JP2536924B2 - Seismic isolation support - Google Patents

Seismic isolation support

Info

Publication number
JP2536924B2
JP2536924B2 JP1101183A JP10118389A JP2536924B2 JP 2536924 B2 JP2536924 B2 JP 2536924B2 JP 1101183 A JP1101183 A JP 1101183A JP 10118389 A JP10118389 A JP 10118389A JP 2536924 B2 JP2536924 B2 JP 2536924B2
Authority
JP
Japan
Prior art keywords
seismic isolation
damping elastomer
isolation bearing
bearing
support body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1101183A
Other languages
Japanese (ja)
Other versions
JPH0249834A (en
Inventor
輝男 佐々木
一裕 藤澤
芳昭 宮本
光生 宮崎
文昭 有馬
勇治 光阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Sumitomo Construction Co Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Sumitomo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Sumitomo Construction Co Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP1101183A priority Critical patent/JP2536924B2/en
Priority to KR1019890006036A priority patent/KR0169706B1/en
Priority to EP89304491A priority patent/EP0341058B1/en
Priority to DE8989304491T priority patent/DE68902949T2/en
Publication of JPH0249834A publication Critical patent/JPH0249834A/en
Application granted granted Critical
Publication of JP2536924B2 publication Critical patent/JP2536924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブチルゴム、NBR等からなる高減衰エラス
トマーをエネルギー吸収装置(以下ダンパーという)と
して使用した免震支承に関する。
The present invention relates to a seismic isolation bearing that uses a high damping elastomer made of butyl rubber, NBR or the like as an energy absorbing device (hereinafter referred to as a damper).

〔従来の技術〕[Conventional technology]

建築物等の上部構造物を、その基礎等の下部構造物の
上に水平方向に揺動自在に支持し、地震の入力加速度を
低減して、上部構造物を地震の破壊力から保護する免震
支承として、従来次のようなものが知られている。
An upper structure such as a building is swingably supported horizontally on a lower structure such as its foundation to reduce the input acceleration of the earthquake and protect the upper structure from the destructive force of the earthquake. The following are known as seismic bearings.

第9図に示すのは、鋼板等の硬質板(1)と圧縮永久
歪の小さいゴム状弾性板(2)を交互に積層した免震支
承である。この免震支承(3)は、鉛直方向弾性係数の
水平方向弾性係数に対する比が極めて大きいので、建築
物を上下方向に安定させた状態で水平方向に揺動可能に
支持する。そして建築物の固有振動周期を地震の最大振
幅成分の周期より長くして、地震時の建築物の加速度応
答を低減できる。この免震支承自体は、免震動作時の振
動エネルギー吸収能力が殆どないのでエネルギー吸収用
のダンパーを別付けする必要がある。
FIG. 9 shows a seismic isolation bearing in which hard plates (1) such as steel plates and rubber-like elastic plates (2) having a small compression set are alternately laminated. The seismic isolation bearing (3) has an extremely large ratio of the elastic modulus in the vertical direction to the elastic modulus in the horizontal direction, so that the seismic isolation bearing (3) supports the building in a vertically stable manner so as to be swingable in the horizontal direction. Then, the natural vibration cycle of the building can be made longer than the cycle of the maximum amplitude component of the earthquake to reduce the acceleration response of the building during the earthquake. Since this seismic isolation bearing itself has almost no vibration energy absorption capability during seismic isolation operation, it is necessary to add a damper for energy absorption.

しかし、このダンパーのため、装置全体が占めるスペ
ースが大きくなる、力の作用する点が多く設計が複雑に
なる、取り付けコストが高くなるといった問題が生じ
る。また、これまで主に用いられてきた鋼棒ダンパー等
の塑性ダンパーでは、使用による劣化が早くある程度使
用すると取り換える必要がある。
However, due to this damper, there are problems that the space occupied by the entire apparatus becomes large, many points of force act, the design becomes complicated, and the mounting cost becomes high. In addition, plastic dampers such as steel rod dampers that have been mainly used so far need to be replaced when they deteriorate to a certain extent and are used to some extent.

そこで、ダンパー一体型の免震支承として、第10図〜
第12図に示すものが考えられた。
Therefore, as a seismic isolation bearing with integrated damper, Fig. 10 ~
The one shown in Fig. 12 was considered.

第10図に示すのは、第9図で説明した免震支承(3)
の中央に、ダンパーとして鉛プラグ(4)を入れてエネ
ルギー吸収能力を具備させた免震支承である(特公昭61
−17984号)。
Fig. 10 shows the seismic isolation bearing (3) explained in Fig. 9.
It is a seismic isolation bearing that has a lead plug (4) as a damper in the center of the and has an energy absorption capacity.
-17984).

しかし、この鉛プラグ(4)のため、変形後に上部構
造物が元の位置に戻り難く、初期剛性が高すぎて微振動
を上部構造物にそのまま伝達してしまうという新たな問
題が生じる。
However, due to the lead plug (4), it is difficult for the upper structure to return to its original position after deformation, and the initial rigidity is too high, which causes a new problem of transmitting microvibration to the upper structure as it is.

第11図に示すのは、第9図で説明した免震支承(3)
におけるゴム状弾性板に振動エネルギーの吸収作用を持
つ高減衰エラストマー(5)を用いて、鉛プラグ(4)
の欠点を除去しようとした免震支承(特開昭62−83139
号)。
Fig. 11 shows the seismic isolation bearing (3) explained in Fig. 9.
A high-damping elastomer (5) that absorbs vibration energy is used for the rubber elastic plate in the lead plug (4).
Seismic isolation bearing to remove the defects of
issue).

しかし、この免震支承(6)は、高減衰エラストマー
(5)が上部構造物の大きな鉛直荷重を直接支持するこ
とになるためクリープ量が大きく、内部ひずみが大きく
なって耐久性(寿命)が悪いという問題がある。
However, since the high-damping elastomer (5) directly supports the large vertical load of the superstructure, the seismic isolation bearing (6) has a large amount of creep, a large internal strain, and durability (life). There is a problem of being bad.

第12図に示す免震支承(8)は、高減衰エラストマー
が上部構造物の大きな鉛直荷重を直接支持しないように
工夫したものである。これは第9図で説明した免震支承
(3)の中央に上下方向の貫通孔を設け、この貫通孔に
高減衰エラストマー(7)を入れて、振動エネルギーの
吸収機能を与えている(実開昭61−39705号)。
The seismic isolation bearing (8) shown in Fig. 12 is designed so that the high damping elastomer does not directly support the large vertical load of the superstructure. This is provided with a vertical through hole at the center of the seismic isolation bearing (3) described in FIG. 9, and a high damping elastomer (7) is put in this through hole to provide a vibration energy absorbing function (actually, (Kaisho 61-39705).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記第12図に示す免震支承(8)は、鋼板等の硬質板
(1)とゴム状弾性板(2)の積層部分のみで鉛直荷重
を支持するように見える。しかし、実際には高減衰エラ
ストマー(7)も鉛直荷重を支持する結果になってい
る。これについて説明する。鉛直方向に荷重を受けた場
合、ゴム状弾性板(2)は圧縮され、歪みが発生するの
と同様に内部の高減衰エラストマー(7)も圧縮され水
平方向へ膨出する。この周囲は硬質板(1)及びゴム状
弾性板(2)によって拘束されている。このため、高減
衰エラストマー(7)もゴム状弾性板(2)と同様に鉛
直荷重を支える事になる。従って内部にクリープ量の大
きなエラストマーを用いると支承全体のクリープ歪量も
増加する。高減衰エラストマーはその物性上、クリープ
歪の発生が大きい。したがって上記第12図に示す免震支
承(8)のクリープ量は、第11図に示す免震支承(6)
と比べれば少ないけれども、第9図に示す減衰の少ない
エラストマーで作られた免震支承(3)と比べれば多い
ものとなっている。このためクリープによる内部歪みで
耐久性を悪くすることになっていた。
The seismic isolation bearing (8) shown in FIG. 12 seems to support the vertical load only by the laminated portion of the hard plate (1) such as a steel plate and the rubber-like elastic plate (2). However, in practice the high damping elastomer (7) also results in supporting vertical loads. This will be described. When a load is applied in the vertical direction, the rubber-like elastic plate (2) is compressed and the high damping elastomer (7) inside is also compressed and swells in the horizontal direction in the same manner as strain is generated. This periphery is restrained by a hard plate (1) and a rubber-like elastic plate (2). Therefore, the high-damping elastomer (7) also bears the vertical load similarly to the rubber-like elastic plate (2). Therefore, when an elastomer having a large creep amount is used inside, the creep strain amount of the entire bearing also increases. Due to the physical properties of the high-damping elastomer, the occurrence of creep strain is large. Therefore, the amount of creep of the seismic isolation bearing (8) shown in Fig. 12 is the same as that of the seismic isolation bearing (6) shown in Fig. 11.
Although it is less than that of the seismic isolation bearing (3) shown in FIG. Therefore, the internal strain caused by creep deteriorates the durability.

そこで、本発明は高減衰エラストマーをダンパーとし
て用いた免震支承において、鉛直クリープ変形の小さい
免震支承を実現することを目的とする。
Therefore, it is an object of the present invention to realize a seismic isolation bearing having a small vertical creep deformation in the seismic isolation bearing using a high damping elastomer as a damper.

〔課題を解決するための手段〕[Means for solving the problem]

本発明が提供する免震支承は、剛性を有する硬質板と
圧縮永久歪みの小さいゴム状弾性板を交互に積層した支
承体と、この支承体の周囲に支承体に対し非接着状態で
配設され、この支承体の上下のフランジに挟まれるよう
に固定された高減衰エラストマーとを具備したことを特
徴とする。
The seismic isolation bearing provided by the present invention includes a support body in which hard plates having rigidity and rubber-like elastic plates having a small compression set are alternately laminated, and is provided around the support body in a non-adhesive state with respect to the support body. And a high damping elastomer fixed so as to be sandwiched between the upper and lower flanges of the support body.

また、この高減衰エラストマーは、剛性を有する硬質
板と、板状の高減衰エラストマーを交互に積層固着した
積層体とし、上記支承体の周囲に支承体に対し非接着状
態で配設され、上記支承体のフランジに挟まれるように
固定することもできる。
In addition, the high damping elastomer is a laminated body in which rigid hard plates and plate-shaped high damping elastomers are alternately laminated and fixed, and the highly damping elastomer is arranged around the above supporting body in a non-adhesive state with respect to the supporting body. It can also be fixed so as to be sandwiched between the flanges of the support.

〔作用〕[Action]

本発明の免震支承における高減衰エラストマーは、鉛
直荷重を受ける支承体の外周に支承体に対し非接着状態
で配置され、地震時の外力による変形応力に対し、支承
体に拘束されないため変形の自由度が高く、外側に自由
に膨出することができる。このため、鉛直荷重を受けず
クリープが発生せず、長寿命となる。
The high-damping elastomer in the seismic isolation bearing of the present invention is arranged on the outer periphery of the bearing body that receives a vertical load in a non-bonded state to the bearing body, and is not constrained by the bearing body against deformation stress due to external force at the time of an earthquake. It has a high degree of freedom and can bulge outward freely. Therefore, it does not receive a vertical load, does not generate creep, and has a long life.

高減衰エラストマーを硬質板を挟み、支承体とは非接
着の積層体とすると、上記作用に加え、高減衰エラスト
マーの上下方向の動きが規制され、水平方向の振動に対
する単位体積当たりの歪み量が増加する。このため積層
しない場合と比べて減衰定数を増加することができる。
If a high damping elastomer is sandwiched between hard plates and is a non-bonded laminated body with the support, in addition to the above action, the vertical movement of the high damping elastomer is restricted, and the strain amount per unit volume against horizontal vibration is reduced. To increase. Therefore, the damping constant can be increased as compared with the case where no lamination is performed.

〔実施例〕〔Example〕

本発明の免震支承(10)の基本構造を第1図に示す。
この免震支承(10)は、天然ゴム等の圧縮永久歪の小さ
いゴム状弾性板(11)と鋼板等の硬質板(12)を交互に
積層して柱状の支承体(13)を形成し、その回りを高減
衰エラストマー(14)で囲っている。なお、この高減衰
エラストマー(14)と支承体(13)との間には隙間まで
設ける必要はないが、非接着とする。また、圧縮永久歪
みの小さいゴム状弾性板(11)の減衰能力が高い時や低
い時は外付けの高減衰エラストマー(14)の量・性能を
変えて調節する。
The basic structure of the seismic isolation bearing (10) of the present invention is shown in FIG.
This seismic isolation bearing (10) forms a columnar bearing (13) by alternately laminating a rubber-like elastic plate (11) having a small compression set such as natural rubber and a hard plate (12) such as a steel plate. , Surrounding it with high damping elastomer (14). It is not necessary to provide a gap between the high-damping elastomer (14) and the support body (13), but they are not adhered. When the rubber-like elastic plate (11) having a small compression set has a high or low damping capacity, the amount and performance of the external high-damping elastomer (14) are changed to adjust.

ここで、天然ゴム等の圧縮ひずみの小さいゴム状弾性
板(11)とは、圧縮永久ひずみが25%以下のエラストマ
ーをいう。また、高減衰エラストマー(14)とは、25
℃、0.5Hz、±50%剪断歪み時のtanδが0.15〜1.5で、
その時の絶対弾性係数|G|が2〜21kgf/cm2の物を言
う。
Here, the rubber-like elastic plate (11) having a small compression strain, such as natural rubber, means an elastomer having a compression set of 25% or less. In addition, the high damping elastomer (14) is 25
Tan δ at 0.15 to 1.5 at ℃, 0.5Hz, ± 50% shear strain,
At that time, the absolute modulus | G * | refers to a product of 2 to 21 kgf / cm 2 .

この絶対弾性係数|G|は複数弾性係数の絶対値 である。但し、G1は貯蔵弾性係数で、応力の歪みと同位
相の振幅τo・cosδをひずみ振幅γoで割った商であ
り、G2は損失弾性係数で、応力の歪みと90゜位相の異な
った成分の振幅τo・sinδをひずみ振幅γoで割った
商である。この高減衰エラストマーは、具体的には、ブ
チルゴム、NBR等があり、この他にもNR、SBR、BR、ポリ
ノルボーネン、シリコンゴム、フッ素ゴム、クロロブチ
ルゴム、クロロプレンゴム、ウレタンエラストマー又は
それらのブレンド等に補強剤や充填剤、樹脂類、柔軟剤
等を配合することによって得た減衰性の高いエラストマ
ー配合物を含む。
This absolute elastic modulus | G * | is the absolute value of multiple elastic moduli Is. Where G 1 is the storage elastic modulus, which is the quotient of the amplitude τo · cosδ in phase with the strain of stress divided by the strain amplitude γo, and G 2 is the loss elastic modulus, which differs from the stress strain by 90 ° in phase. It is the quotient of the component amplitude τo · sinδ divided by the strain amplitude γo. Specific examples of the high-damping elastomer include butyl rubber and NBR.In addition to these, NR, SBR, BR, polynorbornene, silicone rubber, fluororubber, chlorobutyl rubber, chloroprene rubber, urethane elastomer or blends thereof. And the like, and includes a high-damping elastomer blend obtained by blending a reinforcing agent, a filler, a resin, a softening agent, and the like.

第1図に示す基本構造の具体的な製作例を第2図に示
し説明する。
A specific manufacturing example of the basic structure shown in FIG. 1 will be described with reference to FIG.

第2図に示す免震支承(10a)は、ゴム状弾性板(1
1)として直径Rが600mmφで4mm厚の天然ゴムを39枚用
い、各天然ゴムの間に挟まれる38枚の硬質板(12)とし
て2mm厚の鋼板を用いて、円柱状の支承体(13)を形成
している。この支承体(13)の回りに同心に配置される
高減衰エラストマー(14)は、内径620mmφ、外径880mm
φの円筒状のものである。この高減衰エラストマー(1
4)は、25℃、0.5Hz、±50%剪断歪み時のtanδが0.53
で、そのときの絶対弾性係数|G|が7kgf/cm2のポリノ
ルボーネンを使用している。これら支承体(13)と高減
衰エラストマー(14)の上下面には強度の大きいフラン
ジ(15)を固着している。
The seismic isolation bearing (10a) shown in Fig. 2 has a rubber-like elastic plate (1
As 1), 39 pieces of natural rubber having a diameter R of 600 mmφ and 4 mm thickness are used, and 38 pieces of hard plates (12) sandwiched between the natural rubbers are made of 2 mm thick steel plate. ) Is formed. The high damping elastomer (14) concentrically arranged around this support (13) has an inner diameter of 620 mmφ and an outer diameter of 880 mm.
It has a cylindrical shape of φ. This high damping elastomer (1
4) has a tan δ of 0.53 at 25 ° C, 0.5 Hz, ± 50% shear strain.
Therefore, the absolute modulus of elasticity | G * | at that time is 7 kgf / cm 2 of polynorbornene. A flange (15) having high strength is fixed to the upper and lower surfaces of the bearing (13) and the high damping elastomer (14).

この製作例における剪断変形時の減衰定数hを測定し
たところ0.12という値を得ることができた。通常の免震
支承の減衰定数hは0.1〜0.15程度あれば良いから、0.1
2は十分な値である。なお、減衰定数hは、振動等の振
動減衰性能を示す値であり、 で表わされる。但しΔWは振動一周期ごとに消費するエ
ネルギ、Wは入力された弾性エネルギである。これを第
3図に示す水平方向変位とその反力が描くヒステリシス
ループ(16)で説明すると、ΔWはヒステリシスループ
(16)が囲む面積、Wは斜線部分の面積である。
When the damping constant h at the time of shear deformation in this manufacturing example was measured, a value of 0.12 could be obtained. A normal seismic isolation bearing has a damping constant h of 0.1 to 0.15, so 0.1
2 is a sufficient value. The damping constant h is a value indicating vibration damping performance such as vibration, Is represented by However, ΔW is energy consumed for each cycle of vibration, and W is input elastic energy. This will be explained with reference to the hysteresis loop (16) drawn by the horizontal displacement and its reaction force shown in FIG. 3. ΔW is the area surrounded by the hysteresis loop (16), and W is the area of the shaded portion.

本考案の高減衰エラストマー(14)は、必ずしも、第
1図及び第2図に示したような単独物としなくてもよ
い。免震動作時の振動によって水平方向に変形し得る状
態で高減衰エラストマー(14)が支承体(13)の周囲に
配設されていればよいのである。例えばこの高減衰エラ
ストマーを積層体とすれば、減衰定数をより大きくする
ことができる。この具体的製作例を第4図に示し説明す
る。
The high damping elastomer (14) of the present invention does not necessarily have to be a single piece as shown in FIGS. 1 and 2. It suffices that the high-damping elastomer (14) be arranged around the support body (13) in a state where it can be deformed in the horizontal direction by the vibration during the base isolation operation. For example, if the high damping elastomer is used as a laminate, the damping constant can be further increased. This concrete manufacturing example will be described with reference to FIG.

第4図に示す免震支承(10b)は、第2図に示す免震
支承(10a)の高減衰エラストマー(14)の部分を積層
化したものであり、他の部分は、第2図に示した免震支
承(10a)と、材質、寸法、形状とも同一である。この
高減衰エラストマーの積層体(14a)は、7.8mm厚の高減
衰エラストマーの板(17)を20枚用い、これらの間に硬
質板として4mm厚の鋼板(18)を挟み、固着・積層した
ものである。この積層体(14a)の外径寸法は、第2図
に示す高減衰エラストマー(14)と同一、すなわち内径
620mmφ、外径880mmφの円筒形である。また高減衰エラ
ストマーの板(17)の材質も第2図に示した。高減衰エ
ラストマー(14)と同一、すなわち25℃、0.5Hz、±50
%剪断歪み時のtanδが0.53でその時の絶対弾性計数が7
kgF/cm2のポリノルボーネンである。硬質板(18)は鋼
板等を用いてもよいが耐火性能を向上するため熱伝導率
が低く、不燃又は難燃性の物を使用することが好まし
い。
The seismic isolation bearing (10b) shown in FIG. 4 is obtained by laminating the high damping elastomer (14) portion of the seismic isolation bearing (10a) shown in FIG. 2, and the other portions are shown in FIG. The material, size and shape of the seismic isolation bearing (10a) are the same. This laminated body (14a) of high-damping elastomer uses 20 sheets of high-damping elastomer (7.8) with a thickness of 7.8 mm, and a steel plate (18) with a thickness of 4 mm is sandwiched between them as a hard plate and fixed and laminated. It is a thing. The outer diameter of this laminate (14a) is the same as that of the high damping elastomer (14) shown in FIG.
It has a cylindrical shape of 620 mmφ and an outer diameter of 880 mmφ. The material of the high damping elastomer plate (17) is also shown in FIG. Same as high damping elastomer (14), ie 25 ℃, 0.5Hz, ± 50
The tan δ at% shear strain is 0.53 and the absolute elastic modulus at that time is 7
It is a polynorbornene of kgF / cm 2 . As the hard plate (18), a steel plate or the like may be used, but it is preferable to use a non-combustible or flame-retardant material having low thermal conductivity in order to improve fire resistance performance.

この製作例において、高減衰エラストマーの積層体
(14a)は各層を固着する必要がある。しかし支承体(1
3)の各層は必ずしも固着しなくてもよい。大きな鉛直
荷重を受けると各層が固着状態になるからである。
In this fabrication example, the high damping elastomer laminate (14a) requires the layers to be secured together. However, the support (1
Each layer in 3) does not necessarily have to be fixed. This is because each layer becomes stuck when a large vertical load is applied.

第4図に示す免震支承(10b)の剪断変形時の減衰定
数を測定したところ、0.14という値を得た。これは第2
図に示した免震支承(10a)より増加している。
When the damping constant of the base isolation bearing (10b) shown in Fig. 4 during shear deformation was measured, a value of 0.14 was obtained. This is the second
It is increasing from the seismic isolation bearing (10a) shown in the figure.

上記高減衰エラストマー(14)、または積層体(14
a)は、第5図に示すように、例えばこれの上下面に加
硫接着した取付板(19)(19)等を用いて、上下のフラ
ンジ(15)に固定される。なお、このフランジは、図示
したように、支承体(13)の部分と高減衰エラストマー
(14)乃至積層体(14a)の部分が、同体の場合と別体
の場合がある。
The high damping elastomer (14) or laminated body (14)
As shown in FIG. 5, a) is fixed to the upper and lower flanges (15) by using, for example, mounting plates (19) (19) vulcanized and bonded to the upper and lower surfaces thereof. As shown in the figure, in this flange, the support body (13) and the high-damping elastomer (14) to the laminate (14a) may be the same body or different bodies.

また、この高減衰エラストマー(14)又はその積層体
(14a)には、例えば、第6図に示すように、少なくと
も、一箇所以上の切断部(20)を設けてもよい。この分
割構造によって既設の免震支承にも後付けが可能とな
る。この構造が可能なのは、高減衰エラストマー(14)
又はその積層体(14a)を外装しているからで、内部に
高減衰エラストマーを配置した場合と異なり、後からで
も外径の違う高減衰エラストマーの付け換えが可能であ
る。従って、免震支承の減衰性能を後からでも変更でき
る。また積層部分の製造も高減衰エラストマーと独立に
行えるので、容易である。
Further, the high damping elastomer (14) or the laminate (14a) thereof may be provided with at least one cut portion (20) as shown in FIG. 6, for example. This split structure enables retrofitting to existing seismic isolation bearings. This construction allows for high damping elastomers (14)
Alternatively, since the laminate (14a) is packaged, unlike the case where the high damping elastomer is arranged inside, the high damping elastomer having a different outer diameter can be replaced even afterward. Therefore, the damping performance of the seismic isolation bearing can be changed later. In addition, since the laminated portion can be manufactured independently of the high damping elastomer, it is easy.

本発明において高減衰エラストマー(14)又はその積
層体(14a)を支承体(13)の外周に配したのは高減衰
エラストマーに、膨出の許容空間を与えるという考え方
である。この考え方を従来例として第12図に示した免震
支承(8)にも適用し、第7図に示すように支承体(8
a)の内径を高減衰エラストマー(7)の外径より大き
くすることが考えられる。しかし、このように高減衰エ
ラストマー(7)を内装する場合、ゴム状弾性板と硬質
板を積層した部分の自由表面が内側にもできる為、支承
体(8a)の鉛直剛性が著しく減少する。したがって、必
要な鉛直剛性を得る為には、積層した支承体(8a)の断
面積を増大させる必要があり、免震支承の外径寸法を大
きくし過ぎて実用的ではなくなる。
In the present invention, the high damping elastomer (14) or the laminated body (14a) thereof is arranged on the outer periphery of the support body (13) in order to give the high damping elastomer a swellable space. This concept is applied to the seismic isolation bearing (8) shown in FIG. 12 as a conventional example, and as shown in FIG.
It is conceivable to make the inner diameter of a) larger than the outer diameter of the high damping elastomer (7). However, in the case where the high damping elastomer (7) is incorporated in this way, the free surface of the portion where the rubber-like elastic plate and the hard plate are laminated can also be formed inside, so that the vertical rigidity of the support (8a) is significantly reduced. Therefore, in order to obtain the required vertical rigidity, it is necessary to increase the cross-sectional area of the laminated bearing bodies (8a), which makes the outer diameter of the seismic isolation bearing too large to be practical.

また本発明の免震支承は、支承体(13)の周囲に高減
衰エラストマー(14)、又はその積層体(14a)を配設
した結果として、耐火性能、すなわち、火災時に建物の
重量を支える支承体を火災から守る機能をも同時に発揮
することとなった。特に、通常の断熱材を支承の周囲に
配設した方式の時は地震の大きな揺れを受けて断熱材が
破損した後に火災が発生すると支承の保護にならない
為、真に耐火性能を有する免震構造物を作ることはでき
なかった。本方式では地震の大きな揺れを受けても高減
衰エラストマーは破損する事はないので地震後の火災に
対応することが出来る。また、火災終了後本高減衰エラ
ストマーを交換する事により、支承にはなんらの損傷を
与える事なく再使用する事ができる。
Further, the seismic isolation bearing of the present invention, as a result of disposing the high damping elastomer (14) or the laminated body (14a) around the bearing body (13), supports the fire resistance performance, that is, the weight of the building during a fire. At the same time, it has the function of protecting the bearing from fire. In particular, in the case of a system in which normal heat insulating material is arranged around the bearing, if a fire occurs after the heat insulating material is damaged due to a large shaking of the earthquake, it will not protect the bearing, so it is truly seismic isolated. I couldn't make a structure. With this method, the high-damping elastomer will not be damaged even if it is subjected to a large quake, so it is possible to respond to a fire after the earthquake. Also, by replacing the high damping elastomer after the fire ends, the bearing can be reused without any damage.

この耐火性能について、さらに説明を加える、例えば
第8図に示すように、免震支承(10)の周囲に10mmの隙
間を設けて厚さ60mmの高減衰エラストマー(21)で覆
い、上下にセラミックファイバー製の耐火被覆(22)を
配置して、加熱炉内に入れて行った耐火試験に於いて、
構造物の耐火性能で要求される3時間耐火試験後の性能
に変化は見られなかった。したがって、取りつける高減
衰エラストマーの厚みは40mm以上、より好ましくは60mm
以上あればよい。第2図及び第4図に示した免震支承
(10a)(10b)における高減衰エラストマー(14)又
は、その積層体(14a)の厚みが130mmであるように、実
際に製作される免震支承の高減衰エラストマーの厚み
は、上述した値の40〜60mmよりかなり大きいのが通常で
あるから特別な配慮をしなくても本発明の免震支承は充
分な耐火性能を持つことになる。
This fire resistance is further explained. For example, as shown in FIG. 8, a seismic isolation bearing (10) is covered with a high-damping elastomer (21) having a thickness of 60 mm with a gap of 10 mm, and ceramics are vertically arranged. In a fireproof test conducted by placing a fiber fireproof coating (22) and putting it in a heating furnace,
No change was observed in the performance after the 3-hour fire resistance test required for the fire resistance performance of the structure. Therefore, the thickness of the high damping elastomer to be mounted is 40 mm or more, more preferably 60 mm.
I just need more. The seismic isolation that is actually manufactured so that the thickness of the high damping elastomer (14) or the laminate (14a) of the seismic isolation bearings (10a) and (10b) shown in FIGS. 2 and 4 is 130 mm. Since the thickness of the high-damping elastomer of the bearing is usually considerably larger than the above-mentioned value of 40 to 60 mm, the seismic isolation bearing of the present invention will have sufficient fire resistance performance without special consideration.

耐火性能をさらに向上するためには、高減衰エラスト
マーにシリコンゴム、フッ素ゴム、クロロブチル等の難
燃性エラストマーを用いたり、また高減衰エラストマー
に酸化アンチモン、有機リン酸エステル、塩素化パラフ
ィン、無機塩類等の添加タイプの難燃剤、テトラ・ブロ
モ・ビスフェノールA等の反応タイプの難燃剤を添加し
たものを用いてもよい。
In order to further improve fire resistance performance, flame retardant elastomers such as silicone rubber, fluororubber and chlorobutyl are used for the high damping elastomer, and antimony oxide, organic phosphate ester, chlorinated paraffin, inorganic salts are used for the high damping elastomer. Addition-type flame retardants such as, and those to which reaction-type flame retardants such as tetra-bromo-bisphenol A are added may be used.

また他にも高減衰エラストマーに色物配合を用いるこ
とによってファッション性を兼ね備えた支承とすること
もできる。
Further, by using a color mixture in the high-damping elastomer, it is possible to provide a bearing having fashionability.

〔発明の効果〕〔The invention's effect〕

本発明によれば、支承体とダンパーを一体化でき、従
来の天然ゴムを用いた積層ゴム支承と同程度のクリープ
量で、かつ減衰能力が大きい免震支承を実現できる。
According to the present invention, a bearing and a damper can be integrated, and a seismic isolation bearing having the same creep amount as that of a conventional laminated rubber bearing using natural rubber and a large damping capacity can be realized.

またダンパーとして支承体の周囲に配した高減衰エラ
ストマーは、同時に耐火機能をも発揮し、本発明の免震
支承は、この面からも信頼性の高いものとなった。
Further, the high-damping elastomer arranged around the bearing as a damper also exhibits a fire resistance function, and the seismic isolation bearing of the present invention is also highly reliable in this respect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の免震支承の一実施例を示す断面図、第
2図は第1図に示す免震支承の具体的な製作例を示す断
面図、第3図は高減衰エラストマーにおける減衰定数を
説明するヒステリシスループを示す図、第4図は積層化
した高減衰エラストマーを用いた本発明の免震支承の具
体的製作例を示す断面図、第5図は高減衰エラストマー
の取付け構造例を示す断面図、第6図は高減衰エラスト
マーを支承体に分割して取付ける構造の説明図である。 第7図は本発明と比較するための参考例で、高減衰エラ
ストマーを隙間を設けて内装した免震支承を示す断面図
である。第8図は本発明の免震支承に対して行った耐火
試験を説明する断面図である。第9図〜第12図は夫々従
来の免震支承の異なる構造例を示す断面図である。 (1)……硬質板、(2)……ゴム状弾性板、 (13)……支承体、(14)……高減衰エラストマー、 (14a)……高減衰エラストマーの積層体。
FIG. 1 is a sectional view showing an embodiment of the seismic isolation bearing of the present invention, FIG. 2 is a sectional view showing a concrete manufacturing example of the seismic isolation bearing shown in FIG. 1, and FIG. 3 is a high damping elastomer. FIG. 4 is a cross-sectional view showing a hysteresis loop for explaining a damping constant, FIG. 4 is a sectional view showing a concrete manufacturing example of the base isolation bearing of the present invention using laminated high damping elastomers, and FIG. 5 is a mounting structure of high damping elastomers. FIG. 6 is a cross-sectional view showing an example, and FIG. 6 is an explanatory view of a structure in which a high-damping elastomer is divided and attached to a support. FIG. 7 is a reference example for comparison with the present invention, and is a cross-sectional view showing a seismic isolation bearing in which a high-damping elastomer is internally provided with a gap. FIG. 8 is a sectional view for explaining a fire resistance test conducted on the seismic isolation bearing of the present invention. 9 to 12 are cross-sectional views showing different structural examples of conventional seismic isolation bearings. (1) …… Hard plate, (2) …… Rubber-like elastic plate, (13) …… Supporting body, (14) …… High damping elastomer, (14a) …… High damping elastomer laminate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 芳昭 兵庫県宝塚市川面5丁目25―3 (72)発明者 宮崎 光生 埼玉県入間郡鶴ケ島町3丁目3―3― 306 (72)発明者 有馬 文昭 神奈川県相模原市千代田3―9―7 五 月コーポ (72)発明者 光阪 勇治 埼玉県狭山市新狭山2―3―5 住友建 設第一狭山寮 (56)参考文献 特開 昭64−29540(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiaki Miyamoto 5-25-3 Kawamata, Takarazuka-shi, Hyogo Prefecture (72) Inventor Mitsuo Miyazaki 3-3-3-3, Tsurugashima-cho, Iruma-gun, Saitama Inventor Arima Fumiaki 3-9-7 Chiyoda, Sagamihara-shi, Kanagawa May Corp. (72) Inventor Yuji Mitsusaka 2-3-5 Shin-Sayama, Sayama-shi, Saitama Sumitomo Construction Daiichi Sayama Dormitory (56) References JP-A-64- 29540 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】剛性を有する硬質板と圧縮永久歪の小さい
ゴム状弾性板を交互に積層した支承体と、 この支承体の周囲に支承体に対し非接着状態で配設さ
れ、この支承体の上下のフランジに挟まれるように固定
された高減衰エラストマーとを具備したことを特徴とす
る免震支承。
1. A support body in which hard plates having rigidity and rubber-like elastic plates having a small compression set are alternately laminated, and the support body is disposed around the support body in a non-adhesive state with respect to the support body. A seismic isolation bearing comprising a high-damping elastomer fixed so as to be sandwiched between upper and lower flanges.
【請求項2】剛性を有する硬質板と圧縮永久歪の小さい
ゴム状弾性板を交互に積層した支承体と、 剛性を有する硬質板と板状の高減衰エラストマーを交互
に積層固着して形成され、上記支承体の周囲に支承体に
対し非接着状態で配設され、上記支承体のフランジに挟
まれるように固定された積層体とを具備したことを特徴
とする免震支承。
2. A support body formed by alternately laminating a rigid hard plate and a rubber-like elastic plate having a small compression set, and a rigid hard plate and a plate-like high damping elastomer which are alternately laminated and fixed. A seismic isolation bearing, comprising: a laminated body which is disposed around the support body in a non-adhesive state with respect to the support body and is fixed so as to be sandwiched by a flange of the support body.
JP1101183A 1988-05-06 1989-04-19 Seismic isolation support Expired - Lifetime JP2536924B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1101183A JP2536924B2 (en) 1988-05-06 1989-04-19 Seismic isolation support
KR1019890006036A KR0169706B1 (en) 1988-05-06 1989-05-04 Shakeproof bearing
EP89304491A EP0341058B1 (en) 1988-05-06 1989-05-04 Shakeproof bearing
DE8989304491T DE68902949T2 (en) 1988-05-06 1989-05-04 EMERGENCY SAFE WAREHOUSE.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11072088 1988-05-06
JP63-110720 1988-05-06
JP1101183A JP2536924B2 (en) 1988-05-06 1989-04-19 Seismic isolation support

Publications (2)

Publication Number Publication Date
JPH0249834A JPH0249834A (en) 1990-02-20
JP2536924B2 true JP2536924B2 (en) 1996-09-25

Family

ID=26442099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101183A Expired - Lifetime JP2536924B2 (en) 1988-05-06 1989-04-19 Seismic isolation support

Country Status (4)

Country Link
EP (1) EP0341058B1 (en)
JP (1) JP2536924B2 (en)
KR (1) KR0169706B1 (en)
DE (1) DE68902949T2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425310A1 (en) * 1994-07-18 1996-02-22 Spannverbund Ges Fuer Verbundt Low-vibration composite beam
ATE281150T1 (en) * 1996-09-13 2004-11-15 Univ Clemson ACNE TREATMENT REMEDIES
US6221847B1 (en) 1996-09-13 2001-04-24 Clemson University Composition and method for treating bacterial infection
KR20010085005A (en) * 2001-07-12 2001-09-07 이 상 준 Vertical load supporting butyl rubber, which is used for the prevention of resonance of isolator
KR100465646B1 (en) * 2001-12-26 2005-01-13 (주)티이솔루션 Elastoplastic damper
JP2011089328A (en) * 2009-10-23 2011-05-06 Shimizu Corp Base isolation device and damping mechanism used for the same, and assembling method of the base isolation device
KR101683134B1 (en) 2010-04-15 2016-12-06 엘에스전선 주식회사 Bearing apparatus for wind tower
CN103603378B (en) * 2013-11-25 2015-05-27 辽宁工业大学 Eight-cylinder-nested tubular universal damper
DE102014004059A1 (en) 2014-03-21 2015-09-24 Andreas D.J. Iske vibration isolator
US9945116B2 (en) * 2015-12-07 2018-04-17 Chong-Shien Tsai Friction-damping energy absorber
JP7390234B2 (en) * 2020-03-30 2023-12-01 株式会社ブリヂストン Seismic isolation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442941A2 (en) * 1978-12-01 1980-06-27 Freyssinet Int Stup STRONG INTERNAL DAMPING SUPPORT DEVICE
US4830927A (en) * 1986-02-07 1989-05-16 Bridgestone Corporation Anti-seismic bearing and assembly of anti-seismic bearings
JP2623585B2 (en) * 1987-07-27 1997-06-25 株式会社ブリヂストン Seismic isolation structure

Also Published As

Publication number Publication date
KR0169706B1 (en) 1999-02-18
EP0341058A1 (en) 1989-11-08
DE68902949T2 (en) 1993-01-07
DE68902949D1 (en) 1992-10-29
KR900018482A (en) 1990-12-21
JPH0249834A (en) 1990-02-20
EP0341058B1 (en) 1992-09-23

Similar Documents

Publication Publication Date Title
Jangid et al. SEISMIC BEHAVIOUR OF BASE-ISOLATED BUILDINGS: A STATE-OF-THE ART REVIEW.
JP2536924B2 (en) Seismic isolation support
US5373670A (en) Shakeproof bearing
US6354047B1 (en) Columnar structure with earthquake resistance imparted thereto and method of reinforcing the earthquake resistance of a columnar structure
US9429205B2 (en) Elastomeric isolator
Derham et al. Natural rubber foundation bearings for earthquake protection—experimental results
US8291651B2 (en) Stable unbonded fiber-reinforced elastomeric seismic isolators for base isolation system
JP2013217483A (en) Laminated rubber bearing body
US9074368B2 (en) Energy absorbing system for safeguarding structures from disruptive forces
JP6635327B2 (en) Seismic isolation structure of building and seismic isolation method
JP3713645B2 (en) Seismic isolation device using laminated rubber
Toopchi-Nezhad et al. A novel elastomeric base isolation system for seismic mitigation of low-rise buildings
JP2801693B2 (en) Laminated rubber bearing
JP2825893B2 (en) Laminated rubber bearing
JPH01263335A (en) Fireproof device for earthquakeproof support
JP2001323686A (en) Base isolation device for lightweight building
JP4695650B2 (en) Seismic isolation and control equipment
JP2011241602A (en) Wind-resistant ground base isolation structure using bearings and construction method thereof
JP2011184950A (en) Slide foundation structure
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure
Adithya et al. Seismic Energy Dissipation: Art of the Scenario
JPH10311163A (en) Base isolation device
JPH02153137A (en) Layered rubber bearing member
JP2553211Y2 (en) Fireproof seismic isolation isolators
GB2242002A (en) Laminated rubber support assembly