JP2004176749A - Sliding bearing for earthquake resistance - Google Patents

Sliding bearing for earthquake resistance Download PDF

Info

Publication number
JP2004176749A
JP2004176749A JP2002340938A JP2002340938A JP2004176749A JP 2004176749 A JP2004176749 A JP 2004176749A JP 2002340938 A JP2002340938 A JP 2002340938A JP 2002340938 A JP2002340938 A JP 2002340938A JP 2004176749 A JP2004176749 A JP 2004176749A
Authority
JP
Japan
Prior art keywords
sliding
heat
sliding bearing
ptfe
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340938A
Other languages
Japanese (ja)
Other versions
JP4243475B2 (en
Inventor
Shoichi Ogawa
庄一 小川
Hironori Hatatsu
浩則 畑津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Original Assignee
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd filed Critical Chukoh Chemical Industries Ltd
Priority to JP2002340938A priority Critical patent/JP4243475B2/en
Publication of JP2004176749A publication Critical patent/JP2004176749A/en
Application granted granted Critical
Publication of JP4243475B2 publication Critical patent/JP4243475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sliding bearing for earthquake resistance which is excellent in load resistance, wear resistance and thickness moldability, and high in interfacial strength with an adhering layer on an pedestal side, facilitates enlargement of a thick plate molding, and prevents thermal distortion. <P>SOLUTION: The sliding bearing for earthquake resistance mounted between a construction side and a ground side to be used, is provided with a sliding material body 11 made up of heat-resisting fiber woven fabrics and fluorine resin, an adhering layer 16 provided on the construction side of the sliding material body 11 and a wear resistance layer 15 provided on the ground side of the sliding material body 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビル、橋梁等の建造物の下面側に取り付けられて使用される耐震用滑り支承に関する。
【0002】
【従来の技術】
周知の如く、ビル、橋梁等の建造物においては、耐震性を考慮して建造物を支持する金属製の台座の裏面(地盤側)に接着剤を介してふっ素樹脂系摺動材が固定することが行われている。これは、地震等のときに摺動材(耐震用滑り支承)の存在により建造物を摺動させることにより、揺れの影響を直接建造物に伝わらないようにするためである。
【0003】
図6は、上記耐震用滑り支承の使用状態を示す。図中の符番1は、地盤2側に配置されたコンクリート等の基礎を示す。この基礎1の一部上には、ステンレス板(滑り板)3が配置されている。一方、符番4は、図示しない建造物の柱5にボルト6を介して固定されたフランジを示す。前記フランジ4とステンレス板3間には、内部に複数の鋼板7を埋め込んだゴム弾性体8、滑り支承9が両者間に接着剤10を介して配置されている。
【0004】
従来、上記滑り支承としては、例えば下記1)〜4)のものが知られている。
(1)PTFE単体からなる摺動材:パウダー状のPTFEを固めた摺動材。
(2)PTFE/充填材(5〜25wt%):PTFEに充填材を混入させた摺動材。但し、充填材としては、ガラス繊維、グラファイト、カーボン、炭素繊維、MoS、ブロンズ、耐熱性樹脂(PI、液晶ポリマー)が挙げられる。
【0005】
(3)PTFE/耐熱性クロス(5〜50wt%):耐熱性クロスにPTFEを塗布,含浸した後焼成した摺動材。但し、耐熱性クロスとしては、ガラス繊維、炭素繊維、アラミド繊維が挙げられる。
(4)PTFE/アラミドパルプ(10〜90wt%):アラミドパイプにPTFEを塗布,含浸した後、焼成した摺動材。
【0006】
また、従来、免震滑り支承としては、上部構造体と下部構造体との間の一対のスライドベアリングの少なくとも一方が、四フッ化エチレン樹脂を主成分とする芳香族ポリエステルを含有する組成物により形成された複数のボイドを有する多孔質構造の成形体でなるスライドベアリングであって、前記組成物中に芳香族ポリエステルが14〜35重量%の割合で含有され、かつ前記成形体の表面部分に流動可能な順滑剤が保持された潤滑剤保持層が形成されたものが知られている(特開2001−82543号公報)。
【0007】
【特許文献1】
特開2001−82543号公報(段落[0010]等)
【0008】
【発明が解決しようとする課題】
ところで、従来の摺動材においては、以下のような課題があった。
・上記(1),(2)の摺動材の場合、耐荷重性が低いという課題があった。
・上記(1),(3)の摺動材の場合、耐摩耗性が低いという課題があった。
・上記(4)の摺動材の場合、厚板成形が困難であるという課題があった。
・上述したいずれの摺動材の場合、Naエッチングでの表面処理面を介した接着剤による接着では界面強度が低い。
【0009】
・上記(3),(4)の摺動材の場合、熱融着工程において高加圧が必要なので摺動材の大型化が難しいと共に、熱歪みが発生する。
【0010】
本発明はこうした事情を考慮してなされたので、耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備した構成とすることにより、耐荷重性、耐摩耗性、厚板成形性に優れるとともに、台座側の接着層との界面強度が高く、かつ厚板成形の大型化が容易で、熱歪みのない耐震用滑り支承を提供することを目的とする。
【0011】
【課題を解決するための手段】
従来の摺動材に対して、耐荷重性の増大、大地震時の信頼性向上が要求されている。
1)耐荷重性の増大
つまり、建造物、免振装置の設計自由度の増大に伴って、荷重が3〜15MPaから30〜50MPaに増大している。
【0012】
2)大地震時の信頼性向上
この要因としては、耐荷重性の増大、接着信頼性の向上、耐摩耗性の向上、摩擦係数の低下が挙げられる。耐荷重性を増大するには、三次元振動への対応、偏荷重の耐性、熱間時(地震に起因する摩擦による発熱)の圧縮強度の向上、耐変形性の増大が挙げられ、これにより変形による剥離を防止できる。接着信頼性を向上するには、せん断強度を増大して剥離を防止することが挙げられる。耐摩耗性を向上するには、摩耗量を低下することが挙げられる。摩擦係数を低下するには自由設計の増大、発熱防止が挙げられる。
【0013】
本発明は、建造物と地盤側間に取り付けられて使用される耐震用滑り支承において、耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備することを特徴とする耐震用滑り支承である。
【0014】
【発明の実施の形態】
以下、本発明の耐震用滑り支承について詳しく説明する。
【0015】
本発明において、前記摺動材本体としては、耐熱性繊維織布にPTFE樹脂を塗布、含浸した後、焼成したもの、あるいは耐熱性繊維織布とこの耐熱性繊維織布の両面に設けられたふっ素樹脂フィルムとから構成されたものが挙げられる。ここで、耐熱性繊維織布としては、例えばガラス繊維織布,カーボン繊維織布,アラミド繊維織布等が挙げられる。
【0016】
本発明において、前記耐摩耗層としては、PTFE樹脂にアラミド繊維(アラミドパルプ)を混合したものが好ましい。アラミドパルプを高充填することによって、耐摩耗層の耐摩耗性が改善される。
【0017】
本発明において、前記接着層としては、例えばガラスクロスにエポキシ樹脂を塗布、含浸したものが挙げられる。これにより、熱間、耐変形時の強度に優れる。
【0018】
本発明において、前記摺動材本体と耐摩耗層、接着層間に熱溶融性ふっ素樹脂フィルムを介装することが好ましい。ここで、熱溶融性ふっ素樹脂としては、PFAフィルムが挙げられる。前記摺動材本体としてPTFEを用いた場合、PTFE製摺動材本体とPFAフィルムは、融点が近く互い融解することによって接着される。
【0019】
本発明によれば、摺動材本体の地盤側に耐摩耗層を配置することにより、高加速度の摺動による発熱でも異常摩耗が進行することを回避できる。また、建造物側の台座との接着面に接着層を配置することにより、接着信頼性を向上できる。これにより、高荷重の免震用途において、摩耗、変形、剥離等の不具合を回避できる。
【0020】
【実施例】
(実施例1)
以下、本発明の実施例1に係る耐震用滑り支承について図1を参照して説明する。
図中の符番11は、厚み800μmの摺動材本体を示す。この摺動材本体11は、耐熱クロス(耐熱性繊維)織布12にPTFE13を塗布、含浸した後、焼成することにより得られる。前記衝動材本体11の地盤側には、PFAフィルム14を介して厚み300μmの耐摩耗層15が設けられている。ここで、耐摩耗層15は、アラミドパルプにPTFE樹脂を塗布、含浸した後、焼成することにより得られる(アラミドパルプはPTFEに対して40〜95wt%含有している)。台座側に位置する前記PFAフィルム13上には、厚み800μmの耐熱クロスの接着層16が形成されている。
【0021】
上記実施例1によれば、以下に述べる効果を有する。
1)前記摺動材本体11は、耐熱クロス織布12にPTFE13を塗布、含浸した後、焼成した構成であるので、圧縮強度が高く、耐変形性に優れる。また、厚板の成形性が良い。
【0022】
2)前記耐摩耗層15にはアラミドパルプが高充填されているので、耐震用滑り支承の耐摩耗性を従来と比べて向上することができる。
3)耐熱クロスの接着層16を使用するので、熱間、耐変形時の強度に優れている。
【0023】
また、上記実施例1に係る摺動材本体、耐摩耗層、及び比較例としてのPTFE単体、PTFE/充填材(PTFEに充填材を混入させたもの)における引張強さ、伸び、硬さ、摩擦量について夫々試験したところ、下記表1、表2、表3、表4に示す結果が得られた。
【0024】
【表1】

Figure 2004176749
【0025】
【表2】
Figure 2004176749
【0026】
【表3】
Figure 2004176749
【0027】
【表4】
Figure 2004176749
【0028】
図3は、本発明及び比較例に係る滑り支承の動摩擦係数の面圧依存性との関係を示す特性図である。但し、本発明の場合の耐摩耗層の組成はPTFE/アラミドパルプ=55wt%/45wt%、試験片の寸法は60mmφ×1.5mmtである。一方、比較例の場合の耐摩耗層の組成はPTFE/ガラスファイバー/二硫化モリブデン=80wt%/15wt%/5wt%、試験片の寸法は60mmφ×2mmtである。速度は20cm/sec、すべり板はSUS304(表面処理#400サンドペーパー)を用いた。
【0029】
図4は、図3に示した滑り支承の動摩擦の評価を行うための測定装置の略図を示す。図4中の符番31は試験片(滑り支承)、符番32はゴム、符番33はすべり板、符番34は台座を示す。図4では、すべり板33を矢印Xのように摺動させることにより滑り支承の評価を行う。
【0030】
上記表1〜表5及び図3により下記の点が言える。
1)表1より、PTFE/充填材とPTFE含浸ガラスクロス積層シートで比較を行った結果、PTFE含浸ガラスクロス積層シートの方が約10倍程度強度が強いことが判明した。また、伸びについても上記の素材同士を比較した場合、表2より、PTFE/充填材の250%の伸び率に対して、PTFE含浸ガラスクロス積層シートの伸び率は0.05%と極めて小さい値となることが判明した。
【0031】
これらのことより、滑り支承に使用する場合、変形及び耐クリープ等に優れていることがわかる。また、これは硬さについても、表3より本発明のPTFE含浸ガラスクロス積層シートは約3%程度、比較例(PTFE/充填材)より硬い結果が得られていることからも言える。
【0032】
2)摺動部の摩擦量について、表4よりPTFE/充填材とPTFE/アラミドパルプとを比較した場合、PTFE/充填材の3.7g/hに対してPTFE/アラミドパルプは0.01g/hと極めて少なく、PTFE/充填材の約1/370の摩耗量であることから、耐摩耗に極めて優れ、耐震用滑り支承に適していることがわかる。
【0033】
3)動摩擦係数については、本発明(PTFE/アラミドパルプ)は面圧50MPa下で0.06と極めて低いこと分かる。また、比較例(PTFE/充填材)では、面圧が20MPa下では0.085であり、本発明(PTFE/アラミドパルプ)の面圧20MPa下での0.1より低い値であるが、変形破壊等の問題より、一般的には使用できないのが現状である。
【0034】
更に、上記実施例1に係る滑り支承の摺動材本体、及びふっ素樹脂充填材入りPTFE圧縮シートについて、図5(A),(B)に示す方法で膨らみ量及び圧縮量について調べたところ、下記表5に示す結果が得られた。但し、図5(A)は圧縮試験の平面図、図5(B)は正面図を示す。なお、図5(A)において、1ch,2ch,3cn,4chは膨らみ量計測センサーを示し、5ch,5chは圧縮量計測センサーを示す。また、図5(B)において、サンプル21は下圧盤22と上圧盤23間に配置され、膨らみ量計測センサー24はサンプル21の周方向に4箇所配置される。一方圧縮量計測センサ25は、サンプル21の対向する位置に配置される。
【0035】
【表5】
Figure 2004176749
【0036】
なお、表5において、膨らみ量は1ch+3ch、2ch+4chの変位量であり、圧縮量は5ch及び6chの変位量の平均値である。表5より、本発明(PTFE含浸ガラスクロス積層シート)の膨らみ量(平均)は0.04mmであり、圧縮量(平均)も0.07mmと極めて小さいことが分かる。本発明の膨らみ量を比較例(PTFE/充填材)と比較した場合は1/14と小さく、圧縮量も7/120と変形が小さいことが分かる。従って、圧縮変形の結果より高荷重に適していることがわかる。
【0037】
(実施例2)
本実施例2は、実施例1における摺動材本体と異なる摺動材本体を有することを特徴とし、他の構成部材は実施例1と同様である。図2に示すように、摺動材本体11’は、耐熱性(耐熱性繊維)織布17の両主面にPTFEシート18を圧着により設けた構成となっている。
実施例2によれば、実施例1と同様な効果を有する。
【0038】
【発明の効果】
以上詳述したように本発明によれば、耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備した構成とすることにより、耐荷重性、耐摩耗性、厚板成形性に優れるとともに、台座側の接着層との界面強度が高く、かつ厚板成形の大型化が容易で、熱歪みのない耐震用滑り支承を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る耐震用滑り支承の説明図。
【図2】図1の耐震用滑り支承の一構成である摺動材本体とは異なる摺動材本体の説明図。
【図3】本発明及び比較例に係る滑り支承の動摩擦係数の面圧依存性との関係を示す特性図。
【図4】滑り支承の評価をするための試験方法の説明図。
【図5】耐震用滑り支承の試験方法の説明図。
【図6】耐震用滑り支承の使用形態の説明図。
【符号の説明】
11,11’…摺動材本体、
12,17…耐熱性(耐熱性繊維)織布、
13…PTFE、
14…PFAフィルム、
15…耐摩耗層、
16…接着層、
18…PTFEシート、
21…下圧盤、
22…上圧盤、
23…サンプル、
24…膨らみ量計測センサー、
25…圧縮量計測センサー。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seismic sliding bearing used by being attached to the lower surface side of a building such as a building or a bridge.
[0002]
[Prior art]
As is well known, in buildings such as buildings and bridges, a fluororesin-based sliding material is fixed via an adhesive to the back surface (ground side) of a metal pedestal supporting the building in consideration of earthquake resistance. That is being done. This is to prevent the influence of the shaking from being directly transmitted to the building by sliding the building due to the presence of the sliding material (earthquake-resistant sliding bearing) at the time of an earthquake or the like.
[0003]
FIG. 6 shows the use state of the above-mentioned earthquake-resistant sliding bearing. Reference numeral 1 in the figure indicates a foundation such as concrete arranged on the ground 2 side. On a part of the foundation 1, a stainless steel plate (sliding plate) 3 is arranged. Reference numeral 4 denotes a flange fixed to a pillar 5 of a building (not shown) via a bolt 6. Between the flange 4 and the stainless steel plate 3, a rubber elastic body 8 in which a plurality of steel plates 7 are embedded and a sliding bearing 9 are disposed with an adhesive 10 therebetween.
[0004]
Conventionally, as the above-mentioned sliding bearing, for example, the following 1) to 4) are known.
(1) Sliding material made of PTFE alone: A sliding material obtained by solidifying powdered PTFE.
(2) PTFE / filler (5 to 25 wt%): a sliding material in which a filler is mixed into PTFE. However, examples of the filler include glass fiber, graphite, carbon, carbon fiber, MoS 2 , bronze, and heat resistant resin (PI, liquid crystal polymer).
[0005]
(3) PTFE / heat-resistant cloth (5 to 50 wt%): A sliding material obtained by applying PTFE to a heat-resistant cloth, impregnating the cloth, and then firing. However, examples of the heat-resistant cloth include glass fiber, carbon fiber, and aramid fiber.
(4) PTFE / aramid pulp (10 to 90 wt%): A sliding material obtained by applying and impregnating PTFE to an aramid pipe and then firing.
[0006]
Conventionally, as a seismic isolation sliding bearing, at least one of a pair of slide bearings between an upper structure and a lower structure is made of a composition containing an aromatic polyester mainly composed of ethylene tetrafluoride resin. What is claimed is: 1. A slide bearing comprising a formed body having a plurality of voids and having a porous structure, wherein the composition contains an aromatic polyester in a ratio of 14 to 35% by weight, and a surface portion of the formed body includes One in which a lubricant holding layer in which a flowable lubricating agent is held is known (JP-A-2001-82543).
[0007]
[Patent Document 1]
JP 2001-82543 A (paragraph [0010] etc.)
[0008]
[Problems to be solved by the invention]
By the way, the conventional sliding material has the following problems.
-In the case of the sliding materials (1) and (2), there is a problem that the load resistance is low.
-In the case of the sliding materials (1) and (3), there is a problem that the wear resistance is low.
-In the case of the sliding material of the above (4), there was a problem that it was difficult to form a thick plate.
-In the case of any of the above-mentioned sliding materials, the interface strength is low by bonding with an adhesive through a surface-treated surface by Na etching.
[0009]
In the case of the sliding materials (3) and (4), high pressure is required in the heat-sealing step, so that it is difficult to increase the size of the sliding material, and thermal distortion occurs.
[0010]
Since the present invention has been made in view of such circumstances, a sliding member body made of a heat-resistant fiber woven fabric and fluororesin, an adhesive layer provided on a building side of the sliding member body, By having a structure with a wear-resistant layer provided on the ground side of the main body, it is excellent in load resistance, wear resistance, thick plate formability, and has high interface strength with the adhesive layer on the pedestal side, and It is an object of the present invention to provide an earthquake-resistant sliding bearing that is easy to enlarge a thick plate and has no thermal distortion.
[0011]
[Means for Solving the Problems]
Conventional sliding members are required to have increased load resistance and improved reliability during large earthquakes.
1) Load resistance is increasing, that is, the load is increasing from 3 to 15 MPa to 30 to 50 MPa with an increase in the degree of freedom in designing a building and a vibration isolator.
[0012]
2) Improvement of reliability during a large earthquake The factors include an increase in load resistance, an improvement in adhesion reliability, an improvement in wear resistance, and a decrease in friction coefficient. In order to increase load resistance, it is necessary to respond to three-dimensional vibration, to resist uneven loads, to improve the compressive strength when hot (heat generated by friction caused by an earthquake), and to increase deformation resistance. Peeling due to deformation can be prevented. In order to improve the bonding reliability, it is necessary to increase the shear strength to prevent peeling. In order to improve the abrasion resistance, the amount of abrasion may be reduced. In order to reduce the friction coefficient, it is necessary to increase the free design and prevent heat generation.
[0013]
The present invention relates to an anti-seismic sliding bearing used between a building and a ground side, wherein a sliding material body made of a heat-resistant fiber woven fabric and a fluororesin is provided on the building side of the sliding material body. An anti-seismic sliding bearing comprising an adhesive layer provided and a wear-resistant layer provided on the ground side of the sliding member main body.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the sliding bearing for earthquake resistance of the present invention will be described in detail.
[0015]
In the present invention, as the sliding material main body, a PTFE resin is applied to a heat-resistant fiber woven fabric, impregnated and then fired, or provided on both sides of the heat-resistant fiber woven fabric and the heat-resistant fiber woven fabric. And a fluororesin film. Here, examples of the heat-resistant fiber woven fabric include glass fiber woven fabric, carbon fiber woven fabric, and aramid fiber woven fabric.
[0016]
In the present invention, the wear-resistant layer is preferably a mixture of PTFE resin and aramid fiber (aramid pulp). High loading of aramid pulp improves the wear resistance of the wear-resistant layer.
[0017]
In the present invention, the adhesive layer includes, for example, a glass cloth coated with an epoxy resin and impregnated. Thereby, the strength at the time of hot and deformation resistance is excellent.
[0018]
In the present invention, it is preferable that a heat-fusible fluororesin film is interposed between the sliding material main body, the wear-resistant layer, and the adhesive layer. Here, as the hot-melt fluororesin, a PFA film is exemplified. When PTFE is used as the sliding material main body, the PTFE sliding material main body and the PFA film have close melting points and are bonded to each other by melting.
[0019]
According to the present invention, by arranging the wear-resistant layer on the ground side of the sliding member main body, it is possible to prevent abnormal wear from progressing even with heat generated by high-acceleration sliding. In addition, by arranging the adhesive layer on the surface of the building to be bonded to the pedestal, the bonding reliability can be improved. This can avoid problems such as wear, deformation, and peeling in seismic isolation applications with high loads.
[0020]
【Example】
(Example 1)
Hereinafter, a sliding bearing for earthquake resistance according to a first embodiment of the present invention will be described with reference to FIG.
Reference numeral 11 in the drawing denotes a sliding material main body having a thickness of 800 μm. The sliding material main body 11 is obtained by applying and impregnating a PTFE 13 to a heat-resistant cloth (heat-resistant fiber) woven fabric 12 and then baking it. On the ground side of the impulse material main body 11, a wear-resistant layer 15 having a thickness of 300 μm is provided via a PFA film. Here, the abrasion-resistant layer 15 is obtained by applying and impregnating the PTFE resin to the aramid pulp and then firing (the aramid pulp contains 40 to 95% by weight of the PTFE). An 800 μm thick heat-resistant cloth adhesive layer 16 is formed on the PFA film 13 located on the pedestal side.
[0021]
According to the first embodiment, the following effects are obtained.
1) Since the sliding material main body 11 has a configuration in which the PTFE 13 is applied to the heat-resistant cloth woven fabric 12, impregnated, and then baked, the compressive strength is high and the deformation resistance is excellent. Also, the formability of a thick plate is good.
[0022]
2) Since the abrasion resistant layer 15 is highly filled with aramid pulp, the abrasion resistance of the anti-seismic sliding bearing can be improved as compared with the conventional case.
3) Since the adhesive layer 16 of the heat-resistant cloth is used, the strength at the time of hot and deformation resistance is excellent.
[0023]
In addition, the tensile strength, elongation, and hardness of the sliding material main body, the wear-resistant layer, and the PTFE simple substance and the PTFE / filling material (a mixture of PTFE and the filling material) according to the first embodiment, When the respective frictional amounts were tested, the results shown in the following Tables 1, 2, 3, and 4 were obtained.
[0024]
[Table 1]
Figure 2004176749
[0025]
[Table 2]
Figure 2004176749
[0026]
[Table 3]
Figure 2004176749
[0027]
[Table 4]
Figure 2004176749
[0028]
FIG. 3 is a characteristic diagram showing the relationship between the dynamic friction coefficient of the sliding bearing according to the present invention and the comparative example and the surface pressure dependency. However, in the case of the present invention, the composition of the wear-resistant layer is PTFE / aramid pulp = 55 wt% / 45 wt%, and the size of the test piece is 60 mmφ × 1.5 mmt. On the other hand, in the case of the comparative example, the composition of the wear-resistant layer is PTFE / glass fiber / molybdenum disulfide = 80 wt% / 15 wt% / 5 wt%, and the dimensions of the test piece are 60 mmφ × 2 mmt. The speed was 20 cm / sec, and SUS304 (Surface treatment # 400 sandpaper) was used as the sliding plate.
[0029]
FIG. 4 shows a schematic diagram of a measuring device for evaluating the dynamic friction of the sliding bearing shown in FIG. Reference numeral 31 in FIG. 4 indicates a test piece (sliding bearing), reference numeral 32 indicates rubber, reference numeral 33 indicates a slide plate, and reference numeral 34 indicates a pedestal. In FIG. 4, the sliding bearing is evaluated by sliding the sliding plate 33 as shown by the arrow X.
[0030]
The following points can be said from Tables 1 to 5 and FIG.
1) From Table 1, as a result of comparison between the PTFE / filler and the PTFE-impregnated glass cloth laminated sheet, it was found that the strength of the PTFE-impregnated glass cloth laminated sheet was about 10 times higher. When the above materials are compared with each other, the elongation percentage of the PTFE-impregnated glass cloth laminated sheet is extremely small at 0.05% with respect to the elongation percentage of PTFE / filler of 250%. It turned out to be.
[0031]
From these facts, it can be seen that when used for a sliding bearing, it is excellent in deformation and creep resistance. Further, it can be said from Table 3 that the PTFE-impregnated glass cloth laminated sheet of the present invention has a hardness of about 3%, which is higher than that of the comparative example (PTFE / filler).
[0032]
2) Regarding the frictional amount of the sliding portion, when PTFE / filler and PTFE / aramid pulp are compared from Table 4, 3.7 g / h of PTFE / filler and 0.01 g / PTFE of PTFE / aramid pulp are used. h, which is extremely small, and is about 1/370 of the amount of PTFE / filler, indicating that it is extremely excellent in abrasion resistance and suitable for a seismic sliding bearing.
[0033]
3) Regarding the coefficient of kinetic friction, it is understood that the present invention (PTFE / aramid pulp) is as extremely low as 0.06 at a surface pressure of 50 MPa. In the comparative example (PTFE / filler), the surface pressure was 0.085 under 20 MPa, which is lower than 0.1 under the surface pressure of 20 MPa of the present invention (PTFE / aramid pulp). Currently, it cannot be used due to problems such as destruction.
[0034]
Further, the swelling amount and the compression amount of the sliding material body of the sliding bearing according to the first embodiment and the PTFE compressed sheet containing the fluororesin filler were examined by the methods shown in FIGS. 5A and 5B. The results shown in Table 5 below were obtained. 5A shows a plan view of the compression test, and FIG. 5B shows a front view. In FIG. 5A, 1ch, 2ch, 3cn, and 4ch denote bulging amount measuring sensors, and 5ch and 5ch denote compression amount measuring sensors. In FIG. 5B, the sample 21 is arranged between the lower platen 22 and the upper platen 23, and the swelling amount measuring sensors 24 are arranged at four places in the circumferential direction of the sample 21. On the other hand, the compression amount measurement sensor 25 is arranged at a position facing the sample 21.
[0035]
[Table 5]
Figure 2004176749
[0036]
In Table 5, the swelling amount is the displacement amount of 1ch + 3ch, 2ch + 4ch, and the compression amount is the average value of the displacement amounts of 5ch and 6ch. Table 5 shows that the swelling amount (average) of the present invention (PTFE-impregnated glass cloth laminated sheet) is 0.04 mm, and the compression amount (average) is extremely small at 0.07 mm. When the swelling amount of the present invention is compared with that of the comparative example (PTFE / filler), it can be seen that the deformation amount is as small as 1/14 and the compression amount is as small as 7/120. Accordingly, it can be seen that the result of the compression deformation is suitable for a high load.
[0037]
(Example 2)
The second embodiment is characterized by having a sliding member main body different from the sliding member main body in the first embodiment, and other components are the same as those in the first embodiment. As shown in FIG. 2, the sliding member main body 11 ′ has a configuration in which a PTFE sheet 18 is provided on both main surfaces of a heat-resistant (heat-resistant fiber) woven fabric 17 by pressure bonding.
According to the second embodiment, the same effects as in the first embodiment are obtained.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a sliding member body made of a heat-resistant fiber woven fabric and a fluororesin, an adhesive layer provided on a building side of the sliding member body, and the sliding member body With a structure that has a wear-resistant layer provided on the ground side, it has excellent load resistance, wear resistance, and thick plate formability, and has a high interface strength with the adhesive layer on the pedestal side, and A large-sized plate can be easily formed, and a sliding bearing for earthquake resistance free from thermal distortion can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a sliding bearing for earthquake resistance according to a first embodiment of the present invention.
FIG. 2 is an explanatory view of a sliding material main body that is different from the sliding material main body, which is one configuration of the anti-seismic sliding bearing of FIG. 1;
FIG. 3 is a characteristic diagram showing a relationship between a dynamic friction coefficient of a sliding bearing according to the present invention and a comparative example and a surface pressure dependency.
FIG. 4 is an explanatory diagram of a test method for evaluating a sliding bearing.
FIG. 5 is an explanatory diagram of a test method of a sliding bearing for earthquake resistance.
FIG. 6 is an explanatory view of a usage form of a sliding bearing for earthquake resistance.
[Explanation of symbols]
11, 11 ': sliding material body,
12, 17: heat-resistant (heat-resistant fiber) woven fabric,
13 ... PTFE,
14 ... PFA film,
15: wear-resistant layer,
16 ... adhesive layer,
18 ... PTFE sheet,
21 ... lower platen,
22 ... Upper platen,
23 ... sample,
24 ... bulge amount measurement sensor,
25 ... Compression amount measurement sensor.

Claims (6)

建造物と地盤側間に取り付けられて使用される耐震用滑り支承において、
耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備することを特徴とする耐震用滑り支承。
In seismic sliding bearings that are used between buildings and the ground side,
A sliding member body made of a heat-resistant fiber woven fabric and a fluororesin, an adhesive layer provided on a building side of the sliding member body, and a wear-resistant layer provided on a ground side of the sliding member body. An anti-seismic sliding bearing, comprising:
前記摺動材本体は、耐熱性繊維織布にPTFE樹脂を塗布、含浸した後、焼成されたものであることを特徴とする請求項1記載の耐震用滑り支承。2. The sliding bearing for earthquake resistance according to claim 1, wherein the sliding material body is formed by applying a PTFE resin to a heat-resistant fiber woven fabric, impregnating the PTFE resin, and then firing the PTFE resin. 前記摺動材本体は、耐熱性繊維織布とこの耐熱性繊維織布の両面に設けられたふっ素樹脂フィルムとから構成されたものであることを特徴とする請求項1記載の耐震用滑り支承。2. The sliding bearing for earthquake resistance according to claim 1, wherein said sliding material main body is composed of a heat-resistant fiber woven fabric and a fluororesin film provided on both sides of said heat-resistant fiber woven fabric. . 前記耐摩耗層は、PTFE樹脂にアラミド繊維が混合されたものであることを特徴とする請求項1記載の耐震用滑り支承。2. The sliding bearing according to claim 1, wherein the wear-resistant layer is made of a mixture of PTFE resin and aramid fiber. 前記摺動材本体と耐摩耗層、接着層間に夫々熱溶融性ふっ素樹脂フィルムが介装されていることを特徴とする請求項1乃至請求項4いずれか1項記載の耐震用滑り支承。The anti-seismic sliding bearing according to any one of claims 1 to 4, wherein a heat-fusible fluororesin film is interposed between the sliding material main body, the wear-resistant layer, and the adhesive layer. 前記熱溶性ふっ素樹脂フィルムはPFAフィルムであることを特徴とする請求項5記載の耐震用滑り支承。6. The sliding bearing according to claim 5, wherein the heat-soluble fluororesin film is a PFA film.
JP2002340938A 2002-11-25 2002-11-25 Seismic sliding bearing Expired - Lifetime JP4243475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340938A JP4243475B2 (en) 2002-11-25 2002-11-25 Seismic sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340938A JP4243475B2 (en) 2002-11-25 2002-11-25 Seismic sliding bearing

Publications (2)

Publication Number Publication Date
JP2004176749A true JP2004176749A (en) 2004-06-24
JP4243475B2 JP4243475B2 (en) 2009-03-25

Family

ID=32703439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340938A Expired - Lifetime JP4243475B2 (en) 2002-11-25 2002-11-25 Seismic sliding bearing

Country Status (1)

Country Link
JP (1) JP4243475B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215042A (en) * 2007-03-07 2008-09-18 Mitsui Eng & Shipbuild Co Ltd Method for composing rc floor slab and two main girder bridge
JP2013217427A (en) * 2012-04-06 2013-10-24 Tokkyokiki Corp Base isolation device
JP2017008616A (en) * 2015-06-23 2017-01-12 西日本高速道路株式会社 Monitoring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155651A (en) * 1992-11-24 1994-06-03 Sumitomo Metal Ind Ltd Fiber reinforced thermosetting resin composite laminated sheet
WO2000010805A1 (en) * 1998-08-18 2000-03-02 Daikin Industries, Ltd. Polytetrafluoroethylene laminate
JP2000170829A (en) * 1998-12-02 2000-06-23 Takenaka Komuten Co Ltd Sliding base isolation device and base isolation structure
JP2000230185A (en) * 1999-02-12 2000-08-22 Oiles Ind Co Ltd Lubricating coating material and sliding structure obtained by combining two sliding members, and device for supporting sliding
JP2001012542A (en) * 1999-06-24 2001-01-16 Daido Metal Co Ltd Supporting device for base isolation
JP2001034093A (en) * 1999-07-23 2001-02-09 Nitto Denko Corp Image fixing device
JP2001090836A (en) * 1999-09-24 2001-04-03 Nippon Pillar Packing Co Ltd Fluororesin sliding member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155651A (en) * 1992-11-24 1994-06-03 Sumitomo Metal Ind Ltd Fiber reinforced thermosetting resin composite laminated sheet
WO2000010805A1 (en) * 1998-08-18 2000-03-02 Daikin Industries, Ltd. Polytetrafluoroethylene laminate
JP2000170829A (en) * 1998-12-02 2000-06-23 Takenaka Komuten Co Ltd Sliding base isolation device and base isolation structure
JP2000230185A (en) * 1999-02-12 2000-08-22 Oiles Ind Co Ltd Lubricating coating material and sliding structure obtained by combining two sliding members, and device for supporting sliding
JP2001012542A (en) * 1999-06-24 2001-01-16 Daido Metal Co Ltd Supporting device for base isolation
JP2001034093A (en) * 1999-07-23 2001-02-09 Nitto Denko Corp Image fixing device
JP2001090836A (en) * 1999-09-24 2001-04-03 Nippon Pillar Packing Co Ltd Fluororesin sliding member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215042A (en) * 2007-03-07 2008-09-18 Mitsui Eng & Shipbuild Co Ltd Method for composing rc floor slab and two main girder bridge
JP2013217427A (en) * 2012-04-06 2013-10-24 Tokkyokiki Corp Base isolation device
JP2017008616A (en) * 2015-06-23 2017-01-12 西日本高速道路株式会社 Monitoring device

Also Published As

Publication number Publication date
JP4243475B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
Losanno et al. Experimental assessment and analytical modeling of novel fiber-reinforced isolators in unbounded configuration
Alagusundaramoorthy et al. Flexural behavior of R/C beams strengthened with carbon fiber reinforced polymer sheets or fabric
Kim et al. Characteristics of carbon fiber phenolic composite for journal bearing materials
TWI506211B (en) Slippage structure, bearing apparatus, and seismically isolated structure
JPS5918500B2 (en) Device that protects structures from the action of strong dynamic horizontal stresses
Van Ngo et al. Evaluation of horizontal stiffness of fibre‐reinforced elastomeric isolators
Van Engelen et al. Partially bonded fiber‐reinforced elastomeric isolators (PB‐FREIs)
Karimzadeh Naghshineh et al. Comparison of fundamental properties of new types of fiber‐mesh‐reinforced seismic isolators with conventional isolators
Ashkezari et al. Design, manufacturing and evaluation of the performance of steel like fiber reinforced elastomeric seismic isolators
Al-Anany et al. Fiber reinforced elastomeric isolators for the seismic isolation of bridges
Mahesh et al. Physio-mechanical and wear properties of novel jute reinforced natural rubber based flexible composite
Kang et al. Hole and lead plug effect on fiber reinforced elastomeric isolator for seismic isolation
Al-Anany et al. Vertical and lateral behavior of unbonded fiber-reinforced elastomeric isolators
Soni et al. Delamination of composite laminates stimulated by interlaminar shear
Rastgoo Moghadam et al. Experimental and analytical studies on the horizontal behavior of elastomeric bearings under support rotation
US20150076755A1 (en) Elastomeric isolator
JP2004176749A (en) Sliding bearing for earthquake resistance
Bakhshi et al. Study on dynamic and mechanical characteristics of carbon fiber-and polyamide fiber-reinforced seismic isolators
Sitler et al. Experimental investigation of friction at buckling-restrained brace debonding interfaces
JP2536924B2 (en) Seismic isolation support
Zhang et al. Vibration Performance and Stiffness Properties of Mass Timber Panel–Concrete Composite Floors with Notched Connections
JP2006266406A (en) Sliding member of earthquake isolating slide bearing device
Apalak et al. Thermal and geometrically non-linear stress analyses of an adhesively bonded composite tee joint
Ferri et al. A comparative study on the impact resistance of composite laminates and sandwich panels
Kim et al. Thermal characteristics of tubular single lap adhesive joints under axial loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4243475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term