JPH01263335A - Fireproof device for earthquakeproof support - Google Patents
Fireproof device for earthquakeproof supportInfo
- Publication number
- JPH01263335A JPH01263335A JP9408588A JP9408588A JPH01263335A JP H01263335 A JPH01263335 A JP H01263335A JP 9408588 A JP9408588 A JP 9408588A JP 9408588 A JP9408588 A JP 9408588A JP H01263335 A JPH01263335 A JP H01263335A
- Authority
- JP
- Japan
- Prior art keywords
- seismic isolation
- fireproof
- support
- fireproof layer
- earthquakeproof
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002955 isolation Methods 0.000 claims description 61
- 238000004079 fireproofing Methods 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 abstract description 10
- 239000000463 material Substances 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000011094 fiberboard Substances 0.000 description 2
- 230000009970 fire resistant effect Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical group N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業−1−の利用分野〕
本発明は、に部構造物と一ド部構造物の間に挟まれて、
−1一部構造←フへの地震入力を軽減する免震支承の耐
火装置に関する。[Detailed Description of the Invention] [Field of Application in Industry-1-] The present invention provides a structure that is sandwiched between a two-part structure and a one-part structure,
-1 Concerning a fireproof device for seismic isolation bearings that reduces earthquake input to some structures.
建築物等の上部構造物を、水平方向に揺動し得る状態で
−F部構造物である基礎」二に載置支持し、地震発生時
の建築物への横波の人力加速度を低減して、地震の破壊
力から免がれさせる免震支承が知られている。The superstructure of a building, etc. is placed and supported on the foundation (which is the F section structure) in a state where it can swing horizontally, reducing the human acceleration of transverse waves to the building during an earthquake. , Seismic isolation bearings that provide immunity from the destructive force of earthquakes are known.
この免震支承ば、一般に、水平剛性に対する鉛直剛性を
、例えば500〜800と高めることにより、大重量物
の支持能力と大きな水平方向変形能力を有する。ごの免
震支承の構造ば、例えは第11図・〜第13図に示すよ
うに薄いゴム板(1)と鋼板(2)を交互に積層固着し
た免震支承(3)、或いは、図ンJKシないが粘性流体
を封入した弾性体の袋を周囲から拘束した周囲拘束型免
震支承等がある。これらは、大きな水平方向変位をDJ
能とするため可燃物である弾性体部分を持っている。Generally, this seismic isolation support has the ability to support large heavy objects and the ability to deform in the horizontal direction by increasing the vertical stiffness relative to the horizontal stiffness, for example, from 500 to 800. For example, the structure of a seismic isolation bearing for a car is a seismic isolation bearing (3) in which thin rubber plates (1) and steel plates (2) are alternately laminated and fixed as shown in Figures 11 to 13, or There is a circumferential restraint type seismic isolation support that restrains an elastic bag filled with viscous fluid from its surroundings. These DJs have large horizontal displacements.
It has an elastic part that is combustible to make it possible.
このため、免震支承によって自己の建物等が地震から保
護されていても、他の建物の地震による倒壊等によって
生しる火災の類焼で、免震支承が焼損し、免震能力及び
建築物の支持機能が損なわれるおそれがある。ここで免
震支承の焼損とは、可燃物自体の燃焼の他に、例えば可
燃物であるコム板とこれの水平方向への張り出しを拘束
する鋼板との結合が損なわれること等をいう。このよう
に、免震支承の機能がなくなると、火災発生後に再び到
来する地震によって免震支承で支持した上部構造物であ
る建築物が損壊するおそれがある。For this reason, even if one's own building is protected from earthquakes by seismic isolation bearings, the seismic isolation bearings may be burnt out due to a fire caused by the collapse of another building due to an earthquake, and the seismic isolation capacity may deteriorate. The supporting function of the product may be impaired. Here, burnout of the seismic isolation bearing refers to not only the combustion of the combustible material itself, but also damage to the connection between the comb board, which is a combustible material, and the steel plate that restrains its horizontal extension. In this way, if the seismic isolation bearing loses its function, there is a risk that the building, which is the superstructure supported by the seismic isolation bearing, will be damaged by another earthquake after a fire occurs.
そこで従来は、免震支承(3)に両部性能を与える構造
として、第11図にボずように、地震時に免震支承(3
)が動く範囲以−にの位置にセラミックファイバボード
(4)を免震支承(3)を囲むように設置するもの、第
12図に示すように周囲を厚いゴム(5)の耐火層で覆
うもの、又は第13図に示すように支承外面を弾性のあ
る耐火材(6)で被覆したもの(実開昭59−5810
7)が考えられていた。Therefore, in the past, as shown in Fig. 11, a structure that provides both parts of the seismic isolation bearing (3) has been used in the event of an earthquake.
) is installed so as to surround the seismic isolation bearing (3) at a position beyond the movement range of or as shown in Fig. 13, the outer surface of the support is covered with an elastic fireproof material (6) (Utility Model No. 59-5810)
7) was considered.
第11図に示す1Thi:部構造は、セラミソクファイ
ハーボード(4)の上下端を夫々」一部構造物(7)と
下部構造物(8)に固定している。The structure shown in FIG. 11 fixes the upper and lower ends of the ceramic ceramic board (4) to a partial structure (7) and a lower structure (8), respectively.
第12図に示す耐火構造は、免震支承(3)の周囲にゴ
ム(5)の耐火層を被着形成したもので、この厚さLは
例えば52mmと大きくする必要がある。The fireproof structure shown in FIG. 12 has a fireproof layer of rubber (5) adhered around a seismic isolation support (3), and the thickness L needs to be as large as, for example, 52 mm.
また、第13図に示す耐火構造は、耐火材(6)に耐火
性と弾性の両方の性質を満足する素材を選定しなければ
ならない。Furthermore, in the fireproof structure shown in FIG. 13, a material that satisfies both fireproofness and elasticity must be selected for the fireproof material (6).
上記セラミソクファイハボーF’(4,)を耐火層とし
て使用した免震支承(3)は、その上下端が夫々構造物
と基礎に固定されている構造のため被覆しているセラミ
ックファイバボード(4)が地震時の免震支承の大きな
水平方向変形に追従することが困難で、破壊され易い。The seismic isolation bearing (3) using the above-mentioned ceramic fiber F' (4,) as a fireproof layer has a structure in which its upper and lower ends are fixed to the structure and the foundation, respectively, so it is covered with ceramic fiberboard. (4) It is difficult to follow the large horizontal deformation of the seismic isolation support during an earthquake, and it is easily destroyed.
従って通常の火災に対する保護はできても地震後に発生
し易い火災に対する保護が不充分になる問題があった。Therefore, although protection against ordinary fires can be achieved, there is a problem in that protection against fires that are likely to occur after an earthquake is insufficient.
さらにセラミックファイバボード (4)を免震支承が
動く以」−の位置に設置するので、大きな設置スペース
を必要とする問題もある。Furthermore, since the ceramic fiber board (4) is installed at a position where the seismic isolation bearing moves, there is also the problem that it requires a large installation space.
次に第12図に示す厚いゴム(5)を使用したもの及び
第13図に示す弾性のある耐火材(6)を使用したもの
は、いずれも耐火部分と免震支く4)
承が一体になっているため、耐火部分のみを取り換える
ことができない。従って火災等によって耐火部分のみが
劣化した場合でも全体として取り換える必要があり、大
重量の建築物をジヤツキアンプする等で工費が大きくな
る問題がある。また厚いゴム(5)又は耐火層(6)で
被覆すると、これらは弾性体であり鉛直方向の剛性を変
化せずに、水平方向の剛性を増加させる。そして免震支
承の免震性能の大きさを示す鉛直剛性/水平剛性の比を
低下させる問題もある。さらにこれら厚いゴム(5)及
び弾性体の耐火材(6)は、火災時にある程度燃えて、
煙を出す欠点があり、特に住宅用設備として好ましくな
い。Next, in the case of those using thick rubber (5) shown in Figure 12 and those using elastic fireproof material (6) shown in Figure 13, the fireproof part and seismic isolation support 4) are integrated. Because of this, it is not possible to replace just the fireproof part. Therefore, even if only the fireproof part deteriorates due to a fire or the like, it is necessary to replace the whole part, and there is a problem in that the construction cost increases when a heavy building is jacked up. Also, when covered with a thick rubber (5) or fireproof layer (6), these are elastic bodies and increase the horizontal stiffness without changing the vertical stiffness. There is also the problem of lowering the vertical stiffness/horizontal stiffness ratio, which indicates the magnitude of the seismic isolation performance of the seismic isolation bearing. Furthermore, these thick rubber (5) and elastic fireproof material (6) burn to some extent in the event of a fire.
It has the disadvantage of emitting smoke, making it particularly undesirable as residential equipment.
また厚いゴム(Z)を耐火部分として使用した免震支承
は、この外被厚を52龍としてもJISA1304の規
格で耐火試験した場合、耐火時間は2時間程度であり、
現在建設業界で必要とされている3時間の耐火時間は確
保できない。また外被の厚さ52鰭にもすると、加硫時
間が長くな、す、免震支承の生産性が悪く、実用性がな
かった。In addition, when a seismic isolation bearing that uses thick rubber (Z) as a fireproof part is tested for fire resistance according to the JISA1304 standard, even if the outer shell thickness is 52 mm, the fire resistance time is about 2 hours.
The three-hour fire resistance time currently required in the construction industry cannot be secured. Moreover, if the thickness of the outer cover was set to 52 fins, the vulcanization time would be long, and the productivity of the seismic isolation bearing would be poor, making it impractical.
また第11図〜第13図に示す耐火構造は外観が悪くな
る問題があった。Moreover, the fireproof structure shown in FIGS. 11 to 13 has a problem of poor appearance.
本発明が提供する免震支承の耐火装置は、上部構造物と
]l:部構造物の間に挟まれ、上部構造物を下部構造物
上に水平方向に揺動自在に支持する免震支承において、
上部構造物又は下部構造物の一方に固定され他方とは分
離した状態で、免震支承を離隔して囲む耐火層を配置し
たことを特徴とする。The fireproof device for a seismic isolation support provided by the present invention is a seismic isolation support that is sandwiched between an upper structure and a part structure and supports the upper structure on a lower structure so as to be able to swing freely in the horizontal direction. The structure is characterized in that a fireproof layer is provided that is fixed to one of the upper structure or the lower structure and separated from the other, and surrounds the seismic isolation support at a distance.
−1−配本発明の免震支承の耐火装置は、上部構造物又
は下部構造物の一方にのみ固定された状態で、免震支承
を離隔して囲む。従って、免震動作時に−L部構造物と
下部構造物が水平方向の相対運動をしても、耐火装置は
その一方と共に動き、その他方及び免震支承自体から変
形応力を受けない。-1- Distribution The fireproof device for the seismic isolation bearing of the present invention surrounds the seismic isolation bearing at a distance while being fixed only to one of the upper structure or the lower structure. Therefore, even if the -L section structure and the lower structure move relative to each other in the horizontal direction during the seismic isolation operation, the fireproof device moves together with one of them and is not subjected to deformation stress from the other one or from the seismic isolation support itself.
従って地震の到来によって損傷することがなく、地震後
にも免震支承を火災から保護することができる。また免
震支承に対して離隔して取付けられているので、免震支
承の性能を低下させず、耐火装置のみの取替えも容易に
行える。Therefore, it will not be damaged by the arrival of an earthquake, and the seismic isolation bearing can be protected from fire even after an earthquake. Furthermore, since it is mounted apart from the seismic isolation bearing, the performance of the seismic isolation bearing is not degraded, and only the fireproof device can be easily replaced.
本発明の各種実施例に一ついて以下に説明する。 One of various embodiments of the present invention will be described below.
第1図は第1の実施例である免震支承の耐火装置(10
)を示す。第1図において、(11)は、例えば薄いゴ
ム板と鋼板を交互に積層固着する等して水平剛性に対す
る鉛直剛性を極めて大きくした免震支承、(12)
(1,3)は免震支承(11)の−ヒトに固着された取
付フランジで、」−部構造物(14)又は上部構造物(
15)への固定に使用される。(16)は免震支承(1
1)を筒状に囲む硬質の耐火層で、免震支承(11)の
最大外径部から、免震支承の最大変位量X(一般には2
00酊以上が好ましい。)だけ、離隔して、上部構造物
(14)に取付けられている。Figure 1 shows the fireproof device (10
) is shown. In Figure 1, (11) is a seismic isolation support with extremely high vertical rigidity relative to horizontal rigidity, for example, by alternately laminating and fixing thin rubber plates and steel plates, (12)
(1, 3) are the mounting flanges of the seismic isolation bearing (11) that are fixed to the part structure (14) or the superstructure (
15). (16) is a seismic isolation bearing (1
1) is a hard fireproof layer that surrounds the seismic isolation bearing (11) in a cylindrical shape, from the maximum outer diameter of the seismic isolation bearing (11) to the maximum displacement X (generally 2
00 drunkenness or higher is preferable. ) are attached to the superstructure (14) at a distance.
なお、この取付けは上部構造物(14)又は下部構造物
(15)の一方と分離していればよく、1・一部構造物
(15)に対して行ってもよい。この硬質の耐火層(1
6)の材料としては、セラミックファイバーボート、石
綿板、耐火れんが、スチールアス・\ルト等の発火温度
800”C以上の材料が好ましい。(17)は可圧縮性
の断熱材で、上記耐火層(16)と、免震支承(11)
の間に充填される。この断熱材(j7)は、セラミック
ファイバー、セルローズファイバー、石綿スポンジ、ロ
ックウール等の耐熱温度800°C以上の材料が好まし
い。It should be noted that this attachment only needs to be done separately from either the upper structure (14) or the lower structure (15), and may be done to one part of the structure (15). This hard fireproof layer (1
As the material for 6), materials with an ignition temperature of 800"C or more are preferable, such as ceramic fiber boats, asbestos boards, refractory bricks, steel asphalt, etc. (17) is a compressible heat insulating material, and the above fireproof layer (16) and seismic isolation bearing (11)
Filled between. This heat insulating material (j7) is preferably a material having a heat resistance temperature of 800° C. or higher, such as ceramic fiber, cellulose fiber, asbestos sponge, or rock wool.
」二記構造の耐火装置(10)は、地震発生時に第2図
に示すように免震支承(11)が水平方向に変位すると
、硬質の耐火層(16)が、断熱材(17)を圧縮しな
がら上部構造物(14)と一体的に動く。すなわち耐火
層(16)と断熱材(17)からなる耐火装置(10)
は、免震支承(11)の動きを妨げず、その免震性能を
そのまま発揮させる。In the fireproofing device (10) having the structure described above, when an earthquake occurs and the seismic isolation bearing (11) is displaced in the horizontal direction as shown in Fig. It moves integrally with the superstructure (14) while being compressed. That is, a fireproof device (10) consisting of a fireproof layer (16) and a heat insulating material (17)
does not hinder the movement of the seismic isolation bearing (11) and allows its seismic isolation performance to be exhibited as is.
なお、第1図に示す実施例において、耐火層(16)と
免震支承(11)の間に、何も入れないで断熱材(17
)を空気そのものとしてもよい。In addition, in the example shown in FIG. 1, the heat insulating material (17
) may be the air itself.
上記硬質の耐火層(16)は、二層以上にもすることが
できる。この構造例を第2の実施例として次に説明する
。The hard fireproof layer (16) can have two or more layers. This structural example will be described next as a second embodiment.
第2の実施例は、第3図に示すよ・うに硬質で筒状の耐
火層(16a)(16b)を上部構造物(15)に取り
付けて免震支承(11)の外周を二重に囲み、内外の耐
火層(16a)(16b)の間に断熱材(17)を充填
した構造の耐火装置(10b)である。この耐火層(1
,6a > (16b )は、上部構造物(14)に
取り付けてもよい。この第2の実施例もその構造」二層
1の実施例と同様の効果が得られる。In the second embodiment, as shown in Fig. 3, hard, cylindrical fireproof layers (16a, 16b) are attached to the upper structure (15) to double the outer periphery of the seismic isolation support (11). This is a fireproof device (10b) having a structure in which a heat insulating material (17) is filled between the surrounding, inner and outer fireproof layers (16a) and (16b). This fireproof layer (1
, 6a > (16b) may be attached to the superstructure (14). This second embodiment also provides the same effects as the two-layer 1 embodiment.
第1図〜第3図に示す第1及び第2の実施例は、硬質の
耐火N(16)(16a)(16b)を用いていたが、
耐火層を柔軟な材料で作れば、外径寸法を小さくするこ
とができる。これを第4図〜第7図に第3〜第6の実施
例として次に説明する。The first and second embodiments shown in FIGS. 1 to 3 used hard refractory N (16) (16a) (16b), but
If the refractory layer is made of a flexible material, the outer diameter can be reduced. This will be explained next as third to sixth embodiments in FIGS. 4 to 7.
第3の実施例は、第4図に示すように、柔軟な耐火層(
18)で免震支承(11)を離隔して囲み、この耐火1
fi (18)の−]二端を上部構造物(14)にリン
グ状の押え板(19)で挟み付は固定した耐火装置(2
0)である。この耐火層(18)と免震支承(11)の
間には断熱材(17)が充電される。なお柔軟な耐火層
(18)の下端に取付けられたリング状の押え扱(19
)は、耐火装置(20)の形状を一定化するためである
。なお、軟質の耐火層(18)の材料としては、カーボ
ンクロスやセラミックファイバークロスがある。The third embodiment has a flexible refractory layer (
18) to surround the seismic isolation bearing (11) at a distance, and
fireproof device (2) with the two ends of fi (18) fixed to the upper structure (14) with ring-shaped holding plates (19).
0). A heat insulating material (17) is charged between the fireproof layer (18) and the seismic isolation support (11). Note that a ring-shaped presser foot (19) is attached to the lower end of the flexible fireproof layer (18).
) is for making the shape of the fireproof device (20) constant. Note that materials for the soft fireproof layer (18) include carbon cloth and ceramic fiber cloth.
第3の実施例の耐火装置(20)は、免震支承(11)
の水平方向変位に無理なく追随する。このため、免震支
承(11)の最大外径部と耐火層(18)の間の距離X
を硬質の耐火層(16)を用いた場合よりも〜さらに小
さくできる。The fireproof device (20) of the third embodiment includes a seismic isolation support (11)
can easily follow the horizontal displacement of Therefore, the distance X between the maximum outer diameter of the seismic isolation bearing (11) and the fireproof layer (18)
can be made even smaller than when using a hard refractory layer (16).
柔軟な耐火層(18)の場合も硬質の耐火層(16)の
場合と同様に、二層以−Lにすることができる。この具
体例を、第4の実施例として、第5図に示す。この耐火
装置(20a)は、二層の柔軟な耐火1m (18a)
(18b)の間に断熱材(17)を挟み、その両端
を二対の押え板(22)(22) (23) (2
3)で封1)−シ、その−[二層を1一部構造物(14
)に固定したものである。In the case of the flexible refractory layer (18), as well as in the case of the hard refractory layer (16), it is possible to have two or more layers. This specific example is shown in FIG. 5 as a fourth embodiment. This fireproofing device (20a) has two layers of flexible fireproofing 1m (18a)
(18b) and sandwich the heat insulating material (17) between the two pairs of press plates (22) (22) (23) (2
3) Seal with 1)
).
柔軟な耐火層(]8)は、地震時に大きな震動が加わる
と飛びはねるおそれがある。そごでこれを規制するため
のストッパを設りてもよい。The flexible fireproof layer (]8) has the risk of flying off if large vibrations are applied during an earthquake. A stopper may be provided at the bottom to restrict this.
第5の実施例は、第6図に示すように、第4の実施例の
耐火装置(20a)の−ト端部を囲むス1−ソバ(24
)を下部構造物(15)に設けたものである。ごのス1
−ソバ(24)は上部構造物(14)と下部構造物(1
5)の相対変位が大きいとき、耐火装置(20,a )
が土部構造物(15)から浮き」一つだ状態になるのを
防Iにすることができる。In the fifth embodiment, as shown in FIG.
) is provided on the lower structure (15). Gonosu 1
- Buckwheat (24) has upper structure (14) and lower structure (1
5) When the relative displacement of the fireproof device (20,a) is large,
It can be prevented from floating from the earth structure (15).
柔軟な耐火層り18)の他の取付構造として、第6の実
施例の耐火装置(20b )を説明する。As another attachment structure for the flexible fireproof layer 18), a fireproof device (20b) according to a sixth embodiment will be described.
これは、第7図に示すように、柔軟な耐火層(18)の
両端を折り曲げないで、取付LJるものである。この実
施例では、二対のリング状の押え板(25) (25
) (26) (26)によって柔軟な耐火1tj
(18)を水平方向に挟み、上端側の押え扱り26)
を1一部構造物(14)に取付けている。As shown in FIG. 7, this is to attach the flexible fireproof layer (18) without bending both ends. In this embodiment, two pairs of ring-shaped presser plates (25) (25
) (26) Flexible fire resistance 1tj by (26)
Hold (18) horizontally and use the presser foot on the upper end side 26)
One part of the structure (14) is attached to the structure (14).
耐火層(18)と免震支承(11)の間は、断熱材(1
7)を充填している。この断熱材(17)は何も充填し
ないで、空気そのものとすることもできる。Between the fireproof layer (18) and the seismic isolation bearing (11), there is a
7) is filled. This heat insulating material (17) may be filled with air itself without being filled with anything.
)−記第1〜第6の実施例で具体例がボされる本発明の
免震支承の耐火装置(10) (10a ) (2
0)(20a ) (20b )いずれも機能面で従
来の耐火装置の問題を解決している。)-Specific examples are given in the first to sixth embodiments (10) (10a) (2)
0), (20a), and (20b), all of which solve the problems of conventional fireproof devices in terms of functionality.
さらに本発明の耐火装置の美観を良くするためには、■
耐火層の外+kiにカラフルな模様の塗装をする。■カ
ラフルな模様のクロスを一番外側につりるとよい。Furthermore, in order to improve the appearance of the fireproof device of the present invention,
Paint a colorful pattern on the outside of the fireproof layer. ■It is a good idea to hang a cross with a colorful pattern on the outermost side.
ここで塗装用の塗料としては、不燃性の塗料、例えばシ
リカ糸無機質塗料があり、表装用のクロスとしては、難
燃性と自己消火性のあるアラミツド繊維を使ったクロス
がある。これは500°Cまで使用…能である。Here, as the paint for painting, there is a non-flammable paint, for example, a silica thread inorganic paint, and as the cloth for the covering, there is a cloth made of aramid fiber that is flame retardant and self-extinguishing. It can be used up to 500°C.
また取(=t iJの簡便化を図るために第8図〜第1
0図に示すよ・うに耐火装置に一箇所以上の切断部を設
けてもよい。第8図に示すのは耐火装置(10)を二分
割し、ヒンジ(27)で開閉自在としたもの、第9図に
示すのは、二分割した耐火装置(10)の接合部に位置
決めのための突起(28a)と凹部(28b )を設り
たちの、第10図に示すものは単に二分割しただけのも
ので、免震支承(11)を囲むように接合し、そのまま
上部構造物(14)又は−上部構造物(15)に固定す
る。1tii4大層(16) (18)が2層以」−
の場合は切断部の位置を互い違いになるようにするとよ
い。In addition, in order to simplify the
The fireproofing device may be provided with one or more cuts as shown in Figure 0. Figure 8 shows a fireproof device (10) that is divided into two parts and can be opened and closed using a hinge (27). The one shown in Figure 10, which has a protrusion (28a) and a recess (28b), is simply divided into two parts, which are joined to surround the seismic isolation support (11) and then installed as is in the upper structure. (14) or - fixed to the superstructure (15). 1tii 4 major layers (16) (18) are 2 or more layers"-
In this case, it is better to alternate the positions of the cutting parts.
本発明の免震支承の耐火装置ば、耐火層が免震支承を離
隔して囲み、上部構造物又は下部構造物の一方にのみ固
定され他方から自由になっているので、免震支ノ↓(の
性能に何ら影響を与えないで、火災から免震支承を保護
し、地震が発生しても、両部性能が損なわれない。従っ
て地震と火災が同時に又は続いて発生しても免震支承を
確実に保護することができる。従って上部構造物が、特
に建築物である場合、高い安全性が保障できる。In the fireproof device of the seismic isolation bearing of the present invention, the fireproof layer surrounds the seismic isolation bearing at a distance and is fixed only to one of the upper structure or the lower structure and free from the other, so that the seismic isolation support is It protects the seismic isolation bearing from fire without affecting the performance of the seismic isolation bearing, and even if an earthquake occurs, the performance of both parts will not be impaired. Therefore, even if an earthquake and a fire occur at the same time or in succession, The bearings can be reliably protected.Therefore, when the superstructure is a building in particular, high safety can be guaranteed.
第1図〜第7図は夫々本発明の免震支承の耐火装置の実
施例を示す断面図で、第1図及び第2図は硬質の耐火層
を用いた第1の実施例、第3図は硬質の耐火層を二層に
配した第2の実施例、第4図は柔軟な耐火層を用いた第
3の実施例、第5図は柔軟な耐火層を二層に配した第4
の実施例、第6図は柔軟な耐火層の浮き士がりを防11
−するストッパを設けた第5の実施例、第7図は柔軟な
耐火層の他の取付構造を丞ず第6の実施例である。
第8図・〜第10図は、夫々耐火装置を取り付は易くす
るだめの分割構造例を示す平面図である。
第11図・〜第13図ば免震支承の耐火構造の従来例を
示す断面図で、第11図はセラミソクファイハーホード
で囲ったもの、第12図は厚いゴムで被覆したもの、第
13図は弾性のある耐火材で被覆したものである。
(10) (10a ) (20)(20a
)(20b)−耐火装置、
(11)−免震支承、
(14) 上部構造物、 (15) −F部構造物、
(16) (硬質の〕耐火層、
(17) −断熱材、
(18)−〔柔軟な〕耐火層。
特 許 出 願 人 住友ゴム工業株式会社代
理 人 江 原 省 吾〃
平 池 成 −く?
q−計1 to 7 are cross-sectional views showing embodiments of the fireproof device for seismic isolation bearings of the present invention, and FIGS. 1 and 2 show the first embodiment using a hard fireproof layer, The figure shows the second embodiment with two hard fireproof layers, Figure 4 shows the third embodiment with a flexible fireproof layer, and Figure 5 shows the second embodiment with two flexible fireproof layers. 4
Example of Figure 6 shows how to prevent floating of flexible fireproof layer 11
-A fifth embodiment is provided with a stopper, and FIG. 7 shows a sixth embodiment without any other attachment structure for the flexible fireproof layer. FIGS. 8 to 10 are plan views showing examples of divided structures that facilitate the installation of fireproof devices. Figures 11 to 13 are cross-sectional views showing conventional examples of fireproof structures for seismic isolation bearings. Figure 13 shows a case covered with an elastic fireproof material. (10) (10a) (20) (20a
) (20b) - Fireproof device, (11) - Seismic isolation bearing, (14) Superstructure, (15) - F part structure,
(16) (Hard) fire-resistant layer, (17) - Insulating material, (18) - [Flexible] fire-resistant layer. Patent applicant: Sumitomo Rubber Industries, Ltd.
Professor Ebara Shogo
Hiraike Sei-ku? q-total
Claims (1)
物を下部構造物上に水平方向に揺動自在に支持する免震
支承において、 上部構造物又は下部構造物の一方に固定され他方とは分
離した状態で、免震支承を離隔して囲む耐火層を配置し
たことを特徴とする免震支承の耐火装置。(1) In a seismic isolation support that is sandwiched between a superstructure and a substructure and supports the superstructure above the substructure so that it can swing freely in the horizontal direction, it is fixed to either the superstructure or the substructure. A fireproofing device for a seismic isolation bearing, characterized in that a fireproof layer is arranged to surround the seismic isolation bearing at a distance, in a state where the seismic isolation bearing is separated from the other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9408588A JPH01263335A (en) | 1988-04-15 | 1988-04-15 | Fireproof device for earthquakeproof support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9408588A JPH01263335A (en) | 1988-04-15 | 1988-04-15 | Fireproof device for earthquakeproof support |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01263335A true JPH01263335A (en) | 1989-10-19 |
Family
ID=14100631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9408588A Pending JPH01263335A (en) | 1988-04-15 | 1988-04-15 | Fireproof device for earthquakeproof support |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01263335A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02134109U (en) * | 1989-04-12 | 1990-11-07 | ||
JPH053521U (en) * | 1991-06-28 | 1993-01-19 | 株式会社奥村組 | Seismic Isolator Fireproof Device |
JPH062451A (en) * | 1992-06-17 | 1994-01-11 | Kajima Corp | Disaster prevention structure of base isolation device |
US5546711A (en) * | 1995-05-26 | 1996-08-20 | Heller; Paul S. | Base isolator fire barrier system |
US6138967A (en) * | 1997-03-07 | 2000-10-31 | Fujitsu Limited | Foot structure for apparatus |
CN111809740A (en) * | 2020-08-05 | 2020-10-23 | 应急管理部天津消防研究所 | Function implementation method of prefabricated assembly type fireproof friction pendulum support |
-
1988
- 1988-04-15 JP JP9408588A patent/JPH01263335A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02134109U (en) * | 1989-04-12 | 1990-11-07 | ||
JPH053521U (en) * | 1991-06-28 | 1993-01-19 | 株式会社奥村組 | Seismic Isolator Fireproof Device |
JPH062451A (en) * | 1992-06-17 | 1994-01-11 | Kajima Corp | Disaster prevention structure of base isolation device |
US5546711A (en) * | 1995-05-26 | 1996-08-20 | Heller; Paul S. | Base isolator fire barrier system |
WO1996037675A1 (en) * | 1995-05-26 | 1996-11-28 | Heller Paul S | Base isolator fire barrier system |
US6138967A (en) * | 1997-03-07 | 2000-10-31 | Fujitsu Limited | Foot structure for apparatus |
CN111809740A (en) * | 2020-08-05 | 2020-10-23 | 应急管理部天津消防研究所 | Function implementation method of prefabricated assembly type fireproof friction pendulum support |
CN111809740B (en) * | 2020-08-05 | 2024-05-14 | 应急管理部天津消防研究所 | Function implementation method of prefabricated fireproof friction pendulum support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11500797A (en) | Dynamic joint with protection against fire barrier | |
CN109372148B (en) | Fireproof protection device for building shock insulation support | |
US5373670A (en) | Shakeproof bearing | |
JPH01263335A (en) | Fireproof device for earthquakeproof support | |
EP0341058B1 (en) | Shakeproof bearing | |
JP3769352B2 (en) | Fireproof coating structure in seismic isolation devices | |
JP2947876B2 (en) | Fireproof structure of seismic isolation support device | |
JPH01154926A (en) | Earthquakeproof device | |
JPH11229664A (en) | Fire-resisting wall for covering vibration isolation member and construction of fire-resistive vibration isolation | |
JP6217219B2 (en) | Steel column fireproof structure and fireproof partition wall structure | |
JP5356743B2 (en) | Fireproof coating structure for seismic isolation devices | |
JP4789519B2 (en) | Airtight fireproof covering material and airtight fireproof covering structure | |
JPH071369Y2 (en) | Seismic isolation device fireproof coating structure | |
JP6970381B2 (en) | Dry fireproof structure of steel columns | |
JPH0392633A (en) | Vibration free isolator | |
JP2553211Y2 (en) | Fireproof seismic isolation isolators | |
JP2016000932A (en) | Means and method for resuming to home position of base isolation structure, and improved ground provided with the means | |
JP3834956B2 (en) | Fireproof device for seismic isolation device | |
KR20190031025A (en) | Interlayer fire protection structure and construction method thereof | |
JP7088258B2 (en) | Dryfire resistant structure of steel columns | |
JP4422979B2 (en) | Fireproof compartment structure of seismic isolation device | |
JP2001329637A (en) | Partition wall setting structure | |
JP3138158U (en) | Fireproof coating structure for seismic isolation devices | |
JPH034049A (en) | Earthquake-proof supporting device | |
JP2001182362A (en) | Seismic isolator and building construction using the same |