JP2004177356A - Defect inspection method and apparatus thereof - Google Patents

Defect inspection method and apparatus thereof Download PDF

Info

Publication number
JP2004177356A
JP2004177356A JP2002346596A JP2002346596A JP2004177356A JP 2004177356 A JP2004177356 A JP 2004177356A JP 2002346596 A JP2002346596 A JP 2002346596A JP 2002346596 A JP2002346596 A JP 2002346596A JP 2004177356 A JP2004177356 A JP 2004177356A
Authority
JP
Japan
Prior art keywords
defect
reflected light
light
protrusion
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002346596A
Other languages
Japanese (ja)
Inventor
Shinya Nakajima
伸也 中嶋
Tatsuo Nagasaki
達夫 長崎
Takeshi Nomura
剛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002346596A priority Critical patent/JP2004177356A/en
Publication of JP2004177356A publication Critical patent/JP2004177356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method, capable of clearly distinguishing a protrusion to be a defect from a foreign matter which is not to be a defect in the case of inspecting a protrusion defect in an object work through the use of laser light. <P>SOLUTION: The surface of the work to be inspected 1 is irradiated with the laser light 19 via an S polarizing filter 18. A reflected light 23 from the work to be inspected is detected via an S polarizing filter 24. According to the level of the reflected light detected by an image processing device 30, a protrusion defect, in which the surface is protruded is distinguished from a foreign matter defect which adheres to the surface and alters the state of polarization of the incident laser light, and only the protrusion defect is detected. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、液晶パネル、ハードディスク、PDPなどの製造工程において、対象ワーク上にある欠陥を検出する欠陥検査方法に関する。
【0002】
【従来の技術】
プラズマディスプレイパネル(PDP)は図5(a)に示すように、前面板1と背面板7とを張り合わせて構成されている。
【0003】
背面板7は、ガラスのような絶縁性の基板8の表面に所定間隔でデータ電極10が形成され、その上を誘電体層9で覆った後に、この誘電体層9の上にリブ11が前記データ電極10の配列方向に沿って所定間隔で形成されており、そのリブ11の間には、R,G,Bの何れかの蛍光体層12がリブ11の配列方向に所定の順番で形成されている。
【0004】
表面板1は、ガラスのような透明かつ絶縁性の基板2の表面に複数の表示電極5が付設された構造となっている。表示電極5は、走査電極6aと維持電極6bとが対となったものである。表示電極5はその上を誘電体層3で覆って構成されている。誘電体層3の表面は保護膜4で覆われている。
【0005】
この表面板1と背面板7は、図5(b)のように張り合わせて構成されている。表面板1と背面板7の間の放電空間13に封入したキセノン、ネオンなどの希ガスに電圧を印加してプラズマ放電を発生させ、これによって発生した紫外線が前記蛍光体層12を励起して、蛍光体層12の色に応じた光を発光し、表面ガラス板2を通してR,G,Bの各色の可視光15が発生し、詳しくは、隔壁11によって仕切られデータ電極8と走査電極5aおよび維持電極5bとの交差部の放電空間13が放電セル14として動作して、カラー画像を表示できる。
【0006】
製造工程においては、背面板7と張り合わせる前の表面板1の表面の欠陥が検査されている。これは、表面板1の表面に所定の高さ以上の突起欠陥が存在すると、背面板7と張り合わせた時に前記リブ11を破損させたり、正常に張り合わせができなくなり、その部分の放電セル14が点灯しないという重大な欠陥が発生する。
【0007】
そのため、突起欠陥の高さの絶対値を評価し、所定の高さ以上の突起欠陥であるかの判別が非常に重要な課題となる。
従来技術では、誘電体膜3の生成後の表面板1の表面にレーザー光を照射し、欠陥部分からの反射光のパワーレベルから突起高さを評価するものである(特許文献1)。
【0008】
【特許文献1】
特開平5−172547号公報
【0009】
【発明が解決しようとする課題】
しかし、このようなレーザー光を使用した従来の検査方法では、欠陥となる突起と欠陥とならない異物を判別することはできず、保護膜4の成膜前の洗浄で除去可能な異物も欠陥として検出してしまうものである。
【0010】
詳しく説明すると、表面板1の表面に照射した前記レーザー光の反射光・散乱光のパワーレベルから突起高さを評価しようとした場合には、洗浄で除去可能な異物からも同様な反射光・散乱光が発生するために、突起と異物を判別できずに、不良とならない異物も検出してしまい、過検出といった課題がある。
【0011】
本発明ではレーザー光を使用して対象ワークの突起欠陥を検査する場合に、欠陥となる突起と欠陥とならない異物とを明確に判別できる欠陥検査方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の欠陥検査方法は、検査対象ワークの表面にS偏光フィルタを介してレーザー光を照射し、前記検査対象ワークからの反射光をS偏光フィルタを介して検出し、検出した反射光のレベルに応じて、前記表面が突出した突起欠陥と前記表面に付着していて入射したレーザー光の偏光状態を変更する異物欠陥とを判別して、突起欠陥だけを検出することを特徴とする。
【0013】
この構成によると、後工程の洗浄処理によって除去が期待できる異物欠陥を検査対象ワークの欠陥として検出せずに済み、突起欠陥だけを検出できる。
【0014】
【発明の実施の形態】
以下、本発明の検査方法を具体的な実施の形態に基づいて説明する。
本発明の欠陥検査方法を実現する欠陥検査装置は、図1に示すように構成されている。なお、ここではPDPの製造工程において、背面板7と張り合わせる前の表面板1の表面の欠陥検査を例に挙げて説明する。
【0015】
検査対象ワークを駆動位置決めするXYステージ16にセットされた前面板1に対して、レーザ発振器17からS偏光フィルタ18を介してレーザー光19が照射される。
【0016】
レーザ発振器17はポリゴンスキャナおよびAOD、EOD、レゾナントを用いたレーザスキャンニング照明装置、あるいはレーザビーム照明とする。
ここで、S偏光フィルタ18によりS偏光特性もつレーザー光19は、前面板1に対して入射角:αで照射される。
【0017】
検査対象ワークである前記前面板1へのレーザー光19の時々の照射位置は、XYステージ16によって決められ、その照射位置の時々の反射光21,23は、位置検出センサ22,受光素子26で検出される。
【0018】
なお、位置検出センサ22は欠陥の形状が凸の突起欠陥20か凹の欠陥かを判別する際に使用されるセンサである。
受光素子26は、フォトマルおよびCCDラインセンサ、CCDエリアセンサ、TDIカメラ、冷却CCDカメラとする。
【0019】
照射位置の突起欠陥20からの反射光23は、受光角:θでS偏光フィルタ24と結像レンズ25を介して受光素子26で検出される。S偏光フィルタ24は、検査対象ワークである前記前面板1上にある欠陥とならない異物の散乱光をカットし、突起欠陥20の反射光を受光素子26で受光している。
【0020】
さらに、結像レンズ25の平行光部分の光路中には、ハーフミラー27が組み込まれており、光路はこのハーフミラー27を通過して受光素子26に向かう反射光28Aとハーフミラー27で反射されて位置検出センサ29に入射する反射光28Bに分割される。
【0021】
検出した反射光のレベルに応じて、前記表面が突出した突起欠陥と前記表面に付着していて入射したレーザー光の偏光状態を変更する異物欠陥とを判別して突起欠陥だけを検出する判定処理手段としての画像処理装置30は、位置検出センサ29の出力から突起欠陥20の傾斜角度を計測し、この傾斜角度と前記受光素子26の出力とから欠陥の凹凸を判別する。
【0022】
さらに詳しくは、図2(a)に示すようにS偏光のレーザー光19は突起欠陥20に照射された場合の反射光は、入射光と同じS偏光特性をもったレーザ反射光23となり、これはS偏光フィルタ24を通過して、受光角:θで結像レンズ25を介して受光素子26に結像する。
【0023】
図2(b)に示すようにS偏光のレーザー光19が、後工程の洗浄処理で除去が可能な異物欠陥35に照射された場合には、入射光と同じS偏光特性をもったレーザ反射光23だけでなく、入射光と異なる偏光特性のP偏光特性をもったレーザ反射光36が発生する。このように表面に付着していて入射したレーザー光の偏光状態を変更する異物欠陥35の場合には、反射光がS偏光特性をもったレーザ反射光23とP偏光特性をもったレーザ反射光36とに分割されるため、S偏光特性をもったレーザ反射光23のレベルは図2(a)の場合よりも小さい。また、P偏光特性をもったレーザ反射光36はS偏光フィルタ24で減衰されるため、受光素子26を介して画像処理装置30において認識されるレーザ反射光23のレベルは著しく低下し、画像処理装置30はこのレベル差から異物欠陥35を欠陥として検出しないように構成されている。
【0024】
ハーフミラー27を介して位置検出センサ29に入射する際、図1のように位置検出センサ29の位置情報とレーザ反射角は一対一に対応していることから、あらかじめセンサの位置情報とレーザ反射角情報をリンクさせることで、レーザ反射角:βを計測できる。
【0025】
図3に示すように、突起欠陥20の検出領域31は画像処理装置30では、距離Sをもった投影距離32となる。そこで突起欠陥20の突起高さ:Tは、三角測量により、下記の式で表される。
【0026】
T = Σti(i=1、・・n)
γi=(βi−αi)/2
ti=sinγi・Y
ここで、γiは突起傾斜角で、時々のレーザ入射角:αiとレーザ反射角:βiにより算出される。微小部分の突起高さ:tiは画像処理の走査方向分解能:Yと突起傾斜角:γiにより算出される。突起高さ:Tは微小部分の突起高さ:tiの積分により算出される。これにより、欠陥検出と同時に欠陥高さの絶対的な評価を行うことができる。
【0027】
次に、画像処理装置30での欠陥の凹凸の判別について説明する。
画像処理装置30には、受光素子26の出力信号と位置検出センサ29の出力信号の他に、位置検出センサ22の出力信号が入力されており、画像処理装置30は図4に示すように位置検出センサ22,29の出力変化の順序から欠陥の凹凸を次のように判別している。
【0028】
図4(a)は欠陥が凸の欠陥突起20の場合を示している。この場合には、突起傾斜角度測定用の位置検出センサ29の出力33が上昇した後に、位置検出センサ22の出力34が下降する。
【0029】
これに対して図4(b)は欠陥の形状が表面から窪んだ場合を示している。この場合、凹凸判別用の位置検出センサ22の出力34が下降した後、突起傾斜角度測定用の位置検出センサ29の出力33が上昇する。
【0030】
画像処理装置30は図4(a)(b)に示した出力33,34のタイミングの違いから欠陥の凹凸を判別するように構成されている。
このように、画像処理装置30は突起欠陥20を検出するが、異物欠陥35を検出しないように構成されているので、従来の過検出を解消することができ、PDP生産性の歩留まりの向上に寄与できる。
【0031】
なお、上記の実施の形態ではPDPの前面板1の欠陥検査の場合を例に挙げて説明したが、半導体、液晶パネル、ハードディスクなどの製造工程における欠陥検査の場合も同様である。
【0032】
【発明の効果】
以上のように本発明の欠陥検査方法によると、検査対象ワークの表面に、S偏光フィルタを介してレーザー光を照射し、検査対象ワークからの反射光をS偏光フィルタを介して検出し、検出した反射光のレベルに応じて、前記表面が突出した突起欠陥と前記表面に付着していて入射したレーザー光の偏光状態を変更する異物欠陥とを判別して突起欠陥だけを検出することができ、製品の欠陥とならないと予想される異物を分別し、不良となる突起欠陥のみの検出を実現できる。
【図面の簡単な説明】
【図1】本発明の欠陥検査方法を実現する検査装置の構成図
【図2】突起と異物の判別原理の説明図
【図3】欠陥高さ測定の原理の説明図
【図4】欠陥の凹凸判定の原理の説明図
【図5】PDPの構造を示す拡大切り欠き図と断面図
【符号の説明】
1 前面板(検査対象ワーク)
16 XYステージ
17 レーザ発振器
18 S偏光フィルタ
20 突起欠陥
22 位置検出センサ
24 S偏光フィルタ
25 結像レンズ
26 受光素子
27 ハーフミラー
30 画像処理装置(判定処理手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a defect inspection method for detecting a defect on a target work in a manufacturing process of a semiconductor, a liquid crystal panel, a hard disk, a PDP, and the like.
[0002]
[Prior art]
As shown in FIG. 5A, the plasma display panel (PDP) is configured by bonding a front plate 1 and a back plate 7 together.
[0003]
The back plate 7 has data electrodes 10 formed at predetermined intervals on the surface of an insulating substrate 8 such as glass. After covering the data electrodes 10 with a dielectric layer 9, ribs 11 are formed on the dielectric layer 9. It is formed at a predetermined interval along the direction in which the data electrodes 10 are arranged. Between the ribs 11, any one of R, G, and B phosphor layers 12 is arranged in a predetermined order in the direction in which the ribs 11 are arranged. Is formed.
[0004]
The surface plate 1 has a structure in which a plurality of display electrodes 5 are provided on the surface of a transparent and insulating substrate 2 such as glass. The display electrode 5 is a pair of a scanning electrode 6a and a sustain electrode 6b. The display electrode 5 is formed by covering the display electrode 5 with the dielectric layer 3. The surface of the dielectric layer 3 is covered with a protective film 4.
[0005]
The front plate 1 and the back plate 7 are bonded together as shown in FIG. A voltage is applied to a rare gas such as xenon or neon sealed in a discharge space 13 between the front plate 1 and the back plate 7 to generate a plasma discharge, and the generated ultraviolet light excites the phosphor layer 12 to generate a plasma discharge. , And emits light corresponding to the color of the phosphor layer 12, and visible light 15 of each color of R, G, and B is generated through the surface glass plate 2. Specifically, the data electrode 8 and the scanning electrode 5a are separated by the partition wall 11. In addition, the discharge space 13 at the intersection with the sustain electrode 5b operates as the discharge cell 14, and a color image can be displayed.
[0006]
In the manufacturing process, defects on the surface of the front plate 1 before being bonded to the back plate 7 are inspected. This is because, if a projection defect having a height equal to or more than a predetermined height exists on the surface of the front plate 1, the rib 11 may be damaged when bonded to the back plate 7, or the bonding may not be performed normally, and the discharge cells 14 at that portion may be damaged. A serious defect of not turning on occurs.
[0007]
Therefore, it is very important to evaluate the absolute value of the height of the projection defect and determine whether the projection defect has a height equal to or higher than a predetermined height.
In the prior art, the surface of the surface plate 1 after the formation of the dielectric film 3 is irradiated with laser light, and the projection height is evaluated from the power level of the light reflected from the defective portion (Patent Document 1).
[0008]
[Patent Document 1]
JP-A-5-172547
[Problems to be solved by the invention]
However, according to the conventional inspection method using such a laser beam, it is impossible to distinguish a projection that becomes a defect and a foreign substance that is not a defect, and a foreign substance that can be removed by cleaning before forming the protective film 4 is also regarded as a defect. It will be detected.
[0010]
More specifically, when the projection height is to be evaluated from the power level of the reflected light / scattered light of the laser light applied to the surface of the surface plate 1, similar reflected light / Since the scattered light is generated, the protrusion and the foreign matter cannot be distinguished, and a foreign matter which does not become a defect is also detected.
[0011]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a defect inspection method capable of clearly discriminating between a projection serving as a defect and a foreign substance not serving as a defect when inspecting a projection defect of a target work using a laser beam.
[0012]
[Means for Solving the Problems]
The defect inspection method according to the present invention includes irradiating the surface of the inspection target work with laser light through an S-polarization filter, detecting reflected light from the inspection target work through an S-polarization filter, and detecting the level of the detected reflected light. According to the method, a protrusion defect whose surface protrudes and a foreign matter defect that changes the polarization state of the incident laser light adhering to the surface and are changed are determined, and only the protrusion defect is detected.
[0013]
According to this configuration, it is not necessary to detect a foreign matter defect that can be expected to be removed by a subsequent cleaning process as a defect of the inspection target work, and it is possible to detect only the protrusion defect.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the inspection method of the present invention will be described based on specific embodiments.
A defect inspection apparatus for realizing the defect inspection method of the present invention is configured as shown in FIG. Here, in the manufacturing process of the PDP, a defect inspection of the surface of the front plate 1 before bonding to the back plate 7 will be described as an example.
[0015]
A laser beam 19 is emitted from a laser oscillator 17 via an S-polarization filter 18 to the front plate 1 set on an XY stage 16 for driving and positioning the work to be inspected.
[0016]
The laser oscillator 17 is a laser scanning illumination device using a polygon scanner, AOD, EOD, and resonance, or a laser beam illumination.
Here, the laser light 19 having the S-polarization characteristic is irradiated by the S-polarization filter 18 onto the front plate 1 at an incident angle: α.
[0017]
The occasional irradiation position of the laser beam 19 on the front plate 1 which is the work to be inspected is determined by the XY stage 16, and the occasionally reflected light 21, 23 of the irradiation position is transmitted to the position detection sensor 22 and the light receiving element 26. Is detected.
[0018]
The position detection sensor 22 is a sensor used when determining whether the shape of the defect is a convex protrusion defect 20 or a concave defect.
The light receiving element 26 is a photomultiplier and a CCD line sensor, a CCD area sensor, a TDI camera, and a cooled CCD camera.
[0019]
The reflected light 23 from the projection defect 20 at the irradiation position is detected by the light receiving element 26 via the S-polarization filter 24 and the imaging lens 25 at the light receiving angle: θ. The S-polarization filter 24 cuts off scattered light of a non-defect foreign substance on the front plate 1 as a work to be inspected, and receives the reflected light of the protrusion defect 20 by the light receiving element 26.
[0020]
Further, a half mirror 27 is incorporated in the optical path of the parallel light portion of the imaging lens 25, and the optical path is reflected by the half mirror 27 and reflected light 28A passing through the half mirror 27 and traveling toward the light receiving element 26. And is split into reflected light 28B incident on the position detection sensor 29.
[0021]
A judging process for judging, according to the level of the detected reflected light, a projection defect in which the surface protrudes and a foreign substance defect attached to the surface and changing the polarization state of the incident laser light, and detecting only the projection defect. The image processing device 30 as a means measures the inclination angle of the projection defect 20 from the output of the position detection sensor 29, and determines the irregularity of the defect from the inclination angle and the output of the light receiving element 26.
[0022]
More specifically, as shown in FIG. 2A, when the S-polarized laser light 19 is applied to the projection defect 20, the reflected light becomes a laser reflected light 23 having the same S-polarized characteristic as the incident light. Passes through the S-polarization filter 24 and forms an image on the light receiving element 26 via the imaging lens 25 at the light receiving angle: θ.
[0023]
As shown in FIG. 2B, when the S-polarized laser light 19 is irradiated on the foreign matter defect 35 that can be removed by a subsequent cleaning process, the laser reflection having the same S-polarization characteristic as the incident light is performed. Not only the light 23 but also a laser reflected light 36 having a P polarization characteristic different from that of the incident light is generated. In the case of the foreign matter defect 35 attached to the surface and changing the polarization state of the incident laser light, the reflected light is the laser reflected light 23 having the S polarization characteristic and the laser reflected light having the P polarization characteristic. 36, the level of the laser reflected light 23 having the S polarization characteristic is smaller than that in the case of FIG. Further, since the laser reflected light 36 having the P polarization characteristic is attenuated by the S polarization filter 24, the level of the laser reflected light 23 recognized by the image processing device 30 via the light receiving element 26 is significantly reduced, and The device 30 is configured not to detect the foreign matter defect 35 as a defect from the level difference.
[0024]
When the light enters the position detection sensor 29 via the half mirror 27, the position information of the position detection sensor 29 and the laser reflection angle correspond one to one as shown in FIG. By linking the angle information, the laser reflection angle: β can be measured.
[0025]
As shown in FIG. 3, the detection area 31 of the projection defect 20 becomes a projection distance 32 having a distance S in the image processing device 30. Therefore, the projection height T of the projection defect 20 is expressed by the following equation by triangulation.
[0026]
T = Σti (i = 1,... N)
γi = (βi−αi) / 2
ti = sinγi · Y
Here, γi is the projection inclination angle, which is calculated from the occasional laser incident angle: αi and the laser reflection angle: βi. The protrusion height ti of the minute portion is calculated from the resolution in the scanning direction of the image processing: Y and the protrusion inclination angle: γi. The projection height: T is calculated by integrating the projection height: ti of the minute portion. Thereby, the defect height can be absolutely evaluated simultaneously with the defect detection.
[0027]
Next, a description will be given of how the image processing apparatus 30 determines the unevenness of a defect.
The output signal of the position detection sensor 22 is input to the image processing device 30 in addition to the output signal of the light receiving element 26 and the output signal of the position detection sensor 29. The irregularities of the defect are determined as follows from the order in which the outputs of the detection sensors 22 and 29 change.
[0028]
FIG. 4A shows a case where the defect is a convex defect protrusion 20. In this case, the output 34 of the position detection sensor 22 decreases after the output 33 of the position detection sensor 29 for measuring the protrusion inclination angle increases.
[0029]
On the other hand, FIG. 4B shows a case where the shape of the defect is depressed from the surface. In this case, after the output 34 of the position detection sensor 22 for unevenness determination decreases, the output 33 of the position detection sensor 29 for measuring the projection inclination angle increases.
[0030]
The image processing apparatus 30 is configured to determine the unevenness of the defect based on the difference between the timings of the outputs 33 and 34 shown in FIGS.
As described above, since the image processing apparatus 30 is configured to detect the protrusion defect 20 but not the foreign substance defect 35, it is possible to eliminate the conventional over-detection and improve the PDP productivity. Can contribute.
[0031]
In the above embodiment, the case of defect inspection of the front panel 1 of the PDP has been described as an example, but the same applies to the case of defect inspection in the manufacturing process of semiconductors, liquid crystal panels, hard disks, and the like.
[0032]
【The invention's effect】
As described above, according to the defect inspection method of the present invention, the surface of the work to be inspected is irradiated with laser light through the S-polarization filter, and the reflected light from the work to be inspected is detected through the S-polarization filter. According to the level of the reflected light, it is possible to determine only the protrusion defect by discriminating the protrusion defect from which the surface protrudes and the foreign matter defect which is attached to the surface and changes the polarization state of the incident laser light. In addition, it is possible to sort out foreign matter which is not expected to be a product defect and to detect only a defective projection defect.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an inspection apparatus that realizes a defect inspection method of the present invention. FIG. 2 is an explanatory diagram of a principle of discriminating protrusions and foreign matter. FIG. 3 is an explanatory diagram of a principle of measuring defect height. FIG. FIG. 5 is an enlarged cutaway view and a cross-sectional view showing the structure of a PDP.
1 Front panel (work to be inspected)
16 XY stage 17 Laser oscillator 18 S-polarization filter 20 Projection defect 22 Position detection sensor 24 S-polarization filter 25 Imaging lens 26 Light receiving element 27 Half mirror 30 Image processing device (determination processing means)

Claims (2)

検査対象ワークの表面にS偏光フィルタを介してレーザー光を照射し、
前記検査対象ワークからの反射光をS偏光フィルタを介して検出し、
検出した反射光のレベルに応じて、前記表面が突出した突起欠陥と前記表面に付着していて入射したレーザー光の偏光状態を変更する異物欠陥とを判別して、突起欠陥だけを検出する
欠陥検査方法。
Irradiate the surface of the work to be inspected with laser light via the S-polarization filter,
The reflected light from the inspection target work is detected through an S-polarization filter,
A defect for detecting only a protrusion defect by discriminating a protrusion defect from which the surface protrudes and a foreign matter defect that changes the polarization state of incident laser light that adheres to the surface in accordance with the level of the detected reflected light. Inspection methods.
S偏光フィルタを介して検査対象ワークの表面にレーザー光を照射するレーザー発振器と、
検査対象ワークからの反射光をS偏光フィルタを介して検出し、検出した反射光のレベルに応じて、前記表面が突出した突起欠陥と前記表面に付着していて入射したレーザー光の偏光状態を変更する異物欠陥とを判別して、突起欠陥だけを検出する判定処理手段と
を有する欠陥検査装置。
A laser oscillator that irradiates the surface of the work to be inspected with laser light via an S-polarized filter;
The reflected light from the work to be inspected is detected through the S-polarization filter, and according to the level of the detected reflected light, the polarization state of the laser light incident on the surface and the projection defect protruding from the surface and adhering to the surface. A defect inspection apparatus comprising: a determination processing unit that determines a foreign matter defect to be changed and detects only a protrusion defect.
JP2002346596A 2002-11-29 2002-11-29 Defect inspection method and apparatus thereof Pending JP2004177356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002346596A JP2004177356A (en) 2002-11-29 2002-11-29 Defect inspection method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002346596A JP2004177356A (en) 2002-11-29 2002-11-29 Defect inspection method and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2004177356A true JP2004177356A (en) 2004-06-24

Family

ID=32707421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002346596A Pending JP2004177356A (en) 2002-11-29 2002-11-29 Defect inspection method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2004177356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954904A (en) * 2016-07-20 2016-09-21 京东方科技集团股份有限公司 Repair method and device for display module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954904A (en) * 2016-07-20 2016-09-21 京东方科技集团股份有限公司 Repair method and device for display module
CN105954904B (en) * 2016-07-20 2019-03-15 京东方科技集团股份有限公司 The method for maintaining and device of display module

Similar Documents

Publication Publication Date Title
JP2671241B2 (en) Glass plate foreign matter detection device
KR101177299B1 (en) Detection apparatus for particle on the glass
WO2006088041A1 (en) Light-transmitting object examining method
JP3673657B2 (en) Plasma display phosphor inspection apparatus and inspection method
JP5596925B2 (en) Foreign object inspection apparatus and inspection method
JP2004170495A (en) Method and device for inspecting substrate for display
JP2004037400A (en) Optical measurement method and apparatus for the same
JP4807154B2 (en) Defect detection method
JP2013140061A (en) Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method
JP2009145141A (en) Defect inspection device and defect inspection program
JP4626764B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JP2004177356A (en) Defect inspection method and apparatus thereof
JP2006226804A (en) Inspection method of flat display panel
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JPH11223608A (en) Film inspecting method, and film inspecting device using the same
JP2006292668A (en) Surface inspection device and surface inspection method
JP2850031B2 (en) Inspection method and inspection device for pattern members
JPH05273137A (en) Surface flaw inspecting device
JP2010175655A (en) Method for manufacturing glass substrate for mask blank, method for manufacturing mask blank, and method for manufacturing photomask for exposure
JPH1038753A (en) Method for inspecting transparent film
JPH04282441A (en) Method and apparatus for inspecting transparent conductive film
JP4984381B2 (en) Inspection method for substrates for plasma display panels
KR102284293B1 (en) Apparatus and Method for inspecting defect of object including opacity area
JP2005156416A (en) Method and apparatus for inspecting glass substrate
TW201128182A (en) Foreign object inspection device and method