JP2006266406A - Sliding member of earthquake isolating slide bearing device - Google Patents

Sliding member of earthquake isolating slide bearing device Download PDF

Info

Publication number
JP2006266406A
JP2006266406A JP2005085759A JP2005085759A JP2006266406A JP 2006266406 A JP2006266406 A JP 2006266406A JP 2005085759 A JP2005085759 A JP 2005085759A JP 2005085759 A JP2005085759 A JP 2005085759A JP 2006266406 A JP2006266406 A JP 2006266406A
Authority
JP
Japan
Prior art keywords
sliding member
lubricant
bearing device
mesh
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085759A
Other languages
Japanese (ja)
Inventor
Nobuo Murota
伸夫 室田
Hiroshi Hirata
央 平田
Hideo Imazato
英雄 今里
Takashi Mimata
崇 三又
Hironori Hatatsu
浩則 畑津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Chukoh Chemical Industries Ltd
Original Assignee
Bridgestone Corp
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, Chukoh Chemical Industries Ltd filed Critical Bridgestone Corp
Priority to JP2005085759A priority Critical patent/JP2006266406A/en
Publication of JP2006266406A publication Critical patent/JP2006266406A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member of an earthquake isolating slide bearing device, which sliding member has a very low frictional coefficient and a high compression strength that hardly decreases even when lubricant has been retained therein. <P>SOLUTION: The sliding member 11 of the earthquake isolating slide bearing device comprises a plurality of laminated elements 12, 13 composed of composite elements made of aramid fiber and fluororesin, and a heat resistive mesh shape reinforcing material 14 arranged between the laminated elements 12, 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ビル、橋梁等の大型建造物の下部側に取り付けられる低摩擦性の免震すべり支承装置用すべり部材に関する。   The present invention relates to a sliding member for a low-friction seismic isolation sliding bearing device attached to the lower side of a large building such as a building or a bridge.

従来、免震すべり支承装置用すべり部材(以下、すべり部材と呼ぶ)は、ビル、橋梁のような建造物、各種工業プラント中の大型構造物等に広く使用されている。すべり部材1は、例えば図5に示すように、ビルなどの上部構造体3と基礎部分である下部構造体4の間に上部すべり部材保持プレート5、相手材6を夫々介して対向するように設置されて使用される。   Conventionally, a sliding member for a seismic isolation sliding bearing device (hereinafter referred to as a sliding member) has been widely used for buildings such as buildings and bridges, large structures in various industrial plants, and the like. For example, as shown in FIG. 5, the sliding member 1 is disposed so that the upper sliding member holding plate 5 and the counterpart member 6 are opposed to each other between an upper structure 3 such as a building and a lower structure 4 that is a base portion. Installed and used.

前記すべり部材1の機能は、次の通りである。即ち、地震が起きると下部構造体4に水平荷重が加わる。この水平荷重は、対向して配置された上部すべり部材保持プレート5、相手材6間のすべり部材1の摺動作用によって低減され、上部構造体3に伝達される。このとき、上部構造体3に伝達される水平荷重は、上部構造体3による荷重に免震すべり支承装置のすべり部材1の摩擦係数を乗じた値である。従って、すべり部材の摩擦係数は、可能な限り低いことが望ましい。又、すべり部材1は、大型建造物を支持するため圧縮強度の大きいことも要求される。以上のような理由により、従来、すべり部材としては、摩擦係数が低く、その値が0.07〜0.15のレベルにある四フッ化エチレン樹脂などのフッ素系材料が使用されてきた。   The function of the sliding member 1 is as follows. That is, when an earthquake occurs, a horizontal load is applied to the lower structure 4. This horizontal load is reduced by the sliding action of the sliding member 1 between the upper sliding member holding plate 5 and the mating member 6 arranged opposite to each other, and is transmitted to the upper structure 3. At this time, the horizontal load transmitted to the upper structure 3 is a value obtained by multiplying the load by the upper structure 3 by the friction coefficient of the sliding member 1 of the seismic isolation sliding support device. Therefore, it is desirable that the friction coefficient of the sliding member is as low as possible. The sliding member 1 is also required to have a high compressive strength in order to support a large building. For the reasons described above, conventionally, as the sliding member, a fluorine-based material such as a tetrafluoroethylene resin having a low coefficient of friction and a value of 0.07 to 0.15 has been used.

しかしながら、近年、建造物、免震装置設計の自由度の増大、大地震時の信頼性を向上するという観点から、下記の1)〜3)の要件を満足するすべり部材が要求されている。
1)免震装置用すべり部材に対する摩擦係数として前記四フッ化エチレン樹脂の摩擦係数レベルを下回る、0.02程度の摩擦係数を有すること。
2)この摩擦係数を長期にわたって安定して維持できること。
3)大型建造物を支持するに十分な圧縮強度を有すること。
However, in recent years, a sliding member that satisfies the following requirements 1) to 3) has been demanded from the viewpoint of increasing the degree of freedom of building and seismic isolation device design and improving the reliability during a large earthquake.
1) It has a friction coefficient of about 0.02 that is lower than the friction coefficient level of the tetrafluoroethylene resin as a friction coefficient for the sliding member for the seismic isolation device.
2) The coefficient of friction can be stably maintained over a long period of time.
3) Have sufficient compressive strength to support large buildings.

従来、前記0.02程度の摩擦係数を実現するために、四フッ化エチレン樹脂を主成分とする多孔質構造の成形体に潤滑材を保持させた、例えば、四フッ化エチレン樹脂を主成分とする芳香族ポリエステルを含有する組成物から構成される複数のボイドを有する多孔質構造の成形体あるいは該成形体を、基材表面に有する複合体の表層部分に潤滑剤を保持したすべり部材が提案されている(特許文献1)。
特開2001−82543号公報
Conventionally, in order to realize a friction coefficient of about 0.02, a lubricant is held in a molded article having a porous structure mainly composed of tetrafluoroethylene resin. For example, the main component is tetrafluoroethylene resin. A porous structure molded body having a plurality of voids composed of a composition containing an aromatic polyester or a sliding member holding a lubricant on the surface layer portion of a composite having the molded body on the substrate surface It has been proposed (Patent Document 1).
JP 2001-82543 A

しかしながら、従来の、四フッ化エチレン樹脂を主成分とする多孔質構造の成形体に潤滑材を保持させるすべり部材において、極めて低いレベルの摩擦係数を実現し、長期に渡ってそれを維持するためには、四フッ化エチレン樹脂を主成分とする多孔質構造の成形体の圧縮強度、特に該成形体自体の圧縮強度が大きいことは勿論、潤滑剤を保持させた場合の圧縮強度の低下が少ないことが要求される。   However, to achieve a very low level of friction coefficient and maintain it over a long period of time in a conventional sliding member that holds a lubricant in a porous structure formed mainly of tetrafluoroethylene resin. In addition, the compression strength of a molded article having a porous structure mainly composed of tetrafluoroethylene resin, in particular, the compression strength of the molded article itself is large, and the compression strength is lowered when a lubricant is held. Less is required.

本発明は上記事情を考慮してなされたもので、この条件を満足させる極めて低いレベルの摩擦係数を有し、圧縮強度が大きく、潤滑剤を保持させた際に圧縮強度の低下の少ない免震すべり支承装置用すべり部材を提供することを目的とする。   The present invention has been made in view of the above circumstances, has a very low level of friction coefficient that satisfies this condition, has a high compressive strength, and has a small decrease in compressive strength when a lubricant is held. An object is to provide a sliding member for a sliding support device.

本発明は、アラミド繊維とフッ素樹脂とからなる複合体を複数積層してなる複数の積層体と、これらの積層体の中間に設けられた耐熱性メッシユ状補強材とを具備することを特徴とする免震すべり支承装置用すべり部材である。
前記積層体には、潤滑剤例えばシリコーンオイル,フッ素オイル,オレイン酸,オレイル酸エステル,オレイルアルコールを含有させることが好ましい。これらの潤滑剤の中でシリコーンオイルは耐候性,耐酸化性,耐圧性に優れているため特に好ましい。
The present invention is characterized by comprising a plurality of laminates formed by laminating a plurality of composites composed of aramid fibers and fluororesin, and a heat-resistant mesh-like reinforcing material provided in the middle of these laminates. This is a sliding member for a seismic isolation sliding bearing device.
The laminate preferably contains a lubricant such as silicone oil, fluorine oil, oleic acid, oleic acid ester, or oleyl alcohol. Among these lubricants, silicone oil is particularly preferable because it is excellent in weather resistance, oxidation resistance, and pressure resistance.

本発明のすべり部材によれば、極めて低いレベルの摩擦係数を実現し、長期に渡ってそれを維持することができる。また、圧縮強度が大きく潤滑剤を保持させた場合の圧縮強度の低下が少なく、大型建造物を支持するに十分な圧縮強度が得られる。   According to the sliding member of the present invention, an extremely low level of friction coefficient can be realized and maintained for a long period of time. In addition, the compressive strength is small when the lubricant is held with a high compressive strength, and sufficient compressive strength to support a large building can be obtained.

以下、本発明について更に詳しく説明する。
図1は、本発明に係る免震すべり支承装置用すべり部材11の一例を示す。図中の符番12,13は、圧縮強度が大きく、微細孔を有する多孔体材料であるアラミド繊維とフッ素樹脂とを成分とする複合体を複数積層してなる積層体を示す。これらの積層体12,13間には、複数の耐熱性メッシュ状補強材14が夫々挟み込まれている。前記複合体の微細孔には潤滑剤が含有されている。
Hereinafter, the present invention will be described in more detail.
FIG. 1 shows an example of a sliding member 11 for a seismic isolation sliding support device according to the present invention. Reference numerals 12 and 13 in the figure indicate a laminate formed by laminating a plurality of composites containing aramid fibers and fluororesin, which are porous materials having high compressive strength and fine pores. A plurality of heat-resistant mesh-like reinforcing materials 14 are sandwiched between the laminated bodies 12 and 13, respectively. A lubricant is contained in the micropores of the composite.

このような構成とすることにより、(1)複合体からなる積層体本来の特性により圧縮強度が大きく、(2)前記積層体に潤滑剤を含有させることから、極めて低い摩擦係数を実現でき、(3)且つ、前記耐熱性メッシュ状補強材料に前記積層体の水平方向の剛性が高くなり変形を抑えられる。その結果、前記積層体に潤滑剤を含有させても圧縮強度の低下が少なく、耐クリープ特性に優れた免震すべり支承装置用すべり部材を得ることができる。
また、耐クリープ性に優れることから、含有させた潤滑剤が絞りだされることがなく、潤滑剤保持能力を持続できることから、低い摩擦係数を長期に維持可能である。
By adopting such a configuration, (1) the compression strength is large due to the inherent properties of the laminate composed of the composite, and (2) since a lubricant is contained in the laminate, an extremely low coefficient of friction can be realized, (3) Moreover, the horizontal rigidity of the laminate is increased in the heat-resistant mesh-like reinforcing material, and deformation can be suppressed. As a result, even if a lubricant is contained in the laminate, it is possible to obtain a sliding member for a base-isolation sliding bearing device that has little reduction in compressive strength and is excellent in creep resistance.
Moreover, since it is excellent in creep resistance, the contained lubricant is not squeezed out, and the ability to retain the lubricant can be maintained, so that a low coefficient of friction can be maintained for a long time.

本発明に用いられる複合体としては、フッ素樹脂樹脂水性分散液にアラミド繊維を加え十分に攪拌分散した後、凝集剤を加えることにより、フッ素樹脂を不安定化させてアラミド繊維に沈着させ、前記フッ素樹脂が沈着したアラミド繊維を抄造、乾燥してシート状にした複合体を使用する。ここで、前記複合体として厚さ0.3mm、PTFE樹脂/アラミド繊維=55/45(質量%割合)のものが市販されており、本発明に使用可能である。   As a composite used in the present invention, aramid fibers are added to a fluororesin resin aqueous dispersion and sufficiently stirred and dispersed, and then a flocculant is added to destabilize the fluororesin and deposit it on aramid fibers. A composite in which aramid fibers on which a fluororesin is deposited is made and dried to form a sheet is used. Here, the composite having a thickness of 0.3 mm and PTFE resin / aramid fiber = 55/45 (mass%) is commercially available and can be used in the present invention.

また、本発明品はフッ素樹脂を構成要素とするので、メッシュ状補強材には、フッ素樹脂の加工温度に耐える耐熱性を有することが要求される。前記補強材としては、例えば耐熱性のステンレス織物などの種々の金属織物,アラミド繊維クロス、ガラス繊維クロス、カーボン繊維クロスが使用可能である。また、前記補強材のメッシュ・サイズは、例えばステンレス製メッシュ補強材の場合、30〜80メッシュの範囲が好ましい。ここで、30メッシュより小さい場合は、前記積層体がメッシュ補強材へ十分食い込むものの、前記積層体に占める補強材の割合が小さいものとなり、変形を抑える補強材としての役割が果たせなくなり、逆に変形しやすくなる。また、80メッシュより大きい場合は、前記積層体のメッシュ補強材への食い込みが少なく、十分な圧縮強度が得られないとともに、潤滑剤を前記積層体に含有させた際の圧縮強度が大きく低下する。   In addition, since the product of the present invention includes a fluororesin, the mesh-like reinforcing material is required to have heat resistance that can withstand the processing temperature of the fluororesin. As the reinforcing material, for example, various metal fabrics such as heat resistant stainless steel fabric, aramid fiber cloth, glass fiber cloth, and carbon fiber cloth can be used. The mesh size of the reinforcing material is preferably in the range of 30 to 80 mesh, for example, in the case of a stainless steel mesh reinforcing material. Here, if the mesh is smaller than 30 mesh, the laminate sufficiently digs into the mesh reinforcement, but the proportion of the reinforcement in the laminate becomes small, and the role as a reinforcement that suppresses deformation cannot be achieved. It becomes easy to deform. On the other hand, if it is larger than 80 mesh, the laminate does not penetrate into the mesh reinforcing material, and sufficient compressive strength cannot be obtained, and the compressive strength when a lubricant is contained in the laminate is greatly reduced. .

また、本発明に使用される潤滑剤としては、流動性及び浸透性があり、摺動時に液状である任意の潤滑剤が使用可能であるが、免震滑り支承用途では、好ましくは使用時の耐候性に優れるシリコーンオイルが挙げられる。ここで、「シリコーンオイル」とは、液状のあるいはワックス状のポリシロキサンを指して言う。液状のポリシロキサンとしては、比較的低分子量のポリシロキサンがあり、具体的には、例えばジメチルポシロキサン、メチルハイドロジェンポリシロキサン、メチルメトキシポリシロキサンが挙げられる。   In addition, as the lubricant used in the present invention, any lubricant that has fluidity and permeability and is liquid at the time of sliding can be used. Examples include silicone oils that are excellent in weather resistance. Here, “silicone oil” refers to liquid or wax-like polysiloxane. Liquid polysiloxanes include relatively low molecular weight polysiloxanes, and specific examples include dimethylposiloxane, methylhydrogen polysiloxane, and methylmethoxypolysiloxane.

ワックス状のポリシロキサンとしては、上記液状のポリシロキンよりはやや高分子量のポリシロキサンが挙げられ、具体的には、例えばジメチルポリシロキサン、メチルフェニルポリシロキサン、長鎖アルキル変性シリコーン、トリフルオロプロピルメチルポリシロキサンが挙げられる。前記ポリシロキサンは、単独で、あるいは2種以上組み合わせて用いることができる。   Examples of the wax-like polysiloxane include polysiloxane having a slightly higher molecular weight than the above-described liquid polysiloxane, and specific examples thereof include dimethylpolysiloxane, methylphenylpolysiloxane, long chain alkyl-modified silicone, and trifluoropropylmethylpolysiloxane. Examples include siloxane. The polysiloxanes can be used alone or in combination of two or more.

前記潤滑剤の含有率は、アラミド繊維とフッ素樹脂とを成分とする複合体の積層体と潤滑剤の合計質量の0.5〜20質量%で、より好ましくは1〜10質量%である。潤滑剤が0.5質量%未満では、摩擦係数減少させる効果が認められず、20質量%を超えると本発明品に耐摩耗性の低下が認められる。   The content of the lubricant is 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the composite laminate and the lubricant composed of aramid fibers and fluororesin. When the lubricant is less than 0.5% by mass, the effect of reducing the friction coefficient is not recognized, and when it exceeds 20% by mass, the wear resistance of the product of the present invention is reduced.

次に、図1及び図2を使用して、本発明品の製作方法について説明する。図1のすべり部材11の上下の積層体12の複合体は、例えば0.3mm厚さの複合体を使用する。また、メッシュ状補強材14のメッシュ・サイズが30〜80メッシュである場合、メッシュ状補強材14の表面の凹凸の影響を排除し、本発明品の表面状態を平滑にするために、前記複合体の積層枚数は、限定するものではないが、3層以上とすることが好ましい。また、メッシュ状補強材14を2層以上の構成にする場合、メッシュ状補強材14間に使用する積層体13複合体の積層枚数は、限定するものではないが、2層以上にすることが好ましい。複合体が1層では、本発明のすべり部材を使用時に所定のサイズに裁断する場合、メッシュ状補強材14の裁断性が悪く、補強材の繊維が飛び出す等の不具合が生じる。   Next, the manufacturing method of the product of the present invention will be described with reference to FIGS. For example, a composite having a thickness of 0.3 mm is used as the composite of the upper and lower laminates 12 of the sliding member 11 shown in FIG. Further, when the mesh size of the mesh-like reinforcing material 14 is 30 to 80 mesh, in order to eliminate the influence of irregularities on the surface of the mesh-like reinforcing material 14 and smooth the surface state of the product of the present invention, The number of laminated bodies is not limited, but is preferably 3 or more. In addition, when the mesh-like reinforcing material 14 has a structure of two or more layers, the number of laminated layers 13 composite used between the mesh-like reinforcing materials 14 is not limited, but may be two or more layers. preferable. When the composite body has a single layer, when the sliding member of the present invention is cut into a predetermined size at the time of use, the mesh-like reinforcing material 14 has poor cutting properties, causing problems such as the fibers of the reinforcing material popping out.

以上のようなことに留意し、所望の構成のすべり部材の製作に必要な、所望のサイズ、枚数のアラミド繊維とフッ素樹脂とを成分とする複合体からなる積層体12、及びメッシュ状補強材14を裁断して準備する。次に、図2に示すように、裁断した材料,即ち複数の複合体21からなる積層体12、複数の複合体22からなる積層体13及びメッシュ状補強材24を所望の構成に応じて重ね合わせ、その集合体を熱プレス盤面間に配置し、例えば、圧力2MPa、温度400℃の条件で60分間加熱圧縮することにより、前記集合体を一体化し、次に熱プレスのヒーターを切り、2MPaの圧力を維持したまま、60分間冷却しプレスより取り出すことにより所望構成、所望サイズのすべり部材が得られる。なお、前記複合体21,22はともにアラミド繊維とフッ素樹脂とを成分としている。   In consideration of the above, a laminate 12 made of a composite containing a desired size and number of aramid fibers and a fluororesin, and a mesh-like reinforcing material, which are necessary for manufacturing a sliding member having a desired configuration Cut 14 and prepare. Next, as shown in FIG. 2, the cut material, that is, the laminated body 12 composed of a plurality of composite bodies 21, the laminated body 13 composed of a plurality of composite bodies 22, and a mesh-like reinforcing material 24 are stacked according to a desired configuration. The assembly is placed between the hot press surfaces, and the assembly is integrated by, for example, heating and compressing for 60 minutes under the conditions of a pressure of 2 MPa and a temperature of 400 ° C., and then the heater of the hot press is turned off. While maintaining this pressure, a sliding member having a desired configuration and a desired size can be obtained by cooling for 60 minutes and removing from the press. The composites 21 and 22 both contain aramid fibers and a fluororesin.

更に、得られた前記すべり部材に以下の操作で潤滑剤を含有させる。即ち、すべり部材に適正な量の潤滑剤を含有させるために、所定の濃度の潤滑剤を準備した容器に入れ、その中にすべり部材を所定の時間浸漬した後、取り出す。以上の操作により、本発明の潤滑剤を含有したアラミド繊維とフッ素樹脂とを成分とする複合体からなる積層体層の中間に、少なくとも1層の耐熱性メッシュ状補強材を挟み込んだ複合多層構成のすべり部材が得られる。   Furthermore, a lubricant is contained in the obtained sliding member by the following operation. That is, in order to contain an appropriate amount of lubricant in the sliding member, the lubricant having a predetermined concentration is put in a prepared container, and the sliding member is immersed in the container for a predetermined time and then taken out. By the above operation, a composite multilayer structure in which at least one heat-resistant mesh-like reinforcing material is sandwiched between the laminate layers composed of the composite containing the aramid fiber containing the lubricant of the present invention and a fluororesin as components. A sliding member is obtained.

次に、下記実施例で、本発明を詳述する。
(実施例1)
まず、厚さ0.3mm、幅300mm、長さ300mmのアラミド繊維とフッ素樹脂とを成分とする複合体(商品名:トワロンTPLシート、帝人テクノプロダクツ株式会社製)12枚及び40メッシュ(線径0.14mm)、幅300mm、長さ300mのステンレススチール製メッシュ状補強材4枚を裁断準備し、図3に示す順序に重ね合わせる。次に、これら裁断し重ね合わせた材料を熱プレス盤面間に配置し、圧力2MPa、温度400℃の条件で60分間加熱圧縮することにより一体化する。つづいて、熱プレスのヒーターを切り、2MPaの圧力を維持したまま、60分間冷却した後プレスより取り出し、厚さ3mm、幅300mm、長さ300mmの材料を作製した。なお、図3中、符番31,32は複合体,符番34はステンレス製メッシュ状補強材を示す。
Next, the present invention will be described in detail in the following examples.
Example 1
First, 12 composites (trade name: Twaron TPL sheet, manufactured by Teijin Techno Products Co., Ltd.) and 40 meshes (wire diameter) having an aramid fiber having a thickness of 0.3 mm, a width of 300 mm, and a length of 300 mm and a fluororesin as components. 0.14 mm), a width of 300 mm, and a length of 300 m of four stainless steel mesh reinforcements are prepared for cutting and are stacked in the order shown in FIG. Next, these cut and stacked materials are placed between the hot press surfaces and integrated by heating and compressing for 60 minutes under conditions of a pressure of 2 MPa and a temperature of 400 ° C. Subsequently, the heater of the hot press was turned off, the material was cooled for 60 minutes while maintaining a pressure of 2 MPa, and then taken out from the press to produce a material having a thickness of 3 mm, a width of 300 mm, and a length of 300 mm. In FIG. 3, reference numerals 31 and 32 indicate composites, and reference numeral 34 indicates a stainless steel mesh reinforcing material.

(実施例2)
実施例1と同じ材料を作製し、その材料をシリコーンオイル(商品名:TSF−410、GE東芝シリコーン株式会社製)中に336時間浸漬し、シリコーンオイルを9.0質量%含有させた材料を作製した。
(Example 2)
The same material as in Example 1 was prepared, and the material was immersed in silicone oil (trade name: TSF-410, manufactured by GE Toshiba Silicone Co., Ltd.) for 336 hours, and a material containing 9.0% by mass of silicone oil was prepared. Produced.

(実施例3)
まず、厚さ0.3mm、幅300mm、長さ300mmのアラミド繊維とフッ素樹脂とを成分とする複合体(商品名:トワロンTPLシート、帝人テクノプロダクツ社製)11枚及びフッ素樹脂被覆メッシュ状アラミド繊維クロス(商品名:FAF410−32、中興化成工業社製)2枚を裁断準備し、図4に示す順序に重ね合わせる。次に、これら裁断し重ね合わせた材料を熱プレス盤面間に配置し、圧力2MPa、温度400℃の条件で60分間加熱圧縮することにより一体化する。つづいて、熱プレスのヒーターを切り、2MPaの圧力を維持したまま、60分間冷却した後プレスより取り出し、厚さ3mm、幅300mm、長さ300mmの材料を作製した。なお、図4中、符番41,42は複合体,符番44はフッ素樹脂被覆メッシュ状アラミド繊維クロス(補強材)を示す。
(Example 3)
First, eleven composites (trade name: Twaron TPL sheet, manufactured by Teijin Techno Products Co., Ltd.) containing aramid fibers having a thickness of 0.3 mm, a width of 300 mm, and a length of 300 mm and a fluororesin, and a fluororesin-coated mesh aramid Two pieces of fiber cloth (trade name: FAF410-32, manufactured by Chukoh Kasei Kogyo Co., Ltd.) are prepared for cutting and superposed in the order shown in FIG. Next, these cut and stacked materials are placed between the hot press surfaces and integrated by heating and compressing for 60 minutes under conditions of a pressure of 2 MPa and a temperature of 400 ° C. Subsequently, the heater of the hot press was turned off, the material was cooled for 60 minutes while maintaining a pressure of 2 MPa, and then taken out from the press to produce a material having a thickness of 3 mm, a width of 300 mm, and a length of 300 mm. In FIG. 4, reference numerals 41 and 42 indicate composites, and reference numeral 44 indicates a fluororesin-coated mesh aramid fiber cloth (reinforcing material).

(実施例4)
実施例3と同じ材料を作製し、その材料をシリコーンオイル(商品名:TSF−410、GE東芝シリコーン株式会社製)中に336時間浸潰し、シリコーンオイルを8.3質量%含有させた材料を作製した。
Example 4
The same material as that of Example 3 was prepared, and the material was immersed in silicone oil (trade name: TSF-410, manufactured by GE Toshiba Silicone Co., Ltd.) for 336 hours to prepare a material containing 8.3% by mass of silicone oil. Produced.

(比較例1)
まず、厚さ0.3mm、幅300mm、長さ300mmのアラミド繊維とフッ素樹脂とを成分とする複合体(商品名:トワロンTPLシート、帝人テクノプロダクツ社製)21枚を裁断準備し、重ね合わせた後、熱プレス盤面間に圧力2MPa、温度400℃で60分間加熱圧縮することにより一体化する。次に、熱プレスのヒーターを切り、2MPaの圧力を維持したまま、60分間冷却した後プレスより取り出し、厚さ3mm、幅300mm、長さ300mmの材料を作製した。
(Comparative Example 1)
First, 21 composites (trade name: Twaron TPL sheet, manufactured by Teijin Techno Products) having a thickness of 0.3 mm, a width of 300 mm, and a length of 300 mm as components are prepared and stacked. Then, it integrates by heat-pressing between the hot press board surfaces at a pressure of 2 MPa and a temperature of 400 ° C. for 60 minutes. Next, the heater of the hot press was turned off, and after cooling for 60 minutes while maintaining a pressure of 2 MPa, the material was taken out from the press to produce a material having a thickness of 3 mm, a width of 300 mm, and a length of 300 mm.

(比較例2)
比較例1と同じ材料を作製し、その材料をシリコーンオイル(商品名:TSF−410、GE東芝シリコーン株式会社製)中に336時間浸漬し、シリコーンオイルを8.2質量%含有させた材料を作製した。
(Comparative Example 2)
The same material as Comparative Example 1 was produced, and the material was immersed in silicone oil (trade name: TSF-410, manufactured by GE Toshiba Silicone Co., Ltd.) for 336 hours to contain a material containing 8.2% by mass of silicone oil. Produced.

(比較例3)
厚さ3mm、幅300mm、長さ300mmの充填剤(二硫化モリブデン5質量%及びグラスファイバー15質量%)入りPTFE樹脂シートを作製した。
作製した上記実施例1〜4、比較例1〜3の材料に関して、硬度、圧縮強度、摩擦係数を測定した。結果を以下の表1に示す。
(Comparative Example 3)
A PTFE resin sheet containing a filler (5% by mass of molybdenum disulfide and 15% by mass of glass fiber) having a thickness of 3 mm, a width of 300 mm, and a length of 300 mm was produced.
Regarding the produced materials of Examples 1 to 4 and Comparative Examples 1 to 3, hardness, compressive strength, and friction coefficient were measured. The results are shown in Table 1 below.

Figure 2006266406
Figure 2006266406

表1において、
※1:デュロメータ ショアD硬度(試験機:上島精密製作所(株)製のHD一104N型)
※2:ASTMD695に準じて測定。(試験機:(株)島津製作所のオートグラフAG−100kNG型、
試験片サイズ:厚さ3mm×直径20mm、試験速度:1.3mm/分、加圧方向:厚さ方向)
実施例1と実施例2は、本発明に係るステンレス製メッシュ状補強材を使用した材料で、夫々シリコーンオイルを含有しないものと含有したものである。実施例3と実施例4は、本発明に係るフッ素樹脂被覆メッシュ状アラミド繊維補強材を使用した材料で、夫々シリコーンオイルを含有しないものと含有したものである。比較例1と比較例2は、従来技術に係るアラミド繊維とフッ素樹脂とを成分とする複合体を積層した構成の材料で、夫々シリコーンオイルを含有しないものと含有したものである。比較例3は、従来の免震すべり支承装置に用いられてきた充填材入りPTFE樹脂シートである。
In Table 1,
* 1: Durometer Shore D hardness (Testing machine: HD-1104N type manufactured by Ueshima Seimitsu Seisakusho Co., Ltd.)
* 2: Measured according to ASTM D695. (Testing machine: Autograph AG-100kNG type from Shimadzu Corporation,
(Specimen size: thickness 3 mm x diameter 20 mm, test speed: 1.3 mm / min, pressure direction: thickness direction)
Example 1 and Example 2 are materials using the stainless steel mesh reinforcing material according to the present invention, and those containing no silicone oil. Examples 3 and 4 are materials using the fluororesin-coated mesh-like aramid fiber reinforcing material according to the present invention, which contain and do not contain silicone oil, respectively. Comparative Example 1 and Comparative Example 2 are materials having a structure in which a composite containing an aramid fiber and a fluororesin according to the prior art is laminated, each containing no silicone oil. Comparative Example 3 is a filled PTFE resin sheet that has been used in conventional seismic isolation sliding bearing devices.

上記試験の中で、実施例1と2、実施例3と4、比較例1と2の圧縮強度の測定結果の差がシリコーンオイルを含有させることによる強度の低下を意味することになるが、この試験結果では、実施例1と2、実施例3と4、比較例1と2の場合、強度低下率が夫々19.6%、30.9%、48.4%であり、本発明に係る実施例1,2並びに実施例3,4の場合の方が、従来技術に係る比較例1,2の場合よりもシリコーンオイルを含有させることによる圧縮強度の低下率が小さいことが実証された。   Among the above tests, Examples 1 and 2, Examples 3 and 4, and the difference in the measurement results of the compressive strength of Comparative Examples 1 and 2 mean that the strength is reduced by containing silicone oil. In the test results, in Examples 1 and 2, Examples 3 and 4, and Comparative Examples 1 and 2, the strength reduction rates were 19.6%, 30.9%, and 48.4%, respectively. In Examples 1 and 2 and Examples 3 and 4, it was demonstrated that the rate of decrease in compressive strength due to the inclusion of silicone oil was smaller than in Comparative Examples 1 and 2 according to the prior art. .

また、圧縮強度自体も、実施例1,2,3は従来技術に係る比較例1,3に比べ、特に実施例1及びシリコーンオイルを含有させた実施例2の場合でも、従来、免震用すべり支承装置用すべり材として使用されてきた比較例3の充填材入りPTFE樹脂シート材料よりもはるかに大きく、又、耐圧縮性で知られるアラミド繊維とフッ素樹脂とを成分とする複合体の積層体シートである比較例3よりも大きいことが実証された。   In addition, the compressive strength itself of the first, second, and third examples is higher than that of the first and third comparative examples, particularly in the case of the first example and the second example containing the silicone oil. Lamination of a composite composed of an aramid fiber and a fluororesin, which are much larger than the PTFE resin sheet material with filler of Comparative Example 3 that has been used as a sliding material for a sliding bearing device, and is known for its compression resistance It was proved to be larger than Comparative Example 3 which is a body sheet.

更に、実施例2,4及び比較例1の潤滑剤を含有した材料については、動摩擦係数の速度依存性を測定し、また実施例2,4及び比較例1,3の潤滑剤を含有した材料については摩擦係数の面圧依存性の測定を実施した。その結果を、夫々図6、図7に示す。 Further, for the materials containing the lubricants of Examples 2 and 4 and Comparative Example 1, the speed dependence of the dynamic friction coefficient was measured, and the materials containing the lubricants of Examples 2 and 4 and Comparative Examples 1 and 3 were measured. For, the surface pressure dependence of the dynamic friction coefficient was measured. The results are shown in FIGS. 6 and 7, respectively.

測定条件は夫々以下の通りである。
1)動摩擦係数の速度依存性
測定装置:100トン動的圧縮せん断試験機、測定速度範囲:12.6〜400mm/sec、波形:サイン・カーブ、振幅:200mm、周波数:0.004〜0.318Hz、面圧:20N/mm、荷重:157kN、サイクル:3サイクル目の摩擦係数を測定。
2)動摩擦係数の面圧依存性
測定装置:100トン動的圧縮せん断試験機、測定面圧範囲:2〜60N/mm、荷重範囲:16〜157kN、波形:サイン・カーブ、振幅:200mm、周波数:0.080Hz、速度100mm/sec、サイクル:3サイクル目の摩擦係数を測定。
The measurement conditions are as follows.
1) Speed dependence of dynamic friction coefficient
Measuring apparatus: 100 ton dynamic compression shear tester, measuring speed range: 12.6 to 400 mm / sec, waveform: sine curve, amplitude: 200 mm, frequency: 0.004 to 0.318 Hz, surface pressure: 20 N / mm 2 , Load: 157 kN, Cycle: Friction coefficient at the third cycle was measured.
2) Dependence of dynamic friction coefficient on surface pressure
Measuring device: 100 ton dynamic compression shear tester, measuring surface pressure range: 2-60 N / mm 2 , load range: 16-157 kN, waveform: sine curve, amplitude: 200 mm, frequency: 0.080 Hz, speed 100 mm / sec, cycle: Measure the friction coefficient at the third cycle.

図6、図7に示す結果より、実施例2及び実施例4の本発明に係る材料は、ともに従来の比較例1あるいは比較例3の材料に比べて、ビル、橋梁等の大型建造物の下部側に取り付けられる低摩擦性の免震用支承装置用すべり部材に要求される広範囲の速度範囲及び面圧範囲において低く、安定した摩擦係数を示すことが実証された。 From the results shown in FIGS. 6 and 7, the materials according to the present invention in Example 2 and Example 4 are both larger than those of the conventional Comparative Example 1 or Comparative Example 3 in large buildings such as buildings and bridges. It has been demonstrated that it has a low and stable dynamic coefficient of friction in a wide range of speeds and surface pressures required for low frictional sliding members for seismic isolation bearings mounted on the lower side.

以上の結果より、本発明によれば、極めて低い動摩擦係数を実現し、また、圧縮強度が高く潤滑剤を保持させた場合の圧縮強度の低下が少なく、大型建造物を支持するに十分な圧縮強度を有する免震用すべり支承装置用すべり部材が得られる。 From the above results, according to the present invention, an extremely low dynamic friction coefficient is achieved, and the compression strength is high when the lubricant is held with a high compressive strength, and sufficient compression to support a large building. A sliding member for a seismic isolation sliding bearing device having strength is obtained.

本発明の免震すべり支承装置用すべり部材の構成を示す展開図。The expanded view which shows the structure of the sliding member for seismic isolation sliding support apparatuses of this invention. 本発明の免震すべり支承装置用すべり部材の構成、製作方法を説明するための詳細展開図。The detail expanded view for demonstrating the structure of the sliding member for seismic isolation sliding support apparatuses of this invention, and a manufacturing method. 実施例1,2に係るすべり部材の構成を説明するための概略図。Schematic for demonstrating the structure of the sliding member which concerns on Example 1,2. 実施例3,4に係るすべり部材の構成を説明するための概略図。Schematic for demonstrating the structure of the sliding member which concerns on Example 3, 4. FIG. 本発明の免震すべり支承装置用すべり部材の使用状態を示す概念図。The conceptual diagram which shows the use condition of the sliding member for seismic isolation sliding support apparatuses of this invention. 摩擦係数の速度依存性の測定結果を示すグラフ。 The graph which shows the measurement result of the speed dependence of a dynamic friction coefficient. 摩擦係数の面圧依存性の測定結果を示すグラフ。 The graph which shows the measurement result of the surface pressure dependence of a dynamic friction coefficient.

符号の説明Explanation of symbols

1…すべり部材、3…上部構造体、4…下部構造体、5…上部すべり部材保持プレート、6…相手材、11…免震すべり支承装置用すべり部材、12,13…積層体、14,24,34,44…補強材、21,22,31,32,41,42…複合体。   DESCRIPTION OF SYMBOLS 1 ... Sliding member, 3 ... Upper structure, 4 ... Lower structure, 5 ... Upper sliding member holding plate, 6 ... Opposite material, 11 ... Sliding member for seismic isolation sliding support device, 12, 13 ... Laminated body, 14, 24, 34, 44 ... reinforcement, 21, 22, 31, 32, 41, 42 ... composite.

Claims (3)

アラミド繊維とフッ素樹脂とからなる複合体を複数積層してなる複数の積層体と、これらの積層体の中間に設けられた耐熱性メッシユ状補強材とを具備することを特徴とする免震すべり支承装置用すべり部材。 A seismic isolation slip comprising a plurality of laminates formed by laminating a plurality of composites of aramid fibers and fluororesin, and a heat-resistant mesh-like reinforcing material provided between the laminates. Sliding member for bearing device. 前記積層体に潤滑剤を含有させたことを特徴とする請求項1記載の免震すべり支承装置用すべり部材。 The sliding member for a seismic isolation sliding bearing device according to claim 1, wherein a lubricant is contained in the laminate. 前記潤滑剤が、シリコーンオイルであることを特徴とする請求項1若しくは請求項2記載の免震すべり支承装置用すべり部材。 The sliding member for a seismic isolation sliding bearing device according to claim 1 or 2, wherein the lubricant is silicone oil.
JP2005085759A 2005-03-24 2005-03-24 Sliding member of earthquake isolating slide bearing device Pending JP2006266406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085759A JP2006266406A (en) 2005-03-24 2005-03-24 Sliding member of earthquake isolating slide bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085759A JP2006266406A (en) 2005-03-24 2005-03-24 Sliding member of earthquake isolating slide bearing device

Publications (1)

Publication Number Publication Date
JP2006266406A true JP2006266406A (en) 2006-10-05

Family

ID=37202600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085759A Pending JP2006266406A (en) 2005-03-24 2005-03-24 Sliding member of earthquake isolating slide bearing device

Country Status (1)

Country Link
JP (1) JP2006266406A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253104A (en) * 2008-04-08 2009-10-29 Hitachi Metals Ltd Laminated body, and antenna
JP2014119033A (en) * 2012-12-17 2014-06-30 Shimizu Corp Slide base isolation mechanism
KR101415304B1 (en) 2012-08-01 2014-07-04 김선기 Filter having permeability and hydrophobic property
JP2017097017A (en) * 2015-11-18 2017-06-01 コニカミノルタ株式会社 Slide member, slide member for fixing device, fixing device, image forming apparatus, and method of manufacturing slide member
JP2017210005A (en) * 2017-09-12 2017-11-30 中興化成工業株式会社 Multilayer sheet, method for producing multilayer sheet and sheet for work

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312137A (en) * 1987-06-15 1988-12-20 Nippon Pillar Packing Co Ltd Net reinforced structural film
JP2000074136A (en) * 1998-08-28 2000-03-07 Oiles Ind Co Ltd Sliding structure combining two sliding members, and sliding support device using it
JP2004205000A (en) * 2002-12-26 2004-07-22 Oiles Ind Co Ltd Sliding member, manufacturing method thereof, and slide base isolation device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312137A (en) * 1987-06-15 1988-12-20 Nippon Pillar Packing Co Ltd Net reinforced structural film
JP2000074136A (en) * 1998-08-28 2000-03-07 Oiles Ind Co Ltd Sliding structure combining two sliding members, and sliding support device using it
JP2004205000A (en) * 2002-12-26 2004-07-22 Oiles Ind Co Ltd Sliding member, manufacturing method thereof, and slide base isolation device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253104A (en) * 2008-04-08 2009-10-29 Hitachi Metals Ltd Laminated body, and antenna
KR101415304B1 (en) 2012-08-01 2014-07-04 김선기 Filter having permeability and hydrophobic property
JP2014119033A (en) * 2012-12-17 2014-06-30 Shimizu Corp Slide base isolation mechanism
JP2017097017A (en) * 2015-11-18 2017-06-01 コニカミノルタ株式会社 Slide member, slide member for fixing device, fixing device, image forming apparatus, and method of manufacturing slide member
JP2017210005A (en) * 2017-09-12 2017-11-30 中興化成工業株式会社 Multilayer sheet, method for producing multilayer sheet and sheet for work

Similar Documents

Publication Publication Date Title
TW553999B (en) Seismic isolation sliding support bearing system
JP2006266406A (en) Sliding member of earthquake isolating slide bearing device
KR102368458B1 (en) Compressible liquid seal with discontinuous adhesive
RU2668433C2 (en) Sliding bearing for structures
Beckford et al. The effects of polydopamine coated Cu nanoparticles on the tribological properties of polydopamine/PTFE coatings
Anil et al. Tribological performance of hydrophilic diamond-like carbon coatings on Ti–6Al–4V in biological environment
TW201042179A (en) Slippage structure, bearing apparatus, and seismically isolated structure
TW200938701A (en) Composition for plug of seismic isolation structure, plug for seismic isolation structure and seismic isolation structure
WO2010074086A1 (en) Composite sheet and manufacturing method therefor
JP2010513811A (en) Seal material
Karimzadeh Naghshineh et al. Comparison of fundamental properties of new types of fiber‐mesh‐reinforced seismic isolators with conventional isolators
Nalam et al. Exploring lubrication regimes at the nanoscale: Nanotribological characterization of silica and polymer brushes in viscous solvents
Padhan et al. Surface topography modification, Film transfer and Wear mechanism for fibre reinforced polymer composites—An Overview
Yamaguchi et al. Effect of porosity and normal load on dry sliding friction of polymer foam blocks
Mohammad et al. Fatigue life for type 316L stainless steel under cyclic loading
Tan et al. Frictional behaviors of rough soft contact on wet and dry pipeline surfaces: with application to deepwater pipelaying
Sokolović et al. Effect of the nature of different polymeric fibers on steady-state bed coalescence of an oil-in-water emulsion
Yamaguchi et al. Dry sliding friction of ethylene vinyl acetate blocks: Effect of the porosity
Chow et al. Zeolite as a wear-resistant coating
JP2001027243A (en) Sliding plate
JP3563669B2 (en) Seismic isolation bearing
Duranty et al. An in situ tribometer for measuring friction and wear of polymers in a high pressure hydrogen environment
EP2710273B1 (en) Sliding layer for multilayer bearing material
Mu et al. One‐pot synthesis and tribological properties of oil‐containing self‐lubricating polyurethane materials
Cha et al. Determination of shift factor for long-term life prediction of carbon/fiber epoxy composites using the time-temperature superposition principle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720