JP2004178853A - Electrode material and electrode for solid oxide fuel cell - Google Patents

Electrode material and electrode for solid oxide fuel cell Download PDF

Info

Publication number
JP2004178853A
JP2004178853A JP2002340994A JP2002340994A JP2004178853A JP 2004178853 A JP2004178853 A JP 2004178853A JP 2002340994 A JP2002340994 A JP 2002340994A JP 2002340994 A JP2002340994 A JP 2002340994A JP 2004178853 A JP2004178853 A JP 2004178853A
Authority
JP
Japan
Prior art keywords
electrode
sofc
particles
fuel cell
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002340994A
Other languages
Japanese (ja)
Inventor
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002340994A priority Critical patent/JP2004178853A/en
Publication of JP2004178853A publication Critical patent/JP2004178853A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Physical Vapour Deposition (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material having a low resistance associated with the electrode during power generation, thus achieving efficient power generation, to provide an electrode and to provide a solid oxide fuel cell. <P>SOLUTION: The electrode material for an SOFC (Solid Oxide Fuel Cell) contains an oxide particle having oxygen ion conductivity and/or electronic conductivity, and a metal particle covering the oxide particle. The electrode for an SOFC contains the above described electrode materials for an SOFC and other metal particles. A unit cell for an SOFC comprises the above described electrode for an SOFC formed on the surface and/or back surface of a solid electrolyte. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体酸化物型燃料電池(SOFC)用電極材料、電極及びSOFCに係り、更に詳細には、SOFCの発電時において、電極にかかわる抵抗値が低く、効率の良い発電を実現し得るSOFC用の電極材料、これを用いたSOFC用電極及びSOFCに関する。
【0002】
【従来の技術】
従来、SOFCにおいては、燃料極として、電子伝導性に優れる金属材料と酸素イオン伝導性に優れる高酸素イオン伝導性の酸化物材料を混合したサーメット電極が用いられている(特開2001−023648号公報、特に図2)。かかるサーメット電極において、電極反応は主にこのサーメット電極内の金属材料と酸化物材料の界面で進行すると考えられている。したがって、その電極反応を効率良く進行させるためには、金属材料と酸化物材料の界面が多く存在する必要がある。
【0003】
【発明が解決しようとする課題】
しかしながら、通常、このようなサーメット電極の作成は金属材料と酸化物材料の粒子を物理的に混合して行うために、その界面量を制御するのが困難であった。
また、電極の機能としてガス拡散性が求められるので、通常は直径1μm程度の粉体を混合して、ミクロンレベルの細孔を形成させる必要があるために、得られる界面量には限界があった。
一方、界面量を増大させるためには、金属材料、酸化物材料それぞれの粒子径を小さくすることが有効であるが、その場合、ガス拡散のための細孔径が減少してしまいガス拡散抵抗が増大するために、電極反応の抵抗が見かけ上増大してしまう問題点があった。
このように、上記の界面量とガス拡散性はトレードオフの関係となり、電極抵抗の低減には限界があり、発電効率をある一定値以上にすることができず、運転コストの低減が困難であったり、SOFC発電機の小型化が困難であるなどの問題点があった。
【0004】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、発電時において、電極にかかわる抵抗値が低く、効率の良い発電を実現し得るSOFC用電極材料、電極及びSOFCを提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、酸素イオン伝導性及び/又は電子伝導性を有する酸化物粒子に金属粒子を被着させた金属修飾酸化物粉末を用いることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0006】
即ち、本発明のSOFC用電極材料は、酸素イオン伝導性及び/又は電子伝導性を有する酸化物粒子と、金属粒子を含有するものであり、該酸化物粒子に該金属粒子を被着させたことを特徴とする。
【0007】
また、本発明のSOFC用電極は、上述の如きSOFC用電極材料と、他の金属粒子を含有して成ることを特徴とする。
更に、本発明のSOFC用の単セルは、上述の如きSOFC用電極を固体電解質の表面及び/又は裏面に形成したものである。
【0008】
【作用】
従来のサーメット電極は金属粒子と酸化物粒子の接点、界面が限られた部分にしか存在しなかったのに対して、本発明のSOFC用電極の場合には、酸化物粒子の表面に金属粒子が被着している粒子(金属修飾粒子)を用いているために、金属と酸化物が接触する界面量が著しく増大している。
そして、このような構造を有するため、従来の電極に比べても、細孔は十分に確保され、ガスの拡散性に問題もない。
【0009】
【発明の実施の形態】
以下、本発明のSOFC用電極材料について詳細に説明するが、本明細書において、「%」は特記しない限り質量百分率を表すものとする。
【0010】
上述の如く、本発明のSOFC用電極材料は酸素イオン伝導性及び/又は電子伝導性を有する酸化物粒子に金属粒子を被着させて成る。
ここで、「被着」とは、核となる酸化物粒子に、その酸化物粒子よりも小さな粒子の金属粒子を被せるように着け、存在させることをいうものとする。
まず、酸素イオン伝導性や電子伝導性を有する酸化物粒子、即ち金属粒子を被着するときに核となる酸化物としては、各種元素をドープしたジルコニア、各種元素をドープしたセリア、各種ペロブスカイト型酸化物を用いることができる。
一方、かかる金属粒子を構成する金属としては、ニッケル(Ni)、コバルト(Co)、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)などを用いることができる。
【0011】
また、本発明の電極材料においては、上記酸化物粒子が上記金属粒子よりも大きいことが望ましい。酸化物粒子が金属粒子よりも小さい場合には被着が困難になる可能性がある。
具体的には、上記酸化物粒子の粒径を上記金属粒子の粒径の2倍以上とすることが好ましい。
2倍より小さいと、従来より知られる金属−酸化物サーメット触媒と同じ効果しか得られない可能性がある。
【0012】
更に、金属粒子の被着量については、この金属粒子が酸化物粒子100重量部に対し14〜62重量部の割合で含まれるようにすることが好ましい。
14重量部未満では、発電効率が良好な電極材料を得られず、62重量部を超えると、金属粒子の被着量が多くなり過ぎ、逆に金属と酸化物が接触する界面量が減少することがあり、発電効率に悪影響を及ぼす可能性がある。
【0013】
なお、金属粒子の酸化物粒子への被着法は、特に限定されるものではないが、無電解メッキ法、含浸法、蒸着法又はPVD法及びこれらの任意の組合せによる方法を例示することができる。
これにより、酸化物粒子表面に、より小さな金属粒子を形成でき、且つ製造する時の条件を様々に変えることができ金属の被着量及び被着状態の好適化を行うことができる。
【0014】
次に、本発明のSOFC用電極について詳細に説明する。
上述の如く、本発明のSOFC用電極は、上記SOFC用電極材料と、上記金属粒子と異なる他の金属粒子を含有したサーメットの構造を有しており、燃料極及び空気極のいずれにも適用できるが、燃料極として用いることが好ましい。
ここで、「他の金属粒子」とは、上述したような被着すべき金属粒子とは別の存在である金属粒子を意味しており、導電性さえ有すれば、かかる被着用金属粒子と同種又は異種の金属から成るものでよく、代表的には、該被着用金属粒子よりも粒径が大きいものである。
なお、これらの金属は発電時以外には酸化物状態であっても、発電時には燃料ガス、即ち還元性ガスに曝されるので、金属にまで容易に還元される。このことを考慮すれば、Ni、Co、Pt、Pd、Ruなどの元素が酸化物の状態で存在する場合であっても、当該電極材料や電極が本発明の範囲に属することに疑義はないであろう。
【0015】
図1に、本発明のSOFC用サーメット電極と従来のサーメット電極の構造を示す。同図(B)に示すように、本発明のサーメット電極では、酸化物粒子1に金属粒子2が被着した電極材料10と、他の金属粒子20とが結合してサーメット構造を形成している。
これに対し、従来のサーメット電極では、酸化物粒子1と他の金属粒子20とが結合したサーメット構造を形成しているだけであり(図1(A)参照)、酸化物粒子1と他の金属粒子20との界面が少ない。
【0016】
このように、本発明の電極では、予め金属粒子1を被着した電極材料粒子10を用いてサーメット構造を形成するため、被着している金属粒子2の存在によって、酸化物粒子1と金属粒子2(及び/又は他の金属粒子20)との界面が従来の電極に比し劇的に増加しており、且つ細孔の確保も容易でありガス拡散性も向上している。
なお、本発明の電極は、代表的には、粒径0.1〜1μmの酸化物粒子1に粒径がその1/2程度の金属粒子2を予め被着させて電極材料10を調製し、次いで、この電極材料10を粒径0.1〜1μmの他の金属粒子20と混練し、更に乾燥・焼成することによって製造される。
【0017】
次に、本発明のSOFC用の単セルについて詳細に説明する。
本発明のSOFC用の単セルは、上記SOFC用電極を固体電解質の表面及び裏面の一方又は双方に被覆した構造を有している。
一般に、固体電解質としては安定化ジルコニアやランタンガレートのような固体の金属酸化物が用いられており、その形状はシート状や円筒状である。
【0018】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0019】
(実施例1)
平均粒径約1μmのサマリウム(Sm)−セリウム(Ce)複合酸化物(Sm:Ce=1:4)を、塩化スズ(SnCl)を0.05%、濃塩酸を0.05%含む40℃の水溶液に5分間浸漬し濾過・洗浄した後に、日本カニゼン社製レッドシューマーの5倍希釈溶液(40℃)に5分間浸漬し濾過・洗浄を行った。上記処理を3回繰り返して、Sm−Ce複合酸化物の無電解メッキ用触媒付与工程とした。
この触媒付与されたSm−Ce複合酸化物を60℃のメッキ液(日本カニゼン社製:商品名SB−55)に浸漬し、1分間放置した後に濾過・洗浄を行った。110℃で乾燥することにより、Ni被着Sm−Ce複合酸化物粉末を調製した。
調製後のNi被着Sm−Ce複合酸化物粉末をEDX(エネルギー分散型蛍光X線分析)により組成分析を行ったところ、Niの被着量は14.1重量部であった。
【0020】
Ni被着Sm−Ce複合酸化物粉末と平均粒径約1μmの酸化ニッケル粒子をバインダー、分散剤、溶媒と調合して燃料極ペーストを作成した。平均粒径約1μmのSm−Sr−Co複合酸化物(Sm:Sr:Co=1:1:2)と分散剤、溶媒と調合して空気極ペーストを作成した。
固体電解質としてのランタン(La)−ストロンチウム(Sr)−ガリウム(Ga)−マグネシウム(Mg)複合酸化物(La:Sr:Ga:Mg=9:1:8:2)製の直径30mmの円形焼結体ディスクの片面に直径20mmの円形状に燃料極ペーストを、反対の面に直径20mmの円形状に空気極ペーストを被覆し、焼成して、本例のSOFC用の単セルを作成した。
【0021】
(実施例2)
メッキ液への浸漬時間を2分とした以外は、実施例1と同様の操作を繰り返し、本例のSOFC用の単セルを作成した。調製後のNi被着Sm−Ce複合酸化物粉末をEDXにより組成分析を行ったところ、Niの被着量は27.2重量部であった。
【0022】
(実施例3)
メッキ液への浸漬時間を4分とした以外は、実施例1と同様の操作を繰り返し、本例のSOFC用の単セルを作成した。調製後のNi被着Sm−Ce複合酸化物粉末をEDXにより組成分析を行ったところ、Niの被着量は62.0重量部であった。
【0023】
(比較例1)
メッキ液への浸漬を行わず、Sm−Ce複合酸化物粒子にニッケル被着を行わなかった以外は、実施例1と同様の操作を繰り返し、本例のSOFC用の単セルを作成した。以下、実施例及び比較例の単セルを用いた発電試験の結果を表1に示す。
【0024】
【表1】

Figure 2004178853
【0025】
表1より、本発明の範囲に属する実施例1〜3の本発明による電極を用いたセルは、本発明外の比較例1よりも発電効率に優れていることが分かる。
また、現時点では、最高出力の観点から、実施例3が最も良好な結果をもたらすと思われる。
【0026】
【発明の効果】
以上説明してきたように、本発明によれば、酸素イオン伝導性及び/又は電子伝導性を有する酸化物粒子に金属材料粒子を被着させた金属修飾酸化物粉末を用いることとしたため、発電時において、電極にかかわる抵抗値が低く、効率の良い発電を実現し得るSOFC用電極材料、電極及びSOFCを提供することができる。
【図面の簡単な説明】
【図1】サーメット電極のミクロ構造を示す概念図である。
【符号の説明】
1 酸化物粒子
2 金属粒子
10 電極材料
20 他の金属粒子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode material, an electrode, and a SOFC for a solid oxide fuel cell (SOFC), and more specifically, can realize efficient power generation with a low resistance value related to the electrode during power generation of the SOFC. The present invention relates to an electrode material for SOFC, an electrode for SOFC using the same, and an SOFC.
[0002]
[Prior art]
Conventionally, in a SOFC, a cermet electrode in which a metal material having excellent electron conductivity and an oxide material having high oxygen ion conductivity having excellent oxygen ion conductivity are mixed is used as a fuel electrode (Japanese Patent Application Laid-Open No. 2001-023648). Gazette, especially FIG. 2). In such a cermet electrode, it is considered that the electrode reaction mainly proceeds at the interface between the metal material and the oxide material in the cermet electrode. Therefore, in order for the electrode reaction to proceed efficiently, there must be many interfaces between the metal material and the oxide material.
[0003]
[Problems to be solved by the invention]
However, since such a cermet electrode is usually prepared by physically mixing particles of a metal material and an oxide material, it is difficult to control the amount of the interface.
In addition, since gas diffusivity is required as a function of the electrode, it is usually necessary to mix powder having a diameter of about 1 μm to form micron-level pores. Was.
On the other hand, in order to increase the interface amount, it is effective to reduce the particle diameter of each of the metal material and the oxide material, but in this case, the pore diameter for gas diffusion is reduced, and the gas diffusion resistance is reduced. There is a problem that the resistance of the electrode reaction apparently increases due to the increase.
As described above, the above interface amount and gas diffusivity are in a trade-off relationship, and there is a limit in reducing the electrode resistance, the power generation efficiency cannot be increased to a certain value or more, and it is difficult to reduce the operating cost. And it is difficult to reduce the size of the SOFC generator.
[0004]
The present invention has been made in view of such problems of the related art, and an object of the present invention is to provide an SOFC that can realize efficient power generation with a low resistance value related to electrodes during power generation. An electrode material, an electrode, and an SOFC are provided.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, by using metal-modified oxide powder in which metal particles are adhered to oxide particles having oxygen ion conductivity and / or electron conductivity. The inventors have found that the above objects can be achieved, and have completed the present invention.
[0006]
That is, the electrode material for an SOFC of the present invention contains oxide particles having oxygen ion conductivity and / or electron conductivity and metal particles, and the metal particles are adhered to the oxide particles. It is characterized by the following.
[0007]
Further, the SOFC electrode of the present invention is characterized by containing the above-mentioned SOFC electrode material and other metal particles.
Furthermore, the single cell for SOFC of the present invention is one in which the above-mentioned electrode for SOFC is formed on the front surface and / or the back surface of the solid electrolyte.
[0008]
[Action]
In contrast to the conventional cermet electrode in which the contact point between the metal particles and the oxide particles and the interface existed only in a limited portion, in the case of the electrode for SOFC of the present invention, the metal particles Is used, the amount of interface between the metal and the oxide is remarkably increased.
And since it has such a structure, a sufficient pore is ensured compared with the conventional electrode, and there is no problem in gas diffusivity.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the electrode material for a SOFC of the present invention will be described in detail. In this specification, “%” represents a mass percentage unless otherwise specified.
[0010]
As described above, the electrode material for an SOFC of the present invention is obtained by adhering metal particles to oxide particles having oxygen ion conductivity and / or electron conductivity.
Here, the term “adhering” means to attach and exist metal particles smaller than the oxide particles on the core oxide particles.
First, oxide particles having oxygen ion conductivity or electron conductivity, that is, oxides serving as nuclei when metal particles are deposited, include zirconia doped with various elements, ceria doped with various elements, and various perovskite types. An oxide can be used.
On the other hand, nickel (Ni), cobalt (Co), platinum (Pt), palladium (Pd), ruthenium (Ru), or the like can be used as a metal constituting such metal particles.
[0011]
In the electrode material of the present invention, it is desirable that the oxide particles are larger than the metal particles. If the oxide particles are smaller than the metal particles, deposition can be difficult.
Specifically, it is preferable that the particle size of the oxide particles be twice or more the particle size of the metal particles.
If it is smaller than twice, only the same effect as that of a conventionally known metal-oxide cermet catalyst may be obtained.
[0012]
Furthermore, it is preferable that the amount of the metal particles to be deposited is 14 to 62 parts by weight based on 100 parts by weight of the oxide particles.
If the amount is less than 14 parts by weight, an electrode material having good power generation efficiency cannot be obtained. If the amount exceeds 62 parts by weight, the amount of metal particles deposited becomes too large, and conversely, the amount of the interface between the metal and the oxide decreases. Power generation efficiency.
[0013]
The method of depositing metal particles on oxide particles is not particularly limited, and examples of the method include electroless plating, impregnation, vapor deposition, PVD, and any combination thereof. it can.
Thereby, smaller metal particles can be formed on the surface of the oxide particles, and the conditions during production can be changed in various ways, and the amount and the state of metal deposition can be optimized.
[0014]
Next, the SOFC electrode of the present invention will be described in detail.
As described above, the SOFC electrode of the present invention has a cermet structure containing the SOFC electrode material and other metal particles different from the metal particles, and is applicable to both the fuel electrode and the air electrode. Although it is possible, it is preferable to use it as a fuel electrode.
Here, `` other metal particles '' means metal particles that are different from the metal particles to be attached as described above, and as long as they have conductivity, such metal particles to be adhered The particles may be composed of the same or different metals, and typically have a larger particle size than the metal particles to be adhered.
In addition, even if these metals are in an oxide state other than during power generation, they are exposed to the fuel gas, that is, the reducing gas during power generation, so that they are easily reduced to metals. In consideration of this, even when elements such as Ni, Co, Pt, Pd, and Ru exist in an oxide state, there is no doubt that the electrode material or the electrode belongs to the scope of the present invention. Will.
[0015]
FIG. 1 shows the structure of a cermet electrode for SOFC of the present invention and a conventional cermet electrode. As shown in FIG. 1B, in the cermet electrode of the present invention, the electrode material 10 in which the metal particles 2 are adhered to the oxide particles 1 and other metal particles 20 are combined to form a cermet structure. I have.
On the other hand, in the conventional cermet electrode, only the cermet structure in which the oxide particles 1 and the other metal particles 20 are combined is formed (see FIG. 1A), and the oxide particles 1 and the other metal particles 20 are combined. The interface with the metal particles 20 is small.
[0016]
As described above, in the electrode of the present invention, the cermet structure is formed using the electrode material particles 10 on which the metal particles 1 have been previously deposited. The interface with the particles 2 (and / or other metal particles 20) is dramatically increased as compared with the conventional electrode, and the pores are easily secured and the gas diffusibility is improved.
The electrode of the present invention is typically prepared by pre-adhering metal particles 2 having a particle size of about 1/2 to oxide particles 1 having a particle size of 0.1 to 1 μm to prepare an electrode material 10. Then, the electrode material 10 is manufactured by kneading with another metal particle 20 having a particle size of 0.1 to 1 μm, followed by drying and firing.
[0017]
Next, the single cell for SOFC of the present invention will be described in detail.
The SOFC single cell of the present invention has a structure in which the SOFC electrode is coated on one or both of the front surface and the back surface of the solid electrolyte.
Generally, a solid metal oxide such as stabilized zirconia or lanthanum gallate is used as the solid electrolyte, and the shape is a sheet or a cylinder.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0019]
(Example 1)
40 containing samarium (Sm) -cerium (Ce) composite oxide (Sm: Ce = 1: 4) having an average particle size of about 1 μm, containing 0.05% of tin chloride (SnCl 2 ) and 0.05% of concentrated hydrochloric acid After being immersed in an aqueous solution of 5 ° C. for 5 minutes and filtered and washed, it was immersed in a 5-fold diluted solution (40 ° C.) of Nippon Kanigen Co., Ltd. for 5 minutes and filtered and washed. The above process was repeated three times to provide a catalyst application step for electroless plating of the Sm-Ce composite oxide.
The catalyst-added Sm-Ce composite oxide was immersed in a plating solution (trade name: SB-55, manufactured by Nippon Kanigen Co., Ltd.) at 60 ° C., left for 1 minute, and then filtered and washed. By drying at 110 ° C., a Ni-coated Sm—Ce composite oxide powder was prepared.
A composition analysis of the prepared Ni-adhered Sm-Ce composite oxide powder by EDX (energy dispersive X-ray fluorescence analysis) revealed that the Ni adhering amount was 14.1 parts by weight.
[0020]
A fuel electrode paste was prepared by mixing Ni-coated Sm-Ce composite oxide powder and nickel oxide particles having an average particle size of about 1 μm with a binder, a dispersant, and a solvent. An air electrode paste was prepared by mixing an Sm—Sr—Co composite oxide (Sm: Sr: Co = 1: 1: 2) having an average particle size of about 1 μm, a dispersant, and a solvent.
Circular firing with a diameter of 30 mm made of lanthanum (La) -strontium (Sr) -gallium (Ga) -magnesium (Mg) composite oxide (La: Sr: Ga: Mg = 9: 1: 8: 2) as a solid electrolyte One side of the consolidated disk was coated with a fuel electrode paste in a circular shape having a diameter of 20 mm, and the opposite surface was coated with an air electrode paste in a circular shape having a diameter of 20 mm, followed by firing to prepare a single cell for SOFC of this example.
[0021]
(Example 2)
The same operation as in Example 1 was repeated, except that the immersion time in the plating solution was 2 minutes, to produce a single cell for SOFC of this example. The composition analysis of the prepared Ni-adhered Sm-Ce composite oxide powder by EDX revealed that the Ni adhering amount was 27.2 parts by weight.
[0022]
(Example 3)
The same operation as in Example 1 was repeated, except that the immersion time in the plating solution was 4 minutes, to produce a single cell for SOFC of this example. The composition analysis of the prepared Ni-adhered Sm-Ce composite oxide powder by EDX revealed that the Ni adhering amount was 62.0 parts by weight.
[0023]
(Comparative Example 1)
The same operation as in Example 1 was repeated, except that the Sm-Ce composite oxide particles were not immersed in the plating solution and nickel was not adhered, to produce a single cell for SOFC of this example. Table 1 below shows the results of the power generation test using the single cells of the examples and the comparative examples.
[0024]
[Table 1]
Figure 2004178853
[0025]
Table 1 shows that the cells using the electrodes according to the present invention of Examples 1 to 3 belonging to the scope of the present invention are more excellent in power generation efficiency than Comparative Example 1 outside the present invention.
Also, at present, Example 3 seems to give the best results in terms of maximum output.
[0026]
【The invention's effect】
As described above, according to the present invention, a metal-modified oxide powder in which metal material particles are adhered to oxide particles having oxygen ion conductivity and / or electron conductivity is used. In the above, it is possible to provide an electrode material, an electrode, and an SOFC for an SOFC, which have a low resistance value related to the electrode and can realize efficient power generation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a microstructure of a cermet electrode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oxide particle 2 Metal particle 10 Electrode material 20 Other metal particles

Claims (7)

酸素イオン伝導性及び/又は電子伝導性を有する酸化物粒子に金属粒子を被着させて成る粒子を用いることを特徴とする固体酸化物型燃料電池用電極材料。An electrode material for a solid oxide fuel cell, wherein particles obtained by applying metal particles to oxide particles having oxygen ion conductivity and / or electron conductivity are used. 上記酸化物粒子が上記金属粒子よりも大きいことを特徴とする請求項1に記載の固体酸化物型燃料電池用電極材料。The electrode material for a solid oxide fuel cell according to claim 1, wherein the oxide particles are larger than the metal particles. 上記酸化物粒子の粒径が上記金属粒子の粒径の2倍以上であることを特徴とする請求項2に記載の固体酸化物型燃料電池用電極材料。The electrode material for a solid oxide fuel cell according to claim 2, wherein the particle size of the oxide particles is at least twice the particle size of the metal particles. 上記金属粒子が上記酸化物粒子100重量部に対し14〜62重量部の割合で含まれることを特徴とする請求項1〜3のいずれか1つの項に記載の固体酸化物型燃料電池用電極材料。The electrode for a solid oxide fuel cell according to any one of claims 1 to 3, wherein the metal particles are contained in a ratio of 14 to 62 parts by weight based on 100 parts by weight of the oxide particles. material. 上記金属粒子が、無電解メッキ法、含浸法、蒸着法及びPVD法から成る群より選ばれた少なくとも1種の方法で被着されたことを特徴とする請求項1〜4のいずれか1つの項に記載の固体酸化物型燃料電池用電極材料。The metal particles are applied by at least one method selected from the group consisting of electroless plating, impregnation, vapor deposition and PVD. Item 10. The electrode material for a solid oxide fuel cell according to item 8. 請求項1〜5のいずれか1つの項に記載の固体酸化物型電池用電極材料と、他の金属粒子を含有して成ることを特徴とする固体酸化物型燃料電池用電極。An electrode for a solid oxide fuel cell, comprising the electrode material for a solid oxide battery according to any one of claims 1 to 5 and other metal particles. 請求項6に記載の固体酸化物型燃料電池用電極を、固体電解質の表面及び/又は裏面に備えることを特徴とする固体酸化物型燃料電池の単セル。A single cell of a solid oxide fuel cell, comprising the solid oxide fuel cell electrode according to claim 6 on a front surface and / or a back surface of a solid electrolyte.
JP2002340994A 2002-11-25 2002-11-25 Electrode material and electrode for solid oxide fuel cell Pending JP2004178853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340994A JP2004178853A (en) 2002-11-25 2002-11-25 Electrode material and electrode for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340994A JP2004178853A (en) 2002-11-25 2002-11-25 Electrode material and electrode for solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2004178853A true JP2004178853A (en) 2004-06-24

Family

ID=32703483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340994A Pending JP2004178853A (en) 2002-11-25 2002-11-25 Electrode material and electrode for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2004178853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193765A (en) * 2008-02-13 2009-08-27 Toshiba Corp Electrochemical cell
US8940456B2 (en) 2010-11-19 2015-01-27 Samsung Sdi Co., Ltd. Fuel cell and manufacturing method of the same
JP2018088332A (en) * 2016-11-28 2018-06-07 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193765A (en) * 2008-02-13 2009-08-27 Toshiba Corp Electrochemical cell
US8940456B2 (en) 2010-11-19 2015-01-27 Samsung Sdi Co., Ltd. Fuel cell and manufacturing method of the same
JP2018088332A (en) * 2016-11-28 2018-06-07 日本特殊陶業株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack
JP7082456B2 (en) 2016-11-28 2022-06-08 森村Sofcテクノロジー株式会社 Electrochemical reaction single cell and electrochemical reaction cell stack

Similar Documents

Publication Publication Date Title
JP6080088B2 (en) Porous current collector and fuel cell using the same
Jiang A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells
EP1353391A1 (en) Solid electrolyte type fuel cell and air electrode collector for use therein
KR101749961B1 (en) Solid electrolyte membrane, fuel battery cell, and fuel battery
JP2003511834A (en) Composite electrodes for solid-state electrochemical devices
WO2004102704A1 (en) Solid oxide fuel cell and method for producing same
WO2007145215A1 (en) Carbon particle having deposited fine particles, process for producing the same, and electrode for fuel cell
JP4487465B2 (en) Solid oxide fuel cell
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
CN105312042B (en) Oxygen reduction reaction catalyst with non-conductive substrate and method of forming the same
US20140287341A1 (en) Modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure
JP2004327278A (en) Electrode material for fuel cell, and solid oxide fuel cell using same
JP2012035178A (en) Method for manufacturing catalyst, and catalyst
JP2003123773A (en) Air electrode for solid electrolyte fuel cell and fuel cell using the same
JP6160386B2 (en) Fuel cell
JP2004178853A (en) Electrode material and electrode for solid oxide fuel cell
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
US20060159983A1 (en) Fuel electrode for solid oxide fuel cell and solid oxide fuel cell suing the same
US10923733B2 (en) Nanocatalyst suitable for an anode of a solid oxide fuel cell
JP2007005284A (en) Electrode catalyst for fuel cell and its manufacturing method
JP2005005025A (en) Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method
JP2009158253A (en) Electrode catalyst for alkaline type fuel cell and alkaline type fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JP2003181246A (en) Reactor for purifying waste gas
JP2019160794A (en) Anode for solid oxide fuel cell and solid oxide fuel cell