリント回路基板用耐熱性接着フィルムに関する。
【0002】
【従来の技術】
従来、プリント回路配線基板としては、紙−フェノール樹脂、ガラス繊維−エポキシ樹脂、ガラス繊維−ビスマレイミド樹脂を基材とする基板あるいはポリイミド(PI)フィルム、ポリエチレンテレフタレート(PET)フィルム等と金属箔を張り合わせたものが用いられている。
また、電気・電子機器、精密機器の分野において用いられるプリント回路配線基板の需要は益々高くなっている。近年、プリント回路配線板を積層して多層配線基板を作成したり、異種の回路材料を複合化する工程においては、種々の接着剤あるいは接着フィルムが用いられている(特開平11−87927号公報)。特に、最近、多層リジッド−フレックス基板、多層フレキシブルプリント回路基板あるいは、マルチチップモジュール用多層リジッド基板など、高密度実装技術の進展に伴い、多層技術が、益々重要となってきた。
【0003】
このような、多層基板を形成する際に用いられる絶縁接着剤としては、ガラス繊維等の不織布にエポキシ樹脂あるいはビスマレイミド系樹脂等の熱硬化性樹脂を含浸させたプロプレグ系接着剤が知られている。しかし、これらは可とう性が充分ではなく、寸法安定性に劣る等の問題があった。また、従来より、アクリロニトリルブタジエンゴム/ブチラール樹脂、アクリロニトリルブタジエンゴム/エポキシ樹脂、アクリロニトリルブタジエンゴム/アクリレート樹脂等の接着剤が報告されている(特開平4−29393号公報、特開平4−36366号公報、特開平4−41581号公報)。しかし、これらの接着剤は、耐薬品性、耐熱性が充分ではなく、耐熱耐久性に劣り、吸湿後のハンダ耐熱性も不十分で、スルーホール形成のためのドリル孔開け加工時のスミアの発生等が起こりやすく、これらの加工性の点でも充分ではなかった。
【0004】
また、近年、耐熱性に優れたポリイミド系接着剤も提案されている(USP 4,543,295号明細書、特開平10−183072号公報)。しかし、このようなポリイミドは、銅あるいはポリイミドフィルム等の基材同士を接着させ、満足できる接着強度を得るためには250℃以上の高い熱圧着温度を必要としているため実用性の点で問題があった。
【0005】
更に、ポリイミド/エポキシ樹脂、ポリイミド/アクリレート樹脂系の複合樹脂からなるフィルム状接着剤も提案されている(特開2001−203467号公報)。しかし、これらは、圧着後の接着層の屈曲性が十分ではなく、ハンダ耐熱性の点でも不十分であり、非ハロゲン難燃性、非リン難燃性の達成ができなかった。
また、接着強度に優れたポリイミド系接着剤としては、フレキシブルプリント配線板用銅張積層板の製造用接着剤として、ポリエステルイミド系樹脂(特開平11−293223号公報)やポリアミドイミドとエポキシ樹脂(特開昭52−91082号公報)からなるフィルム状接着剤が開示されている。しかしながら、このようなフィルム状接着剤は、圧着後において、回路パターンが形成された凹凸面への接着剤の充填性が悪く、ハンダ耐熱性においても充分な特性ではなかった。
【0006】
ジヒドロキサジン環を有する熱硬化性樹脂は、特開昭49−47378号公報、特開平02−69567号公報や特開平04−227922号公報が知られている。そして、特開平04−227922号公報では、エポキシ樹脂に配合して得られる樹脂組成物をプリント基板用の電気絶縁材料等として使用することが開示されている。
【特許文献1】
特開平11−87927号公報
【特許文献2】
特開2001−203467号公報
【特許文献3】
特開平04−227922号公報
【0007】
このため、近年、多層配線板用接着剤、カバーレイフィルム用接着剤として、250℃以下の低温で圧着が可能で、圧着後においてしかも、接着強度、耐薬品性、耐熱性、吸湿後のハンダ耐熱性、配線加工時の寸法安定性、絶縁特性、回路凹凸の充填性などに優れた材料が求められるようになってきた。
【0008】
【発明が解決しようとする課題】
本発明は、250℃以下の温度で容易に圧着が可能で、その際の充填性に優れ、圧着後において耐熱性、ハンダ耐熱性、加工性、接着特性、耐湿性、電気絶縁性、配線加工工程における条件での寸法安定性、機械的強度特性に優れたプリント回路基板用耐熱性接着フィルムを提供することにある。
【0009】
【課題を解決するための手段】
すなわち、本発明は、ポリイミド樹脂100重量部に対し、芳香族炭化水素環と縮合したジヒドロキサジン環を有する熱硬化性樹脂1〜50重量部及びエポキシ樹脂1〜50重量部含有してなる樹脂組成物をフィルム状にしてなるプリント回路基板用耐熱接着フィルムである。ここで、ポリイミド樹脂としては、ポリシロキサン鎖を含有するポリイミド樹脂であること、又は、下記一般式(1)で表される繰り返し単位を0.1〜10モル%の範囲で含むポリイミド樹脂であることが好ましい。
【化5】

Figure 2004179514
(但し、Arは4価の有機基、Arは少なくとも一つの芳香環を有する有機基、Rは−OH、−COOH、−NH、−SH、−CONH又は炭素数1〜6の炭化水素基のいずれかを示し、iは1〜4の整数を示す)
【0010】
また、ジヒドロキサジン環を有する熱硬化性樹脂としては、下記一般式(2)〜(4)のいずれかで表される熱硬化性樹脂又はこの熱硬化性樹脂とその重合物からなる熱硬化性樹脂であることが好ましい。
【化6】
Figure 2004179514
(式中、Rは炭素数1〜10の有機基、Rは水素原子又は炭素数1〜6の炭化水素基、Yは存在しないか、炭素数1〜10の2価の炭化水素基、−CO−、−O−、−S−、−SO−、−CH−又は−C(CF−のいずれかを示す)
【化7】
Figure 2004179514
(式中、Rは炭素数1〜10の有機基、Rは水素原子又は炭素数1〜6の炭化水素基、Rは炭素数1〜20の2価の炭化水素を示し、nは1〜10の整数を示す)
【化8】
Figure 2004179514
(式中、Rは炭素数1〜10のアルキル基を示し、Rは水素又は炭素数1〜6の炭化水素基を示す)
【0011】
また、本発明は、前記の樹脂組成物を有機溶剤に溶解した溶液を、基材上にコーティングした後、乾燥することを特徴とするプリント回路基板用耐熱接着フィルムの製造方法である。更に、本発明は、前記のプリント回路基板用耐熱接着フィルムを被着体の間に挿入し、圧力1〜500kg/cm、温度20〜300℃の条件で熱圧着することを特徴とする接着フィルムにより接着されたプリント回路基板の製造方法である。
【0012】
【発明の実施の形態】
本発明のプリント回路基板用耐熱接着フィルムは、ポリイミド樹脂100重量部に対し、芳香族炭化水素環と縮合したジヒドロキサジン環を有する熱硬化性樹脂(BXZ樹脂)1〜50重量部及びエポキシ樹脂1〜50重量部含有してなる樹脂組成物から得ることができる。
【0013】
本発明に用いるポリイミド樹脂として、好ましくはシロキサン鎖を含有するポリイミド樹脂が挙げられる。シロキサン鎖を含有するポリイミド樹脂としては、下記一般式(5)で表される繰り返し単位を含むポリイミド樹脂が挙げられる
【化9】
Figure 2004179514
(但し、Arは少なくとも一つの芳香族環を有する4価の有機基を示し、Rは炭素数1〜10の2価の有機基を示し、R10〜R13は水素又は炭素数1〜6の有機基を示し、mは1〜20の整数を示す)。
一般式(5)で示される繰返し単位の全ポリイミド中に占める割合としては、耐湿性向上及び接着性向上の点で、5重量%以上であることが好ましく、より好ましくは30〜90モル%である。
【0014】
また、このポリイミド樹脂は、前記一般式(1)で表される繰り返し単位を全ポリイミド鎖中に0.1〜10モル%含むことが好ましい。
そして、このポリイミド樹脂は、上記繰り返し単位の他に、他の繰返し単位を含むことができる。かかる他の繰返し単位としては、前記一般式(1)において、iが0である、すなわち置換基Rを有しない繰り返し単位が挙げられる。
そして、全ポリイミド鎖中に、一般式(1)で表される繰り返し単位を0.1〜10モル%含み、一般式(5)で表される繰り返し単位を5〜80モル%含み、前記他の繰返し単位を20〜95モル%含むことが好ましい。
【0015】
上記一般式(5)及び(1)で表される繰返し単位を含有するポリイミドは、ジアミノシロキサン及び芳香族ジアミンと、テトラカルボン酸二無水物等のテトラカルボン酸化合物を反応させることにより得られる。
一般式(5)及び(1)において、Arは4価の有機基であるが、Arと同様少なくとも一つの芳香族環を有する有機基であることが好ましく、いずれもテトラカルボン酸化合物の残基ともいえる。したがって、好ましいAr及びArは、後記する好ましいテトラカルボン酸化合物から理解される。
【0016】
ポリイミド樹脂の原料として用いられるテトラカルボン酸化合物としては、酸二無水物が好ましく、この具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,3’,3,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,2’−ビス(3,4−ジカルボキシフェニル)エーテル二無水物(ODPA)、2,2’−ビス(2,3−ジカルボキシフェニル)エーテル二無水物(a−ODPA)、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン二無水物(BDCP)、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(BDCF)、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTCA)、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物(CPTA)、ピロリジン−2,3,4,5−テトラカルボン酸二無水物(PTCA)、1,2,3,4−ブタンテトラカルボン酸二無水物(BTCA)、テトラヒドロ無水ピロメリット酸(HPMDA)等をあげることができるが、これらに限定されることなく、種々のテトラカルボン酸二無水物を用いることができる。また、これらは、1種又は2種以上を用いることができる。
このテトラカルボン酸化合物の残基は、一般式(1)及び一般式(5)のArを与える。
【0017】
芳香族ジアミンとしては、アミノ基を2つ以上分子内に有する化合物であれば限定されること無く用いることができるが、耐熱性向上の観点から、芳香族ジアミノ化合物であることが望ましい。芳香族ジアミンの具体例としては、次のようなジアミンが好ましく挙げられる。しかし、これらに限定することなく、m−フェニレンジアミン、p−フェニレンジアミン等も用いることができる。更に、これらの1種又は2種以上を用いることができる他、少量の他のジアミン等も用いることができる。
【0018】
【化10】
Figure 2004179514
【0019】
【化11】
Figure 2004179514
【0020】
【化12】
Figure 2004179514
【0021】
また、一般式(5)で示される繰り返し単位を与えるシロキサン系のジアミンとしては、ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン、ビス(4−アミノフェニル)−1,1,3,3−テトラメチルジシロキサン、ビス(3−メチルー4−アミノフェニル)−1,1,3,3−テトラメチルジシロキサン、あるいは下記一般式(7)
【化13】
Figure 2004179514
(式中、R〜R13及びmは一般式(5)と同じである)で表されるジアミノポリシロキサンが挙げられる。一般式(7)で好ましいRとしてはトリメチレン基、フェニレン基が、R10〜R13としてはメチル基、ビニル基又はフェニル基が挙げられる。
【0022】
更に、BXZ樹脂の硬化反応を促進し、ポリイミド樹脂と架橋させる目的で、下記一般式(8)
【化14】
Figure 2004179514
(式中、Ar、R及びiは、一般式(1)と同じである)で示される構造を有するジアミンを、全ジアミン成分の0.1〜10モル%の範囲で用いることがよい。一般式(8)で示されるジアミンとして具体的には、2,5−ジアミノフェノール(25DAPE)、3,5−ジアミノフェノール(35DAPE)、4,4’−(3,3’−ジヒドロキシ)ジアミノビフェニル(43HAB)、4,4’−(2,2’−ジヒドロキシ)ジアミノビフェニル(42HAB)、2,2’−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(HPHF)、3,3’,4,4’−テトラアミノジフェニルエーテル(TADE)、4,4’−(3,3’−ジカルボキシ)ジフェニルアミン(43DCPA)、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルエーテル(34DCPA)等が挙げられる。
【0023】
ポリイミド樹脂は、テトラカルボン酸二無水物とジアミノ化合物とを、ほぼ等モルで反応させることにより合成できる。反応条件は公知の条件を採用することができる。ポリイミド樹脂は、一般式(5)で表されるポリイミド樹脂単位又はその前駆体単位が繰返し単位として1モル%以上、好ましくは5〜50重量%含まれることがよい。一般式(1)で表されるポリイミド樹脂単位又はその前駆体単位の両者を含み、そのモル割合が0.1〜10モル%であることも有利である。
【0024】
本発明に用いるジヒドロキサジン環を有する熱硬化性樹脂(BXZ樹脂)としては、前記一般式(2)〜(4)で表されるいずれかの樹脂又はこの樹脂の部分重合物が好ましく挙げられ、これらは1種又は2種以上が使用できる。
一般式(2)〜(4)で表されるいずれかの樹脂は、通常は部分重合物を含む混合物として得られるが、樹脂として熱硬化性を有するので、これをそのままBXZ樹脂として使用することが有利である。BXZ樹脂の含有量は、ポリイミド樹脂100重量部に対し、1〜50重量部の範囲で用いることが必要であり、1重量部未満では、耐熱性向上、耐薬品性向上に効果がなく、50重量部を超えると、可とう性、機械的強度が不十分となる。
【0025】
一般式(2)〜(4)で、R、R及びRは炭素数1〜10の有機基であるが、好ましくはアルキル基、フェニル基、置換フェニル基である。R、R、Rは水素原子又は炭素数1〜6の炭化水素基であるが、好ましくは水素原子又はアルキル基である。Rは炭素数1〜20の2価の炭化水素基を示すが、メチレン基又はp−キシリレン基、ジメチレンビフェニレン基又はジメチレンナフチレン基が好ましい。
【0026】
本発明で使用する望ましいBXZ樹脂は、上記一般式(2)〜(4)で表される樹脂のみからなるものであってもよく、その部分重合物を少量含む樹脂であってもよく、これらの混合物であってもよい。その他、BXZ樹脂の製造の際、副生する少量の不純物、部分開環物、未反応物等を含み得る。
【0027】
BXZ樹脂は公知の方法により製造することができる。好ましい反応原料の一例としては、下記一般式で示されるフェノール化合物、1級アミン及びアルデヒドがある。
a) フェノール化合物:HO−Ar又はHO−Ar−OH
b) 1級アミン:R−NH
c) アルデヒド:R’−CHO
ここで、Arは1価の芳香族基であり、Arは2価の芳香族基であるが、2環以上の多環の芳香族基であることが好ましく、ハロゲン、アルキル基等の置換基を有し得るが、OH基に対しオルト位に置換可能な水素を少なくとも一つ有する。Rは、1価の脂肪族、芳香族等の有機基であるが、芳香族基であることが好ましく、ハロゲン等の置換基を有し得る。また、2環以上の多環の芳香族基であることも好ましい。好ましくは、炭素数1〜10のアルキル基、シクロヘキシル基、フェニル基又は置換フェニル基である。
R’は、水素又は1価の脂肪族、芳香族等の有機基であるが、水素又は低級アルキル基が好ましい。
【0028】
BXZ樹脂の原料となるフェノール化合物としては、オルソ位の少なくとも一方に水素が結合しているフェノール類、多官能フェノール類、ビスフェノール類、1,1,1−トリス(4−ヒドロキシフェニル)エタンなどのトリスフェノール類等が挙げられる。好ましくは、熱硬化物特性の観点から1分子中にフェノール性水酸基を2以上有する化合物である。具体的には、多官能フェノール類としてカテコール、レゾルシノール、ヒドロキノン、ビスフェノール類としてビスフェノールA、ビスフェノールS、ビスフェノールF、ヘキサフルオロビスフェノールA等が挙げられる。また、フェノール樹脂としては、フェノールノボラック樹脂、レゾール樹脂、フェノール変性キシレン樹脂、アルキルフェノール樹脂、メラミンフェノール樹脂、ポリブタジエン変性フェノール樹脂等が挙げられる。これらは、1種類あるいは2種類以上を用いることもできる。
【0029】
1級アミンとしては、メチルアミン、ブチルアミン、シクロヘキシルアミン等の脂肪族アミン、アニリン、トルイジン、アニシジン等の芳香族アミンを用いることができ、これらは、1種あるいは2種類以上を用いることもできる。
【0030】
アルデヒドとしては、前記アルデヒドが使用できるが、ホルムアルデヒドを使用する場合は、ホルマリン水溶液として、またパラホルムアルデヒドとして、いずれの形態でも用いることができる。
【0031】
BXZ樹脂として具体的には、次のようなBXZ樹脂が例示される。しかし、これらに限定されることなく、また、1種又は2種以上を用いることができる。
【化15】
Figure 2004179514
【0032】
【化16】
Figure 2004179514
【0033】
【化17】
Figure 2004179514
【0034】
また、本発明で使用するBXZ樹脂として、ジヒドロナフトキサジン環を有する熱硬化性樹脂(NXZ樹脂ともいう)も有利に用いることもできる。このNXZ樹脂は、NXZ樹脂として単独で使用することもでき、上記のようなBXZ樹脂と、併用することもできる。NXZ樹脂の具体的な製造方法は、上記BXZ樹脂と同様に、1級アミンをホルムアルデヒドへ徐々に加える方法により反応させたのち、ナフトール系水酸基を有する化合物を加え、20分〜24時間、70〜120℃に保つ。このとき、必要に応じて有機溶剤を用いることもできる。反応後、生成物を抽出等の合成化学的手法で単離・精製し縮合水等の揮発成分を乾燥除去することにより目的とするNXZ樹脂が得られる。
【0035】
NXZ樹脂としては、具体的には、次のような樹脂が好ましく挙げられる。しかし、これらに限定されるものではない。
【化18】
Figure 2004179514
【0036】
【化19】
Figure 2004179514
【0037】
【化20】
Figure 2004179514
【0038】
【化21】
Figure 2004179514
【0039】
上記NXZ樹脂は、加熱により開環重合反応を起こし、揮発分を発生させることなくナフトール性水酸基を生成しながら優れた特性を有する架橋構造を形成する。この硬化物は低吸湿性、高いガラス転移温度、高強度・高弾性率更には低硬化収縮率を示し、難燃性にも優れている。なお、NXZ樹脂は、硬化前は単一の化合物である場合もあり、少量の副反応物を含む混合物である場合もあり、上記化合物が部分的に重合したオリゴマーである場合もある。
【0040】
NXZ樹脂としては、芳香族炭化水素環と縮合したジヒドロキサジン環を少なくとも一つ有し、このジヒドロキサジン環の開環重合反応により硬化する樹脂であれば制限はなく、公知のNXZ樹脂等も使用可能である。ジヒドロキサジン環と縮合する芳香族炭化水素環としては、ベンゼン環又はナフタレン環が好ましく挙げられ、これらの芳香族炭化水素環はメチル基等炭素数3以下のアルキル基やハロゲン等の置換基を有してもよい。置換基を有しないものがよい。
【0041】
本発明に用いるエポキシ樹脂としては、ジヒドロベンゾキサジン樹脂とポリイミド樹脂との混合が可能であれば特に限定はされないが、好ましくはエポキシ当量が500以下の範囲である液状又は粉末状エポキシ樹脂である。エポキシ当量が500を超えると接着強度及び耐熱性が低下する。このような、エポキシ樹脂として具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン等のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)エタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の酸価以上のフェノール類から誘導されるグリシジルエーテル化合物が挙げられる。これらのエポキシ樹脂は1種又は2種以上を混合して使用することができる。
【0042】
本発明においては、上記成分の他に必要に応じて公知の硬化促進剤、カップリング剤、充填剤、顔料等を適宜配合しても良い。
また、硬化反応触媒として、例えば、イミダゾール系化合物、ジシアンジアミド系化合物、リン系化合物を使用することができる。
【0043】
本発明のプリント回路基板用耐熱接着フィルムを形成する熱硬化性樹脂組成物は、以上に記した成分以外に必要に応じ、各種フェノール樹脂、メラミン樹脂、ポリアミド樹脂等を含有することができる。
また、充填材、補強材、離型剤、カップリング剤、可塑剤、難燃剤、硬化助剤、着色剤、カップリング剤、あるいはカーボンブラック等を含有することができる。樹脂の難燃性を更に向上させる目的で、トリフェニルフォスフィン等のホスフィン類、リン酸エステル、亜ホスフィン酸エステル、亜リン酸エステル、ホスフィンオキサイド等の各種有機リン系化合物を使用することもできる。
【0044】
本発明のプリント回路基板用耐熱接着フィルムに使用する熱硬化性樹脂組成物は、ポリイミド樹脂100重量部に対し、芳香族炭化水素環と縮合したジヒドロキサジン環を有する熱硬化性樹脂1〜50重量部及びエポキシ樹脂1〜50重量部含有してなるが、上記必須成分は全樹脂成分(硬化後樹脂となる成分を含む)の50重量%以上、好ましくは80重量%以上含有される。
【0045】
上記成分よりなる本発明の耐熱接着剤は、フィルム状に成型して用いられるが、従来公知の方法を用いてフィルム化することができる。プリント回路基板用耐熱接着フィルムを作成する方法としては、ポリイミド樹脂、BXZ樹脂、エポキシ樹脂、及びその他の成分よりなる樹脂組成物を有機溶剤に溶解し、得られた樹脂溶液を、表面が剥離し易いように表面処理された金属箔、ポリエステルフィルム、ポリイミドフィルム等の基材上に従来公知の方法によりコーティングした後、乾燥し、基材から剥離することにより本発明のプリント回路基板用耐熱性接着フィルムとすることができる。
【0046】
上記フィルム成型工程で用いられる溶剤として代表的なものは、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン等のアミド系溶剤、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等のエーテル系溶剤、γ−ブチロラクトン、キシレノール、クロロフェノール、フェノール、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、トルエン、キシレン、メチルエチルケトン等のエステル系溶剤、フェノール系溶剤、ケトン系溶剤あるいは芳香族炭化水素系溶剤を挙げることができる。また、フィルム形成時の溶剤として、前期ポリイミド樹脂製造時に用いた反応溶媒をそのまま使用してもなんら差し支えない。
【0047】
本発明の耐熱性接着フィルムの好適な使用方法としては、例えば、ポリイミド製フレキシブルプリント回路基板、ガラス繊維−エポキシ樹脂製プリント配線基板、紙−フェノル樹脂製プリント配線基板、金属箔、金属板、樹脂基材等の被着体の間に、本発明の耐熱性接着フィルムを挿入し、温度20〜300℃、圧力1〜500kg/cmの条件で熱圧着し、好ましくは更に、50〜250℃の温度で、圧力10〜300kg/cmの条件で所定時間熱処理し、BXZ樹脂及びエポキシ樹脂を完全に硬化させることにより、被着体の間に強固な接着層を形成させることができる。
本発明のプリント回路基板用耐熱接着シートは、予めフィルム、シートとして用いられるだけでなく、ワニスの形態で利用し、これを塗布、乾燥して基板材料に接着したフィルム状としたものも、本発明のプリント回路基板用耐熱接着シートである。
本発明でいうプリント回路基板とは、フレキブブルプリント回路基板、リジッドプリント回路基板を含み、これは回路が形成済みであっても及び未形成であってもよい。プリント回路基板用耐熱接着シートは、複数の導体層又は回路層と絶縁層又は接着層を有する多層回路基板の接着用に適する他、プリント回路基板にICチップ等を搭載する際の接着用に使用する態様を含む。
【0048】
【実施例】
以下、実施例により、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中の樹脂原料の略号は、酸二無水物、ジアミン化合物、BXZ樹脂及びNXZ樹脂の説明の項に記載した略号に対応する。その他の略号は以下のものを意味する。
【0049】
BAPD: ビス(3−アミノプロピル)‐1,1,3,3−テトラメチルジシロキサン
PSX750:平均分子量750のビス(3−アミノプロピル)ジメチルポリシロキサン
PSX1000:平均分子量1000のビス(3−アミノプロピル)ジメチルポリシロキサン
EP1;ビスフェノールA型エポキシ樹脂(エピコート828(ジャパンエポキシレジン社製))
EP2;オルソクレゾール型エポキシ樹脂(YDCN−500(東都化成社製)
EP3;脂環式エポキシ樹脂(セロキサイド(ダイセル化学社製))
(1a):フェノールノボラック(OH当量=200)から合成される下記式で示されるBXZ樹脂
【化22】
Figure 2004179514
【0050】
合成例1
Dean−Stark型脱水冷却装置、撹拌翼を取り付けた1LのセパラブルフラスコにN−メチル−2−ピロリジノン(NMP)200mlとトルエン100mlを入れ、氷冷により25℃以下に温度を保ち、窒素気流下で、ジアミン(l)40.1gを溶解した後、DSDA35.4gを粉体のまま少量づつ投入した。2時間反応し充分ポリアミド酸の重合を進行させた後、トルエン還流が起こるまで温度を徐々に上昇させ、イミド化脱水反応により生成する水を重合反応系外に除去した。脱水イミド化反応が終了した後、更に、1時間150℃にて撹拌を行い反応を終了させた。得られたポリイミド溶液にNMPを加え固形分濃度が20重量%となるように調整した。
【0051】
合成例2
アニリン0.4モルをジオキサン200ml中に溶解し、ホルムアルデヒド液(36〜38%水溶液)67gを滴下し、室温下で5時間反応させた。その後、ビスフェノールFを0.2モル加え、撹拌下、100℃〜120℃で、5時間反応させた。反応終了後、溶媒を真空除去し、ジヒドロベンゾキサジン(A)92gを得た。
【0052】
実施例1
合成例1のポリイミド溶液を固形分濃度40重量%に調整した後、その溶液100g中に、ジヒドロベンゾキサジン環を有する熱硬化性樹脂5g、オルソクレゾール型エポキシ樹脂(EOCN)5gを混合した。完全に混合した後、混合溶液をガラス基板上に流延し、ドクターブレードを用いてキャストした。更に、これを窒素気流下のイナートオーブン中で、100℃で60分、150℃で60分で乾燥させた後、樹脂フィルム層をガラス基板から隔離し、ステンレス製の金属枠に固定した。これを、150℃で10分間乾燥させ、耐熱接着フィルムを得た。
このフィルムを用いて、銅、ステンレス等との接着強度の測定を行った。また、このフィルムを更に、200℃で60分の熱処理を行った後、物性測定を行った。
【0053】
また、ポリイミドフィルムの両面に銅により回路が形成されたフレキシブルプリント回路基板2組を用意し、その環に、上記方法で得られた接着フィルムを挿入し、温度180℃、圧力25kg/cm、60分間の条件で熱圧着した後、スルーホールを形成して多層プリント配線基板を製造した。スルーホールを形成の際に、スミア等の発生もなく良好なスルーホールが得られた。この多層プリント配線基板を300℃のハンダ浴に30秒間浸漬したが、ふくれ、はがれ等の不良は観察されなかった。
【0054】
なお、ガラス転移温度(Tg)は動的粘弾性測定装置(DMA)を用い、熱膨張係数は、熱機械分析装置(TMA)を用い、熱分解開始温度(5%重量減少温度)は熱重量分析装置(TGA)を用いて、曲げ強度及び曲げ弾性率はJIS K 6911に準じて測定を行った。
吸水率は、3mm厚の硬化物を作成した後、硬化物をPCT(121℃、2atm)処理時間20時間の条件で処理した後、PCT処理前後の重量変化を測定し、吸水率を求めた。更に、難燃性はUL規格の方法に従って、1.6mm厚の硬化物の難燃性を評価した。
接着強度については、加圧プレスを用いて圧着温度(ガラス転移温度+50℃)、圧着圧力(19.6MPa)にてJIS K 6850に従って評価を行った。
【0055】
実施例2〜8
ポリイミド樹脂の製造原料組成及び接着フィルムの配合組成を表1に示し、得られた接着フィルムの硬化後の物性を表2に示す。実施例1の記載と同様の方法により評価を行った。
【0056】
比較例1〜2
BXZ樹脂又はNXZ樹脂を添加せず、エポキシ樹脂のみを用いた以外は、実施例1の記載と同様の方法により評価を行った。
【0057】
ポリイミド樹脂の原料組成及び樹脂組成物の配合組成を表1に、得られた接着フィルムの硬化後の物性を表2に示す。
また、表2において、接着強度(1)は、酸化処理銅に対する180°剥離強度であり、接着強度(2)は、硫酸処理銅に対する180°剥離強度であり、接着強度(3)は、ポリイミドフィルムに対する180°剥離強度である。ハンダ耐熱性(1)は、熱圧着後、ハンダ浴に30秒間浸漬した後、ふくれ、はがれ等外観検査の結果を示し、ハンダ耐熱性(2)は、40℃、90%RH、24時間の吸湿試験後、ハンダ浴に30秒間浸漬後、ふくれ、はがれ等外観検査の結果を示す。
ポリイミド樹脂の原料組成及び配合組成を表1に、得られた接着フィルムの硬化後の物性を表2にまとめて示す。
【0058】
【表1】
Figure 2004179514
【0059】
【表2】
Figure 2004179514
【0060】
【発明の効果】
本発明のプリント回路基板用耐熱接着フィルムは、ポリイミド本来の優れた耐熱性、電気特性、機械的特性を損なうことなく、従来のポリイミド系接着剤に比べ、低温での圧着が可能で、耐熱性、難燃性において優れ、銅やステンレス等の金属に対する密着性にも優れ、低温での熱圧着が可能である。従って、本発明のプリント回路基板用耐熱接着フィルムは、多層プリント配線基板用接着剤、フレックス−リジッド配線基板用接着剤、プリント配線基板用カバーレイフィルム用接着剤、半導体搭載用ダイボンディングシート等の高度な信頼性を必要とする電子部材の各種接着に好適に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant adhesive film for a printed circuit board, and particularly to a novel print using a dihydroxazine resin having a dihydroxazine ring (hereinafter also referred to as BXZ resin) having excellent heat resistance, curing properties, and adhesive properties. The present invention relates to a heat-resistant adhesive film for a circuit board.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a printed circuit wiring board, a substrate based on paper-phenol resin, glass fiber-epoxy resin, glass fiber-bismaleimide resin, or a polyimide (PI) film, a polyethylene terephthalate (PET) film, and a metal foil are used. Laminated ones are used.
In addition, demands for printed circuit wiring boards used in the fields of electric / electronic equipment and precision equipment are increasing. In recent years, various adhesives or adhesive films have been used in a process of forming a multilayer wiring board by laminating printed circuit wiring boards or combining different kinds of circuit materials (Japanese Patent Laid-Open No. 11-87927). ). In particular, recently, with the development of high-density mounting technology such as a multilayer rigid-flex board, a multilayer flexible printed circuit board, or a multilayer rigid board for a multi-chip module, the multilayer technique has become increasingly important.
[0003]
As such an insulating adhesive used when forming a multilayer substrate, a prepreg adhesive obtained by impregnating a non-woven fabric such as glass fiber with a thermosetting resin such as an epoxy resin or a bismaleimide resin is known. I have. However, they have problems such as insufficient flexibility and poor dimensional stability. Conventionally, adhesives such as acrylonitrile-butadiene rubber / butyral resin, acrylonitrile-butadiene rubber / epoxy resin, and acrylonitrile-butadiene rubber / acrylate resin have been reported (JP-A-4-29393, JP-A-4-36366). And JP-A-4-41581). However, these adhesives do not have sufficient chemical resistance and heat resistance, are inferior in heat resistance and durability, have insufficient solder heat resistance after moisture absorption, and cause smear during drilling for forming through holes. Generation and the like are likely to occur, and these workability points are not sufficient.
[0004]
In recent years, a polyimide adhesive excellent in heat resistance has also been proposed (USP 4,543,295, JP-A-10-183072). However, such a polyimide has a problem in practicality because it requires a high thermocompression bonding temperature of 250 ° C. or more in order to bond substrates such as copper or a polyimide film and obtain a satisfactory bonding strength. there were.
[0005]
Furthermore, a film adhesive composed of a polyimide / epoxy resin or a polyimide / acrylate resin-based composite resin has also been proposed (JP-A-2001-203467). However, in these, the flexibility of the adhesive layer after the pressure bonding is not sufficient, and the solder heat resistance is also insufficient, so that halogen-free flame retardancy and phosphorus-free flame retardancy cannot be achieved.
Examples of the polyimide adhesive having excellent adhesive strength include polyesterimide resins (Japanese Patent Application Laid-Open No. 11-293223) and polyamideimide and epoxy resins (JP-A-11-293223) as adhesives for producing copper-clad laminates for flexible printed wiring boards. Japanese Patent Application Laid-Open No. 52-91082) discloses a film adhesive. However, such a film-like adhesive has a poor filling property of the adhesive into the uneven surface on which the circuit pattern is formed after the pressure bonding, and does not have sufficient solder heat resistance.
[0006]
Thermosetting resins having a dihydroxazine ring are known from JP-A-49-47378, JP-A-02-69567 and JP-A-04-227922. Japanese Patent Application Laid-Open No. 04-227922 discloses that a resin composition obtained by blending with an epoxy resin is used as an electrical insulating material for a printed circuit board.
[Patent Document 1]
JP-A-11-87927
[Patent Document 2]
JP 2001-203467 A
[Patent Document 3]
JP 04-227922 A
[0007]
For this reason, in recent years, as an adhesive for a multilayer wiring board and an adhesive for a cover lay film, it is possible to perform pressure bonding at a low temperature of 250 ° C. or less, and furthermore, after the pressure bonding, adhesive strength, chemical resistance, heat resistance, and solder absorption after moisture absorption. Materials that are excellent in heat resistance, dimensional stability during wiring processing, insulation properties, and filling of circuit irregularities have been required.
[0008]
[Problems to be solved by the invention]
INDUSTRIAL APPLICABILITY The present invention can easily perform pressure bonding at a temperature of 250 ° C. or less, has excellent filling properties at that time, and has heat resistance, solder heat resistance, workability, adhesive properties, moisture resistance, electric insulation, wiring processing after pressure bonding. An object of the present invention is to provide a heat-resistant adhesive film for a printed circuit board having excellent dimensional stability and mechanical strength characteristics under the conditions in the process.
[0009]
[Means for Solving the Problems]
That is, the present invention relates to a resin comprising 1 to 50 parts by weight of a thermosetting resin having a dihydroxazine ring condensed with an aromatic hydrocarbon ring and 1 to 50 parts by weight of an epoxy resin based on 100 parts by weight of a polyimide resin. This is a heat-resistant adhesive film for a printed circuit board, which is obtained by forming the composition into a film. Here, the polyimide resin is a polyimide resin containing a polysiloxane chain, or a polyimide resin containing a repeating unit represented by the following general formula (1) in a range of 0.1 to 10 mol%. Is preferred.
Embedded image
Figure 2004179514
(However, Ar1Is a tetravalent organic group, Ar2Is an organic group having at least one aromatic ring, R1Is -OH, -COOH, -NH2, -SH, -CONH2Or one of a hydrocarbon group having 1 to 6 carbon atoms, and i represents an integer of 1 to 4)
[0010]
As the thermosetting resin having a dihydroxazine ring, a thermosetting resin represented by any of the following general formulas (2) to (4) or a thermosetting resin composed of the thermosetting resin and a polymer thereof It is preferably a conductive resin.
Embedded image
Figure 2004179514
(Where R2Is an organic group having 1 to 10 carbon atoms, R3Is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, Y is absent or a divalent hydrocarbon group having 1 to 10 carbon atoms, -CO-, -O-, -S-, -SO2-, -CH2-Or -C (CF3)2-)
Embedded image
Figure 2004179514
(Where R4Is an organic group having 1 to 10 carbon atoms, R5Is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, R6Represents a divalent hydrocarbon having 1 to 20 carbon atoms, and n represents an integer of 1 to 10)
Embedded image
Figure 2004179514
(Where R7Represents an alkyl group having 1 to 10 carbon atoms;8Represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms)
[0011]
Further, the present invention is a method for producing a heat-resistant adhesive film for a printed circuit board, comprising coating a solution obtained by dissolving the above-described resin composition in an organic solvent on a substrate, and then drying. Further, according to the present invention, the heat-resistant adhesive film for a printed circuit board is inserted between adherends, and the pressure is 1 to 500 kg / cm.2And a thermocompression bonding at a temperature of 20 to 300 ° C.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat-resistant adhesive film for a printed circuit board according to the present invention comprises 1 to 50 parts by weight of a thermosetting resin (BXZ resin) having a dihydroxazine ring condensed with an aromatic hydrocarbon ring and 100 parts by weight of a polyimide resin, and an epoxy resin. It can be obtained from a resin composition containing 1 to 50 parts by weight.
[0013]
As the polyimide resin used in the present invention, a polyimide resin containing a siloxane chain is preferably used. Examples of the polyimide resin containing a siloxane chain include a polyimide resin containing a repeating unit represented by the following general formula (5).
Embedded image
Figure 2004179514
(However, Ar1Represents a tetravalent organic group having at least one aromatic ring;9Represents a divalent organic group having 1 to 10 carbon atoms;10~ RThirteenRepresents hydrogen or an organic group having 1 to 6 carbon atoms, and m represents an integer of 1 to 20).
The proportion of the repeating unit represented by the general formula (5) in the total polyimide is preferably 5% by weight or more, and more preferably 30 to 90% by mole, from the viewpoint of improving moisture resistance and adhesion. is there.
[0014]
The polyimide resin preferably contains the repeating unit represented by the general formula (1) in an amount of 0.1 to 10 mol% in all the polyimide chains.
And this polyimide resin can contain other repeating units other than the said repeating unit. As such another repeating unit, in the general formula (1), i is 0, that is, the substituent R1And a repeating unit having no.
And, in the entire polyimide chain, 0.1 to 10 mol% of the repeating unit represented by the general formula (1) is contained, and 5 to 80 mol% of the repeating unit represented by the general formula (5) is contained. It is preferred to contain the repeating unit of 20 to 95 mol%.
[0015]
The polyimide containing the repeating units represented by the general formulas (5) and (1) can be obtained by reacting a diaminosiloxane and an aromatic diamine with a tetracarboxylic acid compound such as tetracarboxylic dianhydride.
In the general formulas (5) and (1), Ar1Is a tetravalent organic group, but Ar2It is preferable that it is an organic group having at least one aromatic ring in the same manner as described above. Therefore, the preferred Ar1And Ar2Is understood from the preferred tetracarboxylic acid compounds described below.
[0016]
As the tetracarboxylic acid compound used as a raw material of the polyimide resin, an acid dianhydride is preferable, and specific examples thereof include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-diphenylsulfonate Carboxylic dianhydride (DSDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride (a- BPDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 2,2′-bis (3,4-dicarboxyphenyl) ether dianhydride (ODPA), 2,2 '-Bis (2,3-dicarboxyphenyl) ether dianhydride (a-ODPA), 2,2'-bis (3,4-dicarboxyphenyl) propane dianhydride (BDCP), , 2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (BDCF), 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCA), cyclopentane-1,2,2 3,4-tetracarboxylic dianhydride (CPTA), pyrrolidine-2,3,4,5-tetracarboxylic dianhydride (PTCA), 1,2,3,4-butanetetracarboxylic dianhydride ( BTCA), tetrahydropyromellitic anhydride (HPMDA) and the like, but are not limited thereto, and various tetracarboxylic dianhydrides can be used. These may be used alone or in combination of two or more.
The residue of this tetracarboxylic acid compound is represented by Ar of general formulas (1) and (5).1give.
[0017]
Any aromatic diamine can be used without limitation as long as it is a compound having two or more amino groups in the molecule, but is preferably an aromatic diamino compound from the viewpoint of improving heat resistance. Specific examples of the aromatic diamine include the following diamines. However, without being limited to these, m-phenylenediamine, p-phenylenediamine and the like can also be used. Further, one or more of these may be used, and a small amount of other diamines may be used.
[0018]
Embedded image
Figure 2004179514
[0019]
Embedded image
Figure 2004179514
[0020]
Embedded image
Figure 2004179514
[0021]
Examples of the siloxane-based diamine that provides the repeating unit represented by the general formula (5) include bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane and bis (4-aminophenyl)- 1,1,3,3-tetramethyldisiloxane, bis (3-methyl-4-aminophenyl) -1,1,3,3-tetramethyldisiloxane, or the following general formula (7)
Embedded image
Figure 2004179514
(Where R9~ RThirteenAnd m are the same as in the general formula (5). Preferred R in the general formula (7)9Is a trimethylene group or a phenylene group,10~ RThirteenExamples thereof include a methyl group, a vinyl group and a phenyl group.
[0022]
Further, for the purpose of accelerating the curing reaction of the BXZ resin and crosslinking with the polyimide resin, the following general formula (8)
Embedded image
Figure 2004179514
(Wherein, Ar2, R1And i are the same as those in the general formula (1).) It is preferable to use a diamine having a structure represented by the general formula (1) in a range of 0.1 to 10 mol% of the total diamine component. Specific examples of the diamine represented by the general formula (8) include 2,5-diaminophenol (25 DAPE), 3,5-diaminophenol (35 DAPE), and 4,4 ′-(3,3′-dihydroxy) diaminobiphenyl. (43HAB), 4,4 '-(2,2'-dihydroxy) diaminobiphenyl (42HAB), 2,2'-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (HPHF), 3,3' , 4,4'-tetraaminodiphenyl ether (TADE), 4,4 '-(3,3'-dicarboxy) diphenylamine (43DCPA), 3,3'-dicarboxy-4,4'-diaminodiphenylether (34DCPA) And the like.
[0023]
A polyimide resin can be synthesized by reacting tetracarboxylic dianhydride with a diamino compound in approximately equimolar amounts. Known reaction conditions can be adopted. The polyimide resin may contain a polyimide resin unit represented by the general formula (5) or a precursor unit thereof as a repeating unit in an amount of 1 mol% or more, preferably 5 to 50% by weight. It is also advantageous to include both the polyimide resin unit represented by the general formula (1) and its precursor unit, and the molar ratio is 0.1 to 10 mol%.
[0024]
As the thermosetting resin (BXZ resin) having a dihydroxazine ring used in the present invention, any one of the resins represented by the general formulas (2) to (4) or a partially polymerized product of the resin is preferable. These can be used alone or in combination of two or more.
Any of the resins represented by the general formulas (2) to (4) is usually obtained as a mixture containing a partially polymerized product. However, since the resin has thermosetting properties, it is used as it is as a BXZ resin. Is advantageous. The content of the BXZ resin is required to be in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the polyimide resin. When the content is less than 1 part by weight, there is no effect on the improvement of heat resistance and chemical resistance. If the amount exceeds the weight part, flexibility and mechanical strength become insufficient.
[0025]
In general formulas (2) to (4), R2, R4And R7Is an organic group having 1 to 10 carbon atoms, preferably an alkyl group, a phenyl group or a substituted phenyl group. R3, R5, R8Is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group. R6Represents a divalent hydrocarbon group having 1 to 20 carbon atoms, and is preferably a methylene group or a p-xylylene group, a dimethylene biphenylene group or a dimethylene naphthylene group.
[0026]
Desirable BXZ resin used in the present invention may be composed of only the resins represented by the above general formulas (2) to (4), or may be a resin containing a small amount of a partial polymer thereof. May be used. In addition, the BXZ resin may contain a small amount of by-product impurities, partially ring-opened products, unreacted products, and the like when produced.
[0027]
The BXZ resin can be manufactured by a known method. Preferred examples of the reaction raw materials include a phenol compound represented by the following general formula, a primary amine and an aldehyde.
a) Phenol compound: HO-Ar3Or HO-Ar4-OH
b) Primary amine: R-NH2
c) Aldehyde: R'-CHO
Where Ar3Is a monovalent aromatic group, and Ar is4Is a divalent aromatic group, and is preferably a polycyclic aromatic group having two or more rings, and may have a substituent such as a halogen or an alkyl group. At least one hydrogen atom. R is a monovalent aliphatic or aromatic organic group, preferably an aromatic group, and may have a substituent such as halogen. Further, it is also preferable that it is a polycyclic aromatic group having two or more rings. Preferably, it is an alkyl group having 1 to 10 carbon atoms, a cyclohexyl group, a phenyl group or a substituted phenyl group.
R 'is hydrogen or an organic group such as a monovalent aliphatic or aromatic group, and is preferably hydrogen or a lower alkyl group.
[0028]
Examples of the phenol compound serving as a raw material of the BXZ resin include phenols having hydrogen bonded to at least one of the ortho positions, polyfunctional phenols, bisphenols, 1,1,1-tris (4-hydroxyphenyl) ethane, and the like. And trisphenols. Preferably, it is a compound having two or more phenolic hydroxyl groups in one molecule from the viewpoint of thermosetting properties. Specifically, catechol, resorcinol, hydroquinone, and bisphenols such as bisphenol A, bisphenol S, bisphenol F, and hexafluorobisphenol A are exemplified as polyfunctional phenols. Examples of the phenol resin include a phenol novolak resin, a resol resin, a phenol-modified xylene resin, an alkylphenol resin, a melamine phenol resin, and a polybutadiene-modified phenol resin. These may be used alone or in combination of two or more.
[0029]
As the primary amine, aliphatic amines such as methylamine, butylamine, and cyclohexylamine, and aromatic amines such as aniline, toluidine, and anisidine can be used, and one or more of these can be used.
[0030]
As the aldehyde, the above-mentioned aldehyde can be used. When formaldehyde is used, it can be used in any form as an aqueous formalin solution or as paraformaldehyde.
[0031]
Specific examples of the BXZ resin include the following BXZ resins. However, the present invention is not limited to these, and one or more kinds can be used.
Embedded image
Figure 2004179514
[0032]
Embedded image
Figure 2004179514
[0033]
Embedded image
Figure 2004179514
[0034]
Further, as the BXZ resin used in the present invention, a thermosetting resin having a dihydronaphthoxazine ring (also referred to as an NXZ resin) can be advantageously used. This NXZ resin can be used alone as the NXZ resin, or can be used in combination with the BXZ resin as described above. The specific production method of the NXZ resin is, as in the case of the BXZ resin, after reacting by gradually adding a primary amine to formaldehyde, and then adding a compound having a naphthol-based hydroxyl group, and then reacting for 70 minutes to 24 hours. Keep at 120 ° C. At this time, an organic solvent can be used if necessary. After the reaction, the product is isolated and purified by a synthetic chemical technique such as extraction, and the volatile components such as condensed water are dried and removed to obtain the desired NXZ resin.
[0035]
As the NXZ resin, specifically, the following resins are preferably exemplified. However, it is not limited to these.
Embedded image
Figure 2004179514
[0036]
Embedded image
Figure 2004179514
[0037]
Embedded image
Figure 2004179514
[0038]
Embedded image
Figure 2004179514
[0039]
The NXZ resin causes a ring-opening polymerization reaction by heating to form a crosslinked structure having excellent properties while generating a naphthol hydroxyl group without generating volatile components. The cured product exhibits low moisture absorption, high glass transition temperature, high strength and high elastic modulus, and also low curing shrinkage, and has excellent flame retardancy. The NXZ resin may be a single compound before curing, a mixture containing a small amount of by-products, or an oligomer obtained by partially polymerizing the compound.
[0040]
The NXZ resin is not limited as long as it has at least one dihydroxazine ring condensed with an aromatic hydrocarbon ring and is cured by a ring-opening polymerization reaction of the dihydroxazine ring. Can also be used. As the aromatic hydrocarbon ring condensed with the dihydroxazine ring, a benzene ring or a naphthalene ring is preferably exemplified, and these aromatic hydrocarbon rings may have a substituent such as an alkyl group having 3 or less carbon atoms such as a methyl group or a halogen. May have. Those having no substituent are preferred.
[0041]
The epoxy resin used in the present invention is not particularly limited as long as it can be mixed with a dihydrobenzoxazine resin and a polyimide resin, and is preferably a liquid or powder epoxy resin having an epoxy equivalent of 500 or less. . If the epoxy equivalent exceeds 500, the adhesive strength and heat resistance decrease. Specific examples of such epoxy resins include phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, and resorcin; Glycidyl ether compounds derived from phenols having an acid value or higher such as (4-hydroxyphenyl) ethane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak and o-cresol novolak are exemplified. . These epoxy resins can be used alone or in combination of two or more.
[0042]
In the present invention, known curing accelerators, coupling agents, fillers, pigments, and the like may be appropriately compounded as necessary in addition to the above components.
Further, as a curing reaction catalyst, for example, an imidazole compound, a dicyandiamide compound, and a phosphorus compound can be used.
[0043]
The thermosetting resin composition for forming the heat-resistant adhesive film for a printed circuit board according to the present invention may contain various phenolic resins, melamine resins, polyamide resins, and the like, if necessary, in addition to the components described above.
Further, it may contain a filler, a reinforcing material, a release agent, a coupling agent, a plasticizer, a flame retardant, a curing aid, a coloring agent, a coupling agent, or carbon black. For the purpose of further improving the flame retardancy of the resin, various organic phosphorus compounds such as phosphines such as triphenylphosphine, phosphates, phosphites, phosphites, and phosphine oxides can also be used. .
[0044]
The thermosetting resin composition used in the heat-resistant adhesive film for a printed circuit board of the present invention is a thermosetting resin having a dihydroxazine ring condensed with an aromatic hydrocarbon ring, based on 100 parts by weight of a polyimide resin. The essential components are contained in an amount of 50% by weight or more, preferably 80% by weight or more of all resin components (including a component which becomes a resin after curing).
[0045]
The heat-resistant adhesive of the present invention comprising the above components is used after being formed into a film, but can be formed into a film using a conventionally known method. As a method of preparing a heat-resistant adhesive film for a printed circuit board, a resin composition comprising a polyimide resin, a BXZ resin, an epoxy resin, and other components is dissolved in an organic solvent, and the obtained resin solution is peeled off on the surface. A heat-resistant adhesive for a printed circuit board according to the present invention, which is coated on a base material such as a metal foil, a polyester film, or a polyimide film, which has been subjected to a surface treatment so as to be easily treated, and then dried and peeled off from the base material. It can be a film.
[0046]
Representative solvents used in the film forming step include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide. , Dimethyl sulfoxide, amide solvents such as N-methyl-2-pyrrolidone, ether solvents such as tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, γ-butyrolactone, xylenol, chlorophenol, phenol, methyl cellosolve, ethyl cellosolve, methyl cellosolve Ester solvents such as acetate, ethyl cellosolve acetate, toluene, xylene, methyl ethyl ketone, phenol solvents, ketone solvents or aromatic hydrocarbon solvents It can be mentioned. In addition, as a solvent for forming a film, the reaction solvent used in the production of the polyimide resin in the previous period may be used as it is.
[0047]
Examples of suitable use of the heat-resistant adhesive film of the present invention include, for example, a polyimide flexible printed circuit board, a glass fiber-epoxy resin printed wiring board, a paper-phenol resin printed wiring board, a metal foil, a metal plate, and a resin. The heat-resistant adhesive film of the present invention is inserted between adherends such as a substrate, and the temperature is 20 to 300 ° C., the pressure is 1 to 500 kg / cm.2Thermocompression bonding, preferably at a temperature of 50 to 250 ° C. and a pressure of 10 to 300 kg / cm.2By heat-treating under the conditions described above for a predetermined time and completely curing the BXZ resin and the epoxy resin, a strong adhesive layer can be formed between the adherends.
The heat-resistant adhesive sheet for a printed circuit board of the present invention is used not only as a film and a sheet in advance, but also in the form of a varnish, applied and dried to form a film adhered to a substrate material. It is a heat-resistant adhesive sheet for printed circuit boards of the present invention.
The printed circuit board in the present invention includes a flexible printed circuit board and a rigid printed circuit board, which may or may not have a circuit formed. The heat-resistant adhesive sheet for a printed circuit board is suitable for bonding a multilayer circuit board having a plurality of conductor layers or circuit layers and an insulating layer or an adhesive layer, and also used for bonding an IC chip or the like to a printed circuit board. It includes the aspect which does.
[0048]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The abbreviations of the resin raw materials in the examples correspond to the abbreviations described in the description of the acid dianhydride, the diamine compound, the BXZ resin, and the NXZ resin. Other abbreviations mean the following.
[0049]
BAPD: bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane
PSX750: bis (3-aminopropyl) dimethylpolysiloxane having an average molecular weight of 750
PSX1000: bis (3-aminopropyl) dimethylpolysiloxane having an average molecular weight of 1000
EP1: bisphenol A type epoxy resin (Epicoat 828 (manufactured by Japan Epoxy Resin))
EP2: ortho-cresol type epoxy resin (YDCN-500 (Toto Kasei)
EP3; alicyclic epoxy resin (Celloxide (manufactured by Daicel Chemical Industries, Ltd.))
(1a): BXZ resin represented by the following formula synthesized from phenol novolak (OH equivalent = 200)
Embedded image
Figure 2004179514
[0050]
Synthesis Example 1
200 ml of N-methyl-2-pyrrolidinone (NMP) and 100 ml of toluene were placed in a 1 L separable flask equipped with a Dean-Stark type dehydration cooling device and a stirring blade, and the temperature was kept at 25 ° C. or lower by ice cooling, and under a nitrogen stream. After dissolving 40.1 g of diamine (1), 35.4 g of DSDA was added little by little as a powder. After reacting for 2 hours to sufficiently promote the polymerization of the polyamic acid, the temperature was gradually increased until reflux of toluene occurred, and water generated by the imidization dehydration reaction was removed from the polymerization reaction system. After the completion of the dehydration imidization reaction, the mixture was further stirred at 150 ° C. for 1 hour to terminate the reaction. NMP was added to the obtained polyimide solution to adjust the solid content to 20% by weight.
[0051]
Synthesis Example 2
0.4 mol of aniline was dissolved in 200 ml of dioxane, 67 g of a formaldehyde solution (36-38% aqueous solution) was added dropwise, and the mixture was reacted at room temperature for 5 hours. Thereafter, 0.2 mol of bisphenol F was added, and the mixture was reacted at 100 ° C. to 120 ° C. for 5 hours with stirring. After completion of the reaction, the solvent was removed in vacuo to obtain 92 g of dihydrobenzoxazine (A).
[0052]
Example 1
After the polyimide solution of Synthesis Example 1 was adjusted to a solid concentration of 40% by weight, 5 g of a thermosetting resin having a dihydrobenzoxazine ring and 5 g of an orthocresol-type epoxy resin (EOCN) were mixed with 100 g of the solution. After thorough mixing, the mixed solution was cast on a glass substrate and cast using a doctor blade. Further, this was dried in an inert oven under a nitrogen stream at 100 ° C. for 60 minutes and at 150 ° C. for 60 minutes, and then the resin film layer was separated from the glass substrate and fixed to a stainless steel metal frame. This was dried at 150 ° C. for 10 minutes to obtain a heat-resistant adhesive film.
Using this film, the adhesive strength to copper, stainless steel, etc. was measured. The film was further subjected to a heat treatment at 200 ° C. for 60 minutes, and then the physical properties were measured.
[0053]
In addition, two sets of flexible printed circuit boards each having a circuit formed of copper on both sides of a polyimide film are prepared, and the adhesive film obtained by the above method is inserted into the ring thereof at a temperature of 180 ° C. and a pressure of 25 kg / cm.2After thermocompression bonding under the conditions of 60 minutes, through holes were formed to produce a multilayer printed wiring board. When forming the through-hole, a good through-hole was obtained without generation of smear or the like. When this multilayer printed wiring board was immersed in a solder bath at 300 ° C. for 30 seconds, no defect such as blistering or peeling was observed.
[0054]
The glass transition temperature (Tg) was measured using a dynamic viscoelasticity analyzer (DMA), the coefficient of thermal expansion was measured using a thermomechanical analyzer (TMA), and the thermal decomposition onset temperature (5% weight loss temperature) was determined using thermogravimetry. Using an analyzer (TGA), the flexural strength and flexural modulus were measured according to JIS K 6911.
After preparing a cured product having a thickness of 3 mm, the cured product was treated under a PCT (121 ° C., 2 atm) treatment time of 20 hours, and a change in weight before and after the PCT treatment was measured to determine a water absorption. . Further, the flame retardancy of the cured product having a thickness of 1.6 mm was evaluated according to the UL standard method.
The adhesive strength was evaluated according to JIS K 6850 at a pressing temperature (glass transition temperature + 50 ° C.) and a pressing pressure (19.6 MPa) using a pressure press.
[0055]
Examples 2 to 8
The raw material composition of the polyimide resin and the composition of the adhesive film are shown in Table 1, and the physical properties of the obtained adhesive film after curing are shown in Table 2. Evaluation was performed in the same manner as described in Example 1.
[0056]
Comparative Examples 1-2
Evaluation was performed in the same manner as described in Example 1, except that only the epoxy resin was used without adding the BXZ resin or the NXZ resin.
[0057]
Table 1 shows the raw material composition of the polyimide resin and the compounding composition of the resin composition, and Table 2 shows the physical properties of the obtained adhesive film after curing.
In Table 2, the adhesive strength (1) is the 180 ° peel strength for oxidized copper, the adhesive strength (2) is the 180 ° peel strength for sulfuric acid-treated copper, and the adhesive strength (3) is polyimide. 180 ° peel strength for film. Solder heat resistance (1) shows the results of appearance inspection such as blistering and peeling after immersion in a solder bath for 30 seconds after thermocompression bonding, and solder heat resistance (2) shows the results at 40 ° C., 90% RH for 24 hours. After the moisture absorption test, after immersion in a solder bath for 30 seconds, the results of appearance inspection such as blistering and peeling are shown.
Table 1 shows the raw material composition and the compounding composition of the polyimide resin, and Table 2 shows the physical properties of the obtained adhesive film after curing.
[0058]
[Table 1]
Figure 2004179514
[0059]
[Table 2]
Figure 2004179514
[0060]
【The invention's effect】
The heat-resistant adhesive film for a printed circuit board of the present invention is capable of performing pressure bonding at a lower temperature than conventional polyimide-based adhesives without impairing the excellent heat resistance, electrical properties, and mechanical properties inherent to polyimide. It has excellent flame retardancy, excellent adhesion to metals such as copper and stainless steel, and is capable of thermocompression bonding at low temperatures. Accordingly, the heat-resistant adhesive film for a printed circuit board of the present invention includes an adhesive for a multilayer printed wiring board, an adhesive for a flex-rigid wiring board, an adhesive for a coverlay film for a printed wiring board, and a die bonding sheet for mounting a semiconductor. It can be suitably used for various types of bonding of electronic members requiring high reliability.

Claims (6)

ポリイミド樹脂100重量部に対し、芳香族炭化水素環と縮合したジヒドロキサジン環を有する熱硬化性樹脂1〜50重量部及びエポキシ樹脂1〜50重量部含有してなる樹脂組成物をフィルム状にしてなるプリント回路基板用耐熱接着フィルム。A resin composition containing 1 to 50 parts by weight of a thermosetting resin having a dihydroxazine ring condensed with an aromatic hydrocarbon ring and 1 to 50 parts by weight of an epoxy resin with respect to 100 parts by weight of a polyimide resin is formed into a film. Heat-resistant adhesive film for printed circuit boards. ポリイミド樹脂が、ポリシロキサン鎖を含有するポリイミド樹脂である請求項1記載のプリント回路基板用耐熱接着フィルム。The heat-resistant adhesive film for a printed circuit board according to claim 1, wherein the polyimide resin is a polyimide resin containing a polysiloxane chain. ポリイミド樹脂が、下記一般式(1)で表される繰り返し単位を0.1〜10モル%の範囲で含むポリイミド樹脂である請求項1記載のプリント回路基板用耐熱接着フィルム。
Figure 2004179514
(但し、Arは4価の有機基、Arは少なくとも一つの芳香環を有する有機基、Rは−OH、−COOH、−NH、−SH、−CONH又は炭素数1〜6の炭化水素基のいずれかを示し、iは1〜4の整数を示す)
The heat-resistant adhesive film for a printed circuit board according to claim 1, wherein the polyimide resin is a polyimide resin containing a repeating unit represented by the following general formula (1) in a range of 0.1 to 10 mol%.
Figure 2004179514
(However, Ar 1 is a tetravalent organic group, Ar 2 is an organic group having at least one aromatic ring, R 1 is —OH, —COOH, —NH 2 , —SH, —CONH 2, or C 1 to C 6) And i represents an integer of 1 to 4)
ジヒドロキサジン環を有する熱硬化性樹脂が下記一般式(2)〜(4)のいずれかで表される熱硬化性樹脂又はこの熱硬化性樹脂とその重合物からなる熱硬化性樹脂である請求項1記載のプリント回路基板用耐熱接着フィルム。
Figure 2004179514
(式中、Rは炭素数1〜10の有機基、Rは水素原子又は炭素数1〜6の炭化水素基、Yは存在しないか、炭素数1〜10の2価の炭化水素基、−CO−、−O−、−S−、−SO−、−CH−又は−C(CF−のいずれかを示す)
Figure 2004179514
(式中、Rは炭素数1〜10の有機基、Rは水素原子又は炭素数1〜6の炭化水素基、Rは炭素数1〜20の2価の炭化水素基を示し、nは1〜10の整数を示す)
Figure 2004179514
(式中、Rは炭素数1〜10の有機基を示し、Rは水素又は炭素数1〜6の炭化水素基を示す)
The thermosetting resin having a dihydroxazine ring is a thermosetting resin represented by any of the following formulas (2) to (4) or a thermosetting resin composed of the thermosetting resin and a polymer thereof. The heat-resistant adhesive film for a printed circuit board according to claim 1.
Figure 2004179514
(Wherein, R 2 is an organic group having 1 to 10 carbon atoms, R 3 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, Y is absent, or a divalent hydrocarbon group having 1 to 10 carbon atoms) , -CO -, - O -, - S -, - SO 2 -, - CH 2 - or -C (CF 3) 2 - represents any)
Figure 2004179514
(Wherein, R 4 represents an organic group having 1 to 10 carbon atoms, R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, and R 6 represents a divalent hydrocarbon group having 1 to 20 carbon atoms; n represents an integer of 1 to 10)
Figure 2004179514
(Wherein, R 7 represents an organic group having 1 to 10 carbon atoms, and R 8 represents hydrogen or a hydrocarbon group having 1 to 6 carbon atoms)
請求項1〜4のいずれかに記載の樹脂組成物を有機溶剤に溶解した溶液を、基材上にコーティングした後、乾燥することを特徴とするプリント回路基板用耐熱接着フィルムの製造方法。A method for producing a heat-resistant adhesive film for a printed circuit board, comprising coating a solution obtained by dissolving the resin composition according to any one of claims 1 to 4 in an organic solvent on a substrate, and then drying. 請求項1〜4のいずれかに記載のプリント回路基板用耐熱接着フィルムを被着体の間に挿入し、圧力1〜500kg/cm、温度20〜300℃の条件で熱圧着することを特徴とする接着フィルムにより接着されたプリント回路基板の製造方法。A heat-resistant adhesive film for a printed circuit board according to any one of claims 1 to 4, which is inserted between adherends and thermocompression-bonded at a pressure of 1 to 500 kg / cm 2 and a temperature of 20 to 300 ° C. A method of manufacturing a printed circuit board bonded by an adhesive film.
JP2002345919A 2002-11-28 2002-11-28 Heat resistant adhesive film for printed circuit board and method for producing the same Expired - Fee Related JP4145640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345919A JP4145640B2 (en) 2002-11-28 2002-11-28 Heat resistant adhesive film for printed circuit board and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345919A JP4145640B2 (en) 2002-11-28 2002-11-28 Heat resistant adhesive film for printed circuit board and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004179514A true JP2004179514A (en) 2004-06-24
JP4145640B2 JP4145640B2 (en) 2008-09-03

Family

ID=32706980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345919A Expired - Fee Related JP4145640B2 (en) 2002-11-28 2002-11-28 Heat resistant adhesive film for printed circuit board and method for producing the same

Country Status (1)

Country Link
JP (1) JP4145640B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239827A (en) * 2004-02-25 2005-09-08 Hitachi Chem Co Ltd New thermosetting benzoxazine resin and its manufacturing method
JP2010001481A (en) * 2005-09-03 2010-01-07 Samsung Sdi Co Ltd Polybenzoxazine-based compound
JP2010275557A (en) * 2010-07-06 2010-12-09 Hitachi Chem Co Ltd Novel thermosetting benzoxazine resin and method for manufacturing the same
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
WO2015129554A1 (en) * 2014-02-26 2015-09-03 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
CN110041345A (en) * 2019-05-10 2019-07-23 福建泓光半导体材料有限公司 A kind of resist lower membrane monomer and composition and pattern forming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786085B1 (en) * 2011-04-05 2017-10-17 도레이첨단소재 주식회사 Adhesive composition for semiconductor appatus and adhesive film the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239827A (en) * 2004-02-25 2005-09-08 Hitachi Chem Co Ltd New thermosetting benzoxazine resin and its manufacturing method
US8349515B2 (en) 2005-09-03 2013-01-08 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
JP2010001481A (en) * 2005-09-03 2010-01-07 Samsung Sdi Co Ltd Polybenzoxazine-based compound
US8034508B2 (en) 2005-09-03 2011-10-11 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8426081B2 (en) 2005-09-03 2013-04-23 Samsung Sdi Co., Ltd. Polybenzoxazine-based compound, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8148028B2 (en) 2006-05-29 2012-04-03 Samsung Sdi Co., Ltd. Polybenzoxazines, electrolyte membrane comprising the same, and fuel cell employing the electrolyte membrane
US8580455B2 (en) 2006-05-29 2013-11-12 Samsung Sdi Co., Ltd. Crosslinked polybenzoxazines, electrolyte membrane including the same, and fuel cell employing the electrolyte membrane
US8679699B2 (en) 2006-08-22 2014-03-25 Samsung Sdi Co., Ltd Membrane electrode assembly for fuel cell and fuel cell employing the same
US8715881B2 (en) 2007-09-11 2014-05-06 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US8252890B2 (en) 2007-09-11 2012-08-28 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
US9243012B2 (en) 2007-09-11 2016-01-26 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, or polymer thereof
US8192892B2 (en) 2007-09-11 2012-06-05 Samsung Electronics Co., Ltd. Phosphorous containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same
US8298450B2 (en) 2007-10-11 2012-10-30 Samsung Electronics Co., Ltd. Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same
US8551669B2 (en) 2007-11-02 2013-10-08 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8512914B2 (en) 2007-11-02 2013-08-20 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8227138B2 (en) 2007-11-02 2012-07-24 Samsung Electronics Co., Ltd. Phosphorus containing benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8188210B2 (en) 2007-11-02 2012-05-29 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8808941B2 (en) 2007-11-02 2014-08-19 Samsung Electronics Co., Ltd. Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8323849B2 (en) 2007-11-02 2012-12-04 Samsung Electronics Co., Ltd. Electrolyte membrane containing a crosslinked polybenzoxazine-based compound for fuel cell and fuel cell using the same
US8507148B2 (en) 2007-11-06 2013-08-13 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US8187766B2 (en) 2007-11-06 2012-05-29 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
JP2010275557A (en) * 2010-07-06 2010-12-09 Hitachi Chem Co Ltd Novel thermosetting benzoxazine resin and method for manufacturing the same
WO2015129554A1 (en) * 2014-02-26 2015-09-03 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2015160167A (en) * 2014-02-26 2015-09-07 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separator, and gas separation method
CN110041345A (en) * 2019-05-10 2019-07-23 福建泓光半导体材料有限公司 A kind of resist lower membrane monomer and composition and pattern forming method

Also Published As

Publication number Publication date
JP4145640B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP3221756B2 (en) Heat-resistant adhesive film for printed circuit board, method of using the same, and method of manufacturing printed circuit board using the same
CN106010421B (en) Adhesive composition, film-like adhesive material, adhesive layer, adhesive sheet, copper-clad laminate, wiring board, and printed wiring board
KR100834604B1 (en) Heat-resistant composition
JP5232386B2 (en) Thermosetting resin composition and use thereof
JP5048753B2 (en) Flame-retardant adhesive resin composition and adhesive film using the same
TWI429692B (en) Pre-paste, paste metal foil laminates and use these printed circuit boards
KR100797689B1 (en) Thermosetting Resin Composition, Multilayer Body Using Same, and Circuit Board
JP4145640B2 (en) Heat resistant adhesive film for printed circuit board and method for producing the same
JP5533354B2 (en) Shield film and shield wiring board
JPWO2003076515A1 (en) Thermosetting resin composition, laminated body using the same, and circuit board
JP2003012924A (en) Curable resin composition
JP2006335843A (en) Thermosetting resin composition and application thereof
WO2004009708A1 (en) Curable resin composition
JP3712606B2 (en) Heat resistant adhesive film for printed circuit board and method for producing the same
JPH08193139A (en) Prepreg for printed wiring board and metal-clad laminate using the same
JP5048364B2 (en) Flame retardant adhesive resin composition and coverlay film using the same
JP2003213130A (en) Polyimide resin composition and fire-resistant adhesive
JP2021141108A (en) Adhesive, adhesive sheet and flexible copper clad laminate
JP2009007531A (en) Resin/filler composite material and printed wiring board using the same
WO2009147997A1 (en) Coverlay film
JP2012067240A (en) Coverlay film and circuit board
JP2006117848A (en) Thermosetting resin composition and its use
JP2006348086A (en) Thermosetting resin composition and its utilization
JP3516473B2 (en) Heat-resistant adhesive film for printed circuit boards
JP4749606B2 (en) Epoxy group-containing polyimide copolymer and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees