JP2004179335A - Solar cell element and manufacturing method therefor - Google Patents

Solar cell element and manufacturing method therefor Download PDF

Info

Publication number
JP2004179335A
JP2004179335A JP2002342879A JP2002342879A JP2004179335A JP 2004179335 A JP2004179335 A JP 2004179335A JP 2002342879 A JP2002342879 A JP 2002342879A JP 2002342879 A JP2002342879 A JP 2002342879A JP 2004179335 A JP2004179335 A JP 2004179335A
Authority
JP
Japan
Prior art keywords
solder
electrode
solar cell
cell element
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342879A
Other languages
Japanese (ja)
Other versions
JP3805299B2 (en
Inventor
Giichi Okabayashi
義一 岡林
Yuko Fukawa
祐子 府川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002342879A priority Critical patent/JP3805299B2/en
Publication of JP2004179335A publication Critical patent/JP2004179335A/en
Application granted granted Critical
Publication of JP3805299B2 publication Critical patent/JP3805299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To minimize the formation of solder bridges or solder balls in coating an electrode with solder and to ensure stable output of power generation. <P>SOLUTION: A solar cell element is provided, having an arrangement wherein a surface of a semiconductor substrate 1 having semiconductor junctions is formed with a grid-like surface electrode 5 consisting of finger electrodes 5a and bus bar electrodes 5b having substantially the same length as that of one side of the semiconductor substrate 1, and a back of the semiconductor substrate 1 is formed with a back electrode, and both of the surface and the back electrodes are coated with solder 7. In the arrangement, a cut portion 9 is provided to the solder at approximately the central position of each of the finger electrodes 5a. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池素子およびその製造方法に関し、特に表面電極をフィンガー電極とバスバー電極で構成した太陽電池素子とその製造方法に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
従来の太陽電池素子を図4に示す。図4において、1は一導電型(例えばP型)を示す半導体基板、2は半導体基板1の表面部分にリン原子が高濃度に拡散された他の導電型を呈する拡散層、3は反射防止膜、4は一導電型不純物が高濃度に拡散されたBSF層、5は表面電極、6は裏面電極である。表面電極5は、複数のフィンガー電極5aとこの複数のフィンガー電極5aを相互に接続するバスバー電極5bとで構成される。
【0003】
従来の太陽電池素子の表面電極の構造を図5に示す。図5において、12は太陽電池素子、5aはフィンガー電極、5bはバスバー電極を示す。太陽電池素子12の表面にバスバー電極5aが設けられると共に、このバスバー電極5aと垂直に複数のフィンガー電極5bが設けられている。この種太陽電池の電極パターンは拡散層3(図4参照)のシート抵抗によりフィンガー電極5bのピッチが決定されるとともに、配線抵抗が極小になるように設計されると共に、その表面が半田7で被覆される。
【0004】
図6(a)は半田7の被覆方法を説明するための図である。13は半田槽、14は溶融半田を示す。このとき、図5に示すパターンによると、二つのバスバー部5aとフィンガー部5bで閉じたパターン部ができるので、この部分に半田の膜が張るおそれがある。太陽電池素子12を半田槽13から引き上げた後に、この半田膜がはじけないときは半田ブリッジが形成されて隣接するフィンガー電極5a間が半田膜で覆われて受光面積が減少する。一方、半田膜がはじけたときは、行き場のない半田によって半田玉が表面電極5部分に形成される。これら半田膜や半田玉は外観を阻害するとともに、モジュール化のときの歩留りを低下させる。
【0005】
従来、これらの解決法として半田槽13から太陽電池素子12を引き上げるときに、ヒータで熱風を送って半田膜が剥がれるようにしたり、引き上げた太陽電池素子12を加熱するといった方法があった(例えば特許文献1参照。)。
【0006】
また、半田と半導体基板1との濡れ性を向上させるために、半田温度を必要以上に上げたり、半田槽13からゆっくり引き上げることによって対処していた。
【0007】
しかしながら、半田ディップ時や引き上げ時に太陽電池素子12を必要以上に加熱すると表面電極5と半導体基板1との密着強度が低下するという問題を誘発する。
【0008】
この問題を解決するために、表面電極5を半田7で被覆する際に、表面電極5の一部にレジスト膜(不図示)を塗布して半田7で被覆することが行われている(例えば特許文献2参照)。この方法によると、フィンガー電極5aの交わる箇所のバスバー電極5bの中ほどに例えば有機硬化樹脂などから成る半田レジストを塗布して半田7で被覆することから、閉じたパターンを持つ表面電極5であっても半田7を被覆するときに半田7の膜が形成されず、従って半田玉の発生を防ぐことができる。また、半田槽13への浸漬時間が短縮されるので、半導体基板1と表面電極5の密着強度が向上する。
【0009】
しかし、この方法によると従来よりもバスバー電極5b上に被覆される半田7の量が多くなるという問題が発生するとともに、その余剰な半田7が後工程で半田玉となってしまうという問題があった。
【0010】
さらに、この問題を解決するために、図7に示すように、フィンガー電極5aの略中央を切断するとともに、図7(b)に示すようにバスバー電極5bを鉛直方向に向けて半田槽13に浸漬させる方法もある(例えば特許文献3参照)。図7(a)は太陽電池素子12を受光面側から見たときの図、図7(b)は図7(a)のA部拡大図、図7(c)は図7(b)の断面図である。この方法によると、フィンガー電極5aが略中央で切断されているために閉じたパターンが存在せず、半田7を被覆するときに半田7の膜が形成されず、従って半田玉の発生を防ぐことができる。また、バスバー電極5b上に被覆される半田7の量が多くなるという問題の発生も抑止できる。
【0011】
しかし、この方法によると、図7に示すように、フィンガー電極5aが略中央部分11で切断されているため、2本のバスバー電極5b間のフィンガー電極5aに線切れや抵抗の高い部分が発生すると、バスバー電極5bに接続されない部分が発生し、大幅な出力低下を招くという問題があった。
【0012】
本発明はこのような従来方法の問題点に鑑みてなされたものであり、電極を半田で被覆する際に、半田ブリッジや半田玉が生じることを極力解消するとともに、安定した発電出力を確保することができる太陽電池素子およびその製造方法を提供することを目的とする。
【0013】
【特許文献1】
特開平3−145166号公報
【特許文献2】
特開2002−43596号公報
【特許文献3】
特開平11−298019号公報
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る太陽電池素子では、半導体接合部を有する半導体基板の表面側に、この半導体基板の一辺と略同一の長さを持つフィンガー電極とバスバー電極とを格子状に設けた表面電極を形成すると共に、この半導体基板の裏面側に裏面電極を形成し、この表裏両面の電極を半田で被覆した太陽電池素子において、前記フィンガー電極の略中央部分に半田の切除部を設けたことを特徴とする。
【0015】
請求項2に係る太陽電池素子の製造方法では、半導体接合部を有する半導体基板の表面側に、この半導体基板の一辺と略同一の長さを持つフィンガー電極とバスバー電極とを格子状に設けた表面電極を形成すると共に、この半導体基板の裏面側に裏面電極を形成し、この表裏両面の電極を半田で被覆する太陽電池素子の製造方法において、前記フィンガー電極の略中央部分に半田レジストを塗布して他の部分を半田で被覆することを特徴とする。
【0016】
上記太陽電池素子の製造方法では、前記半導体基板を半田槽に浸漬して前記フィンガー電極を前記半田で被覆することが望ましい。
【0017】
また、上記太陽電池素子の製造方法では、前記バスバー電極を鉛直方向に向けて前記半田槽に浸漬することが望ましい。
【0018】
【発明の実施の形態】
以下、本発明を添付図面にもとづき詳細に説明する。図1は本発明の太陽電池素子の製造方法を断面図で示したものである。まず、半導体基板1を用意する。この半導体基板1は、単結晶または多結晶シリコンなどからなる。このシリコン基板1は、ボロン(B)などの一導電型半導体不純物を1×1016〜1×1018atoms/cm程度含有し、比抵抗1.5Ωcm程度の基板である。単結晶シリコン基板の場合は引き上げ法などによって形成され、多結晶シリコン基板の場合は鋳造法などによって形成される。多結晶シリコン基板は、大量生産が可能であり、製造コスト面で単結晶シリコン基板よりも有利である。引き上げ法や鋳造法によって形成されたインゴットを300〜500μm程度の厚みにスライスして、15cm×15cm程度の大きさに切断して半導体基板1とする。
【0019】
次に、シリコン基板1を拡散炉中に配置して、オキシ塩化リン(POCl)などの中で加熱することによって、シリコン基板1の表面部分にリン原子を1×1016〜1×1018atoms/cm程度拡散させて他の導電型を呈する拡散層2を形成する(図1(b)参照)。この拡散層2は、0.2〜0.5μm程度の深さに形成され、シート抵抗が40Ω/□以上になるように形成される。シリコン基板1の一主面側の拡散層2のみを残して他の部分の拡散層2をエッチングする(図1(c))。
【0020】
次に、シリコン基板1の一主面側に反射防止膜3を形成する。この反射防止膜3はたとえば窒化シリコン膜などからなり、シランとアンモニアとの混合ガスを用いたプラズマCVD法などで形成される。この反射防止膜3は、シリコン基板1の表面で光が反射するのを防止して、シリコン基板1内に光を有効に取り込むために設ける。また他の主面側には高濃度の一導電型半導体不純物を拡散させて、BSF層4を形成する(図1(d)参照)。
【0021】
そして、この反射防止膜3の表面電極5に相当する部分をエッチングした上で電極ペーストを塗布して焼成することにより表面電極5を形成する(図1(e)参照)。この表面電極5は、反射防止膜3上に直接電極ペーストを塗布して焼成することにより、ペースト下の反射防止膜3を溶融させ、シリコン基板1と直接接触させるいわゆるファイヤースルー法により形成してもよい。また、裏面にも電極ペーストを塗布して焼成することにより裏面電極6を形成する。この電極ペーストは銀粉末と有機ビヒクルにガラスフリットを銀100重量部に対して0.1〜5重量部添加してペースト状にしたものをスクリーン印刷法で印刷して600〜800℃で1〜30分程度焼成することにより焼き付けられる。このガラスフリットは、PbO、B、SiOのうち少なくとも一種を含む軟化点が500℃以下のものなどから成る。その後、長期信頼性の確保および後工程で太陽電池素子同士をインナーリードで接続するために、電極表面に半田層7、8を形成する(図1(f)参照)。
【0022】
本発明の太陽電池素子では、図2(a)、(b)、(c)に示すように、フィンガー電極5aの略中央部分に半田切除部9が存在している。図2(a)は太陽電池素子12を受光面側から見たときの図、図2(b)は図2(a)のA部拡大図、図2(c)は図2(b)の断面図である。しかし図2(c)に示すように、フィンガー電極5a自体はつながっているため、何らかの原因により2本のバスバー電極5b間のフィンガー電極5aに線切れや抵抗の高い部分が発生しても、図5に示すパターンの太陽電池素子12と同様の信頼性が確保できる。
【0023】
このような半田切除部9を形成するには、半田層7を形成する前に、図3(a)に示すように、フィンガー電極5aの中央部分に半田レジスト10を先ず塗布する。この半田レジスト10は、その塗布部分に半田7が付着することを防ぐことが目的であり、半田7との濡れ性の悪い材料が用いられる。また後の工程で溶けてしまうのを防ぐため、その融点は200℃以上であることが望ましい。例えば有機樹脂やガラスなどを用いる。塗布のパターンは例えば幅と長さをそれぞれ2mm程度にすればよい。
【0024】
その後、図6に示すように、半田槽13内の溶融半田14に浸漬させて表面半田層7を形成する。これによって図3に示すようなフィンガー電極5aの略中央に半田の切除部9が存在する太陽電池素子12を得る。このとき半田レジスト10は図3に示すように残しても構わないし、図2に示すように半田7を被覆した後に除去しても構わない。この方法により従来と同様、閉じたパターンを持つ電極5であっても半田7を被覆するときに半田7の膜が形成されず、従って半田玉の発生を防ぐことができる。
【0025】
このとき溶融半田14への太陽電池素子12の浸漬方向は、図6(a)に示すように、フィンガー電極5aを鉛直方向に向けて半田槽13に浸漬することも可能であるが、図6(b)に示すように、バスバー電極5bを鉛直方向に向けて浸漬させると更に有効にその効果を発揮する。また、図6(b)に示すように、バスバー電極5bを鉛直方向に向けて浸漬させることにより、バスバー電極5b上に被覆される半田7が流れやすくなり、半田量を抑制できる。
【0026】
【発明の効果】
以上、詳細に説明したように、請求項1に係る太陽電池素子によれば、フィンガー電極の略中央部分に半田の切除部を設けたことから、2本のバスバー電極間のフィンガー電極に線切れや抵抗の高い部分が発生しても、フィンガー電極はつながっており、フィンガー電極とバスバー電極とを格子状に設けた電極パターンの太陽電池素子と全く同様の信頼性を確保できる。
【0027】
また、請求項2に係る太陽電池素子の製造方法によれば、フィンガー電極の略中央部分に半田レジストを塗布して他の部分を半田で被覆することから、フィンガー電極とバスバー電極とを格子状に設けた電極パターンの太陽電池素子と全く同様の信頼性を確保できる太陽電池素子を容易に形成できる。この場合、バスバー電極を鉛直方向に向けて浸漬させると、バスバー電極上に被覆される半田が流れやすくなって半田量を抑制できる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子の形成方法を示す図である。
【図2】本発明に係る太陽電池素子を示す図であり、(a)は太陽電池素子を受光面側から見た図、(b)は(a)のA部を拡大して示す図、(c)は(b)の断面図である。
【図3】本発明に係る他の太陽電池素子を示す図であり、(a)は太陽電池素子を受光面側から見た図、(b)は(a)のA部を拡大して示す図、(c)は(b)の断面図である。
【図4】従来の太陽電池を示す図である。
【図5】従来の太陽電池素子の表面電極の構造を示すである。
【図6】従来の他の太陽電池素子を示す図であり、(a)は太陽電池素子を受光面側から見た図、(b)は(a)のA部を拡大して示す図、(c)は(b)の断面図である。
【図7】従来の太陽電池素子の電極への半田の被覆方法を示す図である。
【符号の説明】
1:半導体基板、5a:フィンガー電極、5b:バスバー電極、5:表面電極、6:裏面電極、7:半田、9:半田が切除している部分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell element and a method for manufacturing the same, and more particularly, to a solar cell element in which a surface electrode is composed of a finger electrode and a bus bar electrode and a method for manufacturing the same.
[0002]
[Prior Art and Problems to be Solved by the Invention]
FIG. 4 shows a conventional solar cell element. In FIG. 4, 1 is a semiconductor substrate showing one conductivity type (for example, P type), 2 is a diffusion layer having another conductivity type in which phosphorus atoms are diffused at a high concentration on the surface portion of the semiconductor substrate 1, and 3 is an antireflection The film 4 is a BSF layer in which one conductivity type impurity is diffused at a high concentration, 5 is a front electrode, and 6 is a back electrode. The surface electrode 5 includes a plurality of finger electrodes 5a and a bus bar electrode 5b interconnecting the plurality of finger electrodes 5a.
[0003]
FIG. 5 shows the structure of a surface electrode of a conventional solar cell element. In FIG. 5, 12 indicates a solar cell element, 5a indicates a finger electrode, and 5b indicates a bus bar electrode. A bus bar electrode 5a is provided on the surface of the solar cell element 12, and a plurality of finger electrodes 5b are provided perpendicular to the bus bar electrode 5a. The electrode pattern of this type of solar cell is designed so that the pitch of the finger electrodes 5b is determined by the sheet resistance of the diffusion layer 3 (see FIG. 4) and the wiring resistance is minimized. Coated.
[0004]
FIG. 6A is a diagram for explaining a method of coating the solder 7. Reference numeral 13 denotes a solder bath, and 14 denotes molten solder. At this time, according to the pattern shown in FIG. 5, a pattern portion closed by the two bus bar portions 5a and the finger portions 5b is formed, and there is a possibility that a solder film may be formed on this portion. If the solder film does not repel after the solar cell element 12 is lifted from the solder tank 13, a solder bridge is formed and the space between the adjacent finger electrodes 5a is covered with the solder film, and the light receiving area decreases. On the other hand, when the solder film has popped, a solder ball is formed on the surface electrode 5 by the solder having no place to go. These solder films and solder balls impair the appearance and lower the yield when modularized.
[0005]
Conventionally, as a solution to these problems, when the solar cell element 12 is pulled up from the solder tank 13, there is a method in which hot air is sent by a heater so that the solder film is peeled off, or the pulled up solar cell element 12 is heated (for example, See Patent Document 1.).
[0006]
Further, in order to improve the wettability between the solder and the semiconductor substrate 1, the solder temperature is raised more than necessary or the solder temperature is slowly raised from the solder bath 13.
[0007]
However, if the solar cell element 12 is heated more than necessary at the time of solder dipping or pulling up, a problem that the adhesion strength between the surface electrode 5 and the semiconductor substrate 1 is reduced is caused.
[0008]
In order to solve this problem, when coating the surface electrode 5 with the solder 7, a resist film (not shown) is applied to a part of the surface electrode 5 and coated with the solder 7 (for example, Patent Document 2). According to this method, for example, a solder resist made of, for example, an organic cured resin is applied to the middle of the bus bar electrode 5b where the finger electrode 5a intersects and covered with the solder 7, so that the surface electrode 5 having a closed pattern is formed. However, when the solder 7 is coated, a film of the solder 7 is not formed, so that generation of solder balls can be prevented. Further, since the immersion time in the solder bath 13 is shortened, the adhesion strength between the semiconductor substrate 1 and the surface electrode 5 is improved.
[0009]
However, according to this method, there is a problem that the amount of the solder 7 coated on the bus bar electrode 5b becomes larger than before, and there is a problem that the surplus solder 7 becomes a solder ball in a later process. Was.
[0010]
Further, in order to solve this problem, as shown in FIG. 7, a substantially center of the finger electrode 5a is cut, and as shown in FIG. There is also a method of dipping (for example, see Patent Document 3). 7A is a view when the solar cell element 12 is viewed from the light receiving surface side, FIG. 7B is an enlarged view of a portion A in FIG. 7A, and FIG. 7C is a view in FIG. It is sectional drawing. According to this method, there is no closed pattern because the finger electrode 5a is cut at substantially the center, and no film of the solder 7 is formed when the solder 7 is coated. Can be. Further, it is possible to suppress the problem that the amount of the solder 7 coated on the bus bar electrode 5b increases.
[0011]
However, according to this method, as shown in FIG. 7, since the finger electrode 5a is cut at the substantially central portion 11, a portion of the finger electrode 5a between the two bus bar electrodes 5b is cut off or a high resistance portion occurs. Then, there is a problem that a portion not connected to the bus bar electrode 5b is generated, which causes a significant decrease in output.
[0012]
The present invention has been made in view of the problems of such a conventional method, and when coating an electrode with solder, minimizes the occurrence of solder bridges and solder balls and secures stable power generation output. It is an object of the present invention to provide a solar cell element and a method for manufacturing the same.
[0013]
[Patent Document 1]
JP-A-3-145166 [Patent Document 2]
JP 2002-43596 A [Patent Document 3]
JP-A-11-298019
[Means for Solving the Problems]
In order to achieve the above object, in the solar cell element according to claim 1, a finger electrode and a bus bar electrode having substantially the same length as one side of the semiconductor substrate are provided on the front surface side of the semiconductor substrate having the semiconductor junction. In a solar cell element in which a back electrode is formed on the back side of the semiconductor substrate and the electrodes on both the front and back sides are covered with solder, a solder electrode is formed substantially at the center of the finger electrode. A cutting portion is provided.
[0015]
In the method for manufacturing a solar cell element according to the second aspect, finger electrodes and bus bar electrodes having substantially the same length as one side of the semiconductor substrate are provided in a grid on the front surface side of the semiconductor substrate having the semiconductor junction. In the method of manufacturing a solar cell element in which a front electrode is formed, a back electrode is formed on the back surface of the semiconductor substrate, and the electrodes on both front and back surfaces are coated with solder, a solder resist is applied to a substantially central portion of the finger electrode. The other part is covered with solder.
[0016]
In the method for manufacturing a solar cell element, it is preferable that the semiconductor substrate is immersed in a solder bath to cover the finger electrodes with the solder.
[0017]
In the method for manufacturing a solar cell element, it is preferable that the bus bar electrode is immersed in the solder tank with the vertical direction.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing a method for manufacturing a solar cell element according to the present invention. First, the semiconductor substrate 1 is prepared. This semiconductor substrate 1 is made of single crystal or polycrystalline silicon. This silicon substrate 1 is a substrate containing about 1 × 10 16 to 1 × 10 18 atoms / cm 3 of one conductivity type semiconductor impurity such as boron (B) and having a specific resistance of about 1.5 Ωcm. In the case of a single crystal silicon substrate, it is formed by a pulling method or the like, and in the case of a polycrystalline silicon substrate, it is formed by a casting method or the like. A polycrystalline silicon substrate can be mass-produced and is more advantageous than a single crystal silicon substrate in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced into a thickness of about 300 to 500 μm, and cut into a size of about 15 cm × 15 cm to obtain a semiconductor substrate 1.
[0019]
Next, the silicon substrate 1 is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) or the like, so that the surface of the silicon substrate 1 has phosphorus atoms of 1 × 10 16 to 1 × 10 18. A diffusion layer 2 having another conductivity type is formed by diffusing atoms / cm 3 (see FIG. 1B). The diffusion layer 2 is formed at a depth of about 0.2 to 0.5 μm, and is formed so that the sheet resistance becomes 40Ω / □ or more. The diffusion layer 2 in the other portion is etched while leaving only the diffusion layer 2 on one main surface side of the silicon substrate 1 (FIG. 1C).
[0020]
Next, an antireflection film 3 is formed on one main surface side of the silicon substrate 1. The antireflection film 3 is made of, for example, a silicon nitride film, and is formed by a plasma CVD method using a mixed gas of silane and ammonia. The anti-reflection film 3 is provided to prevent light from being reflected on the surface of the silicon substrate 1 and to effectively take light into the silicon substrate 1. On the other main surface side, a BSF layer 4 is formed by diffusing a high-concentration one-conductivity-type semiconductor impurity (see FIG. 1D).
[0021]
Then, a portion corresponding to the surface electrode 5 of the anti-reflection film 3 is etched, and an electrode paste is applied and baked to form the surface electrode 5 (see FIG. 1E). This surface electrode 5 is formed by applying an electrode paste directly on the anti-reflection film 3 and firing it, thereby melting the anti-reflection film 3 under the paste and making a direct contact with the silicon substrate 1 by a so-called fire-through method. Is also good. Also, the back electrode 6 is formed by applying an electrode paste to the back surface and baking the same. This electrode paste is prepared by adding 0.1 to 5 parts by weight of glass frit to silver powder and an organic vehicle with respect to 100 parts by weight of silver, and printing the paste by screen printing. It is baked by baking for about 30 minutes. The glass frit is made of a material containing at least one of PbO, B 2 O 3 and SiO 2 and having a softening point of 500 ° C. or less. After that, solder layers 7 and 8 are formed on the electrode surface in order to secure long-term reliability and connect the solar cell elements to each other with inner leads in a later step (see FIG. 1F).
[0022]
In the solar cell element of the present invention, as shown in FIGS. 2A, 2B, and 2C, a solder cutout 9 is present at a substantially central portion of the finger electrode 5a. 2A is a view when the solar cell element 12 is viewed from the light receiving surface side, FIG. 2B is an enlarged view of a portion A in FIG. 2A, and FIG. 2C is a view in FIG. It is sectional drawing. However, as shown in FIG. 2 (c), since the finger electrodes 5a themselves are connected, even if the finger electrode 5a between the two bus bar electrodes 5b has a broken wire or a high resistance portion due to some reason, the figure is not changed. The same reliability as the solar cell element 12 having the pattern shown in FIG.
[0023]
In order to form such a solder cutout 9, before forming the solder layer 7, a solder resist 10 is first applied to the center of the finger electrode 5a as shown in FIG. The purpose of the solder resist 10 is to prevent the solder 7 from adhering to the applied portion, and a material having poor wettability with the solder 7 is used. Further, in order to prevent melting in a later step, the melting point is desirably 200 ° C. or higher. For example, an organic resin or glass is used. The application pattern may have a width and a length of about 2 mm, for example.
[0024]
Thereafter, as shown in FIG. 6, the surface solder layer 7 is formed by dipping in the molten solder 14 in the solder bath 13. As a result, a solar cell element 12 having a solder cutout 9 substantially at the center of the finger electrode 5a as shown in FIG. 3 is obtained. At this time, the solder resist 10 may be left as shown in FIG. 3, or may be removed after coating the solder 7 as shown in FIG. According to this method, a film of the solder 7 is not formed when the solder 7 is coated, even in the case of the electrode 5 having a closed pattern, as in the related art, so that the generation of solder balls can be prevented.
[0025]
At this time, as shown in FIG. 6A, the solar cell element 12 can be immersed in the solder bath 13 with the finger electrode 5a directed vertically, as shown in FIG. As shown in (b), when the bus bar electrode 5b is immersed in the vertical direction, the effect is more effectively exhibited. Further, as shown in FIG. 6B, by immersing the bus bar electrode 5b in the vertical direction, the solder 7 coated on the bus bar electrode 5b becomes easier to flow, and the amount of solder can be suppressed.
[0026]
【The invention's effect】
As described above in detail, according to the solar cell element of the first aspect, since the cutout portion of the solder is provided at the substantially central portion of the finger electrode, the finger electrode between the two bus bar electrodes is cut off. Even when a high resistance portion occurs, the finger electrodes are connected, and the same reliability as the solar cell element having the electrode pattern in which the finger electrodes and the bus bar electrodes are provided in a lattice pattern can be secured.
[0027]
According to the method of manufacturing a solar cell element of the second aspect, since the solder resist is applied to the substantially central portion of the finger electrode and the other portion is covered with the solder, the finger electrode and the bus bar electrode are formed in a grid pattern. A solar cell element which can ensure the same reliability as the solar cell element of the electrode pattern provided in the above can be easily formed. In this case, when the bus bar electrode is immersed in the vertical direction, the solder coated on the bus bar electrode easily flows and the amount of solder can be suppressed.
[Brief description of the drawings]
FIG. 1 is a view showing a method for forming a solar cell element according to the present invention.
FIGS. 2A and 2B are views showing a solar cell element according to the present invention, wherein FIG. 2A is a view of the solar cell element viewed from the light receiving surface side, FIG. 2B is an enlarged view of part A of FIG. (C) is a sectional view of (b).
3A and 3B are diagrams showing another solar cell element according to the present invention, wherein FIG. 3A is a view of the solar cell element viewed from the light receiving surface side, and FIG. 3B is an enlarged view of a portion A of FIG. FIG. 3C is a cross-sectional view of FIG.
FIG. 4 is a view showing a conventional solar cell.
FIG. 5 shows a structure of a surface electrode of a conventional solar cell element.
6A and 6B are diagrams showing another conventional solar cell element, wherein FIG. 6A is a view of the solar cell element viewed from the light receiving surface side, FIG. 6B is an enlarged view of a portion A of FIG. (C) is a sectional view of (b).
FIG. 7 is a diagram showing a conventional method of coating solder on electrodes of a solar cell element.
[Explanation of symbols]
1: semiconductor substrate, 5a: finger electrode, 5b: bus bar electrode, 5: front surface electrode, 6: back surface electrode, 7: solder, 9: part where solder is cut off

Claims (4)

半導体接合部を有する半導体基板の表面側に、この半導体基板の一辺と略同一の長さを持つフィンガー電極とバスバー電極とを格子状に設けた表面電極を形成するとを共に、この半導体基板の裏面側に裏面電極を形成し、この表裏両面の電極を半田で被覆した太陽電池素子において、前記フィンガー電極の略中央部分に半田の切除部を設けたことを特徴とする太陽電池素子。On the front surface side of the semiconductor substrate having the semiconductor bonding portion, a surface electrode in which finger electrodes having substantially the same length as one side of the semiconductor substrate and bus bar electrodes are provided in a grid pattern is formed. A solar cell element in which a back electrode is formed on the side and the electrodes on both the front and back surfaces are covered with solder, wherein a cutout portion of the solder is provided substantially at the center of the finger electrode. 半導体接合部を有する半導体基板の表面側に、この半導体基板の一辺と略同一の長さを持つフィンガー電極とバスバー電極とを格子状に設けた表面電極を形成すると共に、この半導体基板の裏面側に裏面電極を形成し、この表裏両面の電極を半田で被覆する太陽電池素子の製造方法において、前記フィンガー電極の略中央部分に半田レジストを塗布して他の部分を半田で被覆することを特徴とする太陽電池素子の製造方法。On the front surface side of the semiconductor substrate having the semiconductor bonding portion, a surface electrode in which finger electrodes having substantially the same length as one side of the semiconductor substrate and bus bar electrodes are provided in a grid pattern is formed, and the back surface side of the semiconductor substrate is formed. A method of manufacturing a solar cell element in which a back electrode is formed on the front and back surfaces of the finger electrode, and a solder resist is applied to a substantially central portion of the finger electrode and the other portion is covered with solder. A method for manufacturing a solar cell element. 前記半導体基板を半田槽に浸漬して前記フィンガー電極を前記半田で被覆することを特徴とする請求項2に記載の太陽電池素子の製造方法。3. The method according to claim 2, wherein the semiconductor substrate is immersed in a solder bath to cover the finger electrodes with the solder. 前記バスバー電極を鉛直方向に向けて前記半田槽に浸漬することを特徴とする請求項3に記載の太陽電池素子の製造方法。4. The method according to claim 3, wherein the busbar electrode is immersed in the solder bath with the vertical direction.
JP2002342879A 2002-11-26 2002-11-26 Solar cell element and manufacturing method thereof Expired - Fee Related JP3805299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342879A JP3805299B2 (en) 2002-11-26 2002-11-26 Solar cell element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342879A JP3805299B2 (en) 2002-11-26 2002-11-26 Solar cell element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004179335A true JP2004179335A (en) 2004-06-24
JP3805299B2 JP3805299B2 (en) 2006-08-02

Family

ID=32704809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342879A Expired - Fee Related JP3805299B2 (en) 2002-11-26 2002-11-26 Solar cell element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3805299B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278704A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar cell element and solar cell module employing the same
WO2009149040A2 (en) * 2008-06-03 2009-12-10 United Solar Ovonic Llc Method for the fabrication of semiconductor devices on lightweight substrates
CN102130194A (en) * 2010-12-31 2011-07-20 常州天合光能有限公司 High-transmission-rate low-shading-area solar cell
JP2011176357A (en) * 2011-05-09 2011-09-08 Kyocera Corp Solar-cell module
CN102254994A (en) * 2011-07-05 2011-11-23 浙江鸿禧光伏科技股份有限公司 Back electrode design method
CN102969368A (en) * 2012-12-10 2013-03-13 常州天合光能有限公司 Electrode structure of solar cell piece
TWI464893B (en) * 2012-12-17 2014-12-11 Motech Ind Inc Solar cell and module comprising the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278704A (en) * 2005-03-29 2006-10-12 Kyocera Corp Solar cell element and solar cell module employing the same
WO2009149040A2 (en) * 2008-06-03 2009-12-10 United Solar Ovonic Llc Method for the fabrication of semiconductor devices on lightweight substrates
WO2009149040A3 (en) * 2008-06-03 2010-03-11 United Solar Ovonic Llc Method for the fabrication of semiconductor devices on lightweight substrates
CN102130194A (en) * 2010-12-31 2011-07-20 常州天合光能有限公司 High-transmission-rate low-shading-area solar cell
JP2011176357A (en) * 2011-05-09 2011-09-08 Kyocera Corp Solar-cell module
CN102254994A (en) * 2011-07-05 2011-11-23 浙江鸿禧光伏科技股份有限公司 Back electrode design method
CN102969368A (en) * 2012-12-10 2013-03-13 常州天合光能有限公司 Electrode structure of solar cell piece
TWI464893B (en) * 2012-12-17 2014-12-11 Motech Ind Inc Solar cell and module comprising the same

Also Published As

Publication number Publication date
JP3805299B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US20080000519A1 (en) Solar Cell Device and Method for Manufacturing the Same
TWI314363B (en)
JP4040659B2 (en) Solar cell, solar cell string, and solar cell module
WO2012165590A1 (en) Solar cell and method for manufacturing same
JP5726303B2 (en) Solar cell and method for manufacturing the same
JP2001345458A (en) Solar cell
KR20160010536A (en) Solar battery cell, method for producing same, and solar battery module
JP2007299844A (en) Method for manufacturing photoelectric converting element
JP3805299B2 (en) Solar cell element and manufacturing method thereof
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
JP2001127317A (en) Method of manufacturing solar cell
JP4299772B2 (en) Solar cell module
JP2006156693A (en) Solar battery element and solar battery module using it
JP2000277768A (en) Method of forming solar battery
JP4091710B2 (en) Method for forming solar cell
JP6613365B2 (en) Solar cell element and solar cell module
JP5452755B2 (en) Method for manufacturing photovoltaic device
JP2000312016A (en) Manufacture of solar cell
JP3830445B2 (en) Solar cell element and method for forming the same
JP4535767B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP5377226B2 (en) Solar cell and manufacturing method thereof
JP2004247596A (en) Solar battery element, manufacturing method thereof, and solar battery module using the element
JP2005136148A (en) Solar cell device and method of manufacturing the same
JP2004152828A (en) Solar cell device and its manufacturing method
JPWO2018235315A1 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees