JP6635327B2 - Seismic isolation structure of building and seismic isolation method - Google Patents

Seismic isolation structure of building and seismic isolation method Download PDF

Info

Publication number
JP6635327B2
JP6635327B2 JP2014121511A JP2014121511A JP6635327B2 JP 6635327 B2 JP6635327 B2 JP 6635327B2 JP 2014121511 A JP2014121511 A JP 2014121511A JP 2014121511 A JP2014121511 A JP 2014121511A JP 6635327 B2 JP6635327 B2 JP 6635327B2
Authority
JP
Japan
Prior art keywords
foundation
ground
building
seismic isolation
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014121511A
Other languages
Japanese (ja)
Other versions
JP2016000932A (en
Inventor
武志 菊地
武志 菊地
和森 佐藤
和森 佐藤
Original Assignee
武志 菊地
武志 菊地
ビイック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武志 菊地, 武志 菊地, ビイック株式会社 filed Critical 武志 菊地
Priority to JP2014121511A priority Critical patent/JP6635327B2/en
Publication of JP2016000932A publication Critical patent/JP2016000932A/en
Application granted granted Critical
Publication of JP6635327B2 publication Critical patent/JP6635327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、地震の際に建物の基礎と地盤の間での相対移動を許容することにより建物側に伝わる地震力を低減させる免震構造において、地盤に対して相対移動した建物の基礎のずれを事後元の位置に復帰させる原点復帰手段及び原点復帰方法、並びに該原点復帰手段を備えた改良地盤に関する。   The present invention relates to a seismic isolation structure that reduces the seismic force transmitted to the building side by allowing relative movement between the foundation of the building and the ground during an earthquake. The present invention relates to an origin return means and an origin return method for returning the original position to the original position after the fact, and an improved ground provided with the origin return means.

戸建て住宅などの小規模の建物の基礎に関して、比較的安価で且つ免震効果に優れた耐震性基礎構造が種々検討されており、その際に各種の免震構造が用いられている。このような免震構造では、建物の基礎と地盤との間の水平面での相対移動を許容するための機構が採用されており、その主なものとして両者間の相対移動を低摩擦材の滑りで許容する機構(以下、「摺動免震機構」という。例えば、特許文献1、特許文献2参照。)と、ボール、ローラ等の回転物を利用する機構(以下、「転がり免震機構」という。例えば、特許文献3参照。)を挙げることができる。このような免震構造では、地震による揺れが納まった事後において、一般には建物の基礎が地盤に対して位置ずれが残ることがあり、これを元の位置に復帰させる原点復帰手段を設けることが好ましい。なお、免震構造としてはこの他に、ゴム、スプリングなどの弾性部材を直接支承部材として使用することにより振動を吸収する手段も利用されているが、この場合には弾性部材が復元機能を兼ねることができるため、一般には改めて原点復帰手段を設ける必要はない。   With respect to the foundation of a small-scale building such as a detached house, various seismic base structures that are relatively inexpensive and have excellent seismic isolation effects are being studied, and various seismic isolation structures are used at that time. In such a seismic isolation structure, a mechanism is adopted to allow relative movement in the horizontal plane between the building foundation and the ground. (Hereinafter referred to as "sliding seismic isolation mechanism"; see, for example, Patent Documents 1 and 2) and a mechanism using a rotating object such as a ball and a roller (hereinafter referred to as a "rolling seismic isolation mechanism"). For example, refer to Patent Document 3.). In such a seismic isolation structure, after the quake due to the earthquake has settled, in general, the base of the building may be left misaligned with the ground, and it is necessary to provide an origin return means to return this to the original position. preferable. In addition, as a seismic isolation structure, a means for absorbing vibration by using an elastic member such as rubber or a spring directly as a support member is also used. In this case, the elastic member also has a restoration function. In general, it is not necessary to provide the origin return means again.

図5は、特許文献1に開示された従来技術における摺動免震機構を備えた改良地盤構造の一部を断面で示している。この改良地盤は、例えば、木造や軽量鉄骨造による戸建て住宅などの軽量の建物(図示せず)の基礎8を敷設するための地盤である。具体的には、建物および基礎8を含む約50kN/m以下の鉛直荷重を支持する改良地盤であって、基礎8に対する地震力を低減させるために構築されている。図5において、当該改良地盤は、所望の建物の平面形状に応じて根切り部11で区画して掘削された地盤1の内部に構成される。掘削された部分に、50〜250mm厚ほどの調整地盤2が打設され、建築物を支持する地盤部分が形成される。 FIG. 5 is a cross-sectional view showing a part of an improved ground structure provided with a sliding seismic isolation mechanism according to the related art disclosed in Patent Document 1. The improved ground is a ground for laying a foundation 8 of a light-weight building (not shown) such as a detached house made of a wooden structure or a lightweight steel frame, for example. Specifically, the improved ground supporting a vertical load of about 50 kN / m 2 or less including the building and the foundation 8 is constructed to reduce seismic force on the foundation 8. In FIG. 5, the improved ground is formed inside the ground 1 that is sectioned by the root cutting portion 11 and excavated according to the desired planar shape of the building. The adjusted ground 2 having a thickness of about 50 to 250 mm is cast on the excavated portion, and the ground portion supporting the building is formed.

この調整地盤2と基礎8との間には摺動免震機構として振動減衰手段4が設けられ、調整地盤2と基礎8との間で相対摺動(スライド)を可能にすることによって振動を吸収するものとしている。振動を摺動により吸収するため、振動減衰手段4は、下から第1の摺動材41、第2の摺動材42の組み合わせからなり、下方に配置される下地調整シート3と、上方に配置される防振ゴム5に挟まれた構成となっている。振動減衰手段4は、基本的に建築物の平面投影形状の全面に渉って延展される。地盤1から調整地盤2に伝播される地震力は、対向する一対の摺動材41、42の間の摺動によって吸収され、基礎8およびその上に構築される図示しない建物への振動伝播を軽減する。   Vibration damping means 4 is provided between the adjustment ground 2 and the foundation 8 as a sliding seismic isolation mechanism, and the relative ground (sliding) between the adjustment ground 2 and the foundation 8 enables vibration. It is to be absorbed. In order to absorb the vibration by sliding, the vibration damping means 4 is composed of a combination of a first sliding member 41 and a second sliding member 42 from below, and the base adjustment sheet 3 disposed below and the upper It is configured to be sandwiched between the vibration isolating rubbers 5 to be arranged. The vibration damping means 4 basically extends over the entire planar projection shape of the building. The seismic force transmitted from the ground 1 to the adjustment ground 2 is absorbed by the sliding between the pair of sliding members 41 and 42 facing each other, and the vibration is transmitted to the foundation 8 and a building (not shown) constructed thereon. To reduce.

下地調整シート3は、表面の平坦度が確保できるものであることのほか、建築物の下に敷設されて永年使用されるものであることから、耐久性が高いこと、並びにコンクリートに触れることから耐アルカリ性に強い材料であることなどが望まれ、材料としてはアスファルトシート、ゴムシート、ゴムマットなどが考えられる。一例として、下地調整シート3は、2〜10mm厚のアスファルトシートが利用される。アスファルトシートは屋上等の防水シートとしての実績があり、防水性にすぐれ、地盤1、調整地盤2を介した水の浸入を防ぐ効果が優れる。また制振特性を評価する指標の1つである損失係数(tanδ)が0.35と大きく、防振材料としても好ましい材料であることから採用されている。その他として、ゴム系の防水シートが使用されてもよい。   In addition to being able to secure the flatness of the surface, the groundwork adjustment sheet 3 is laid under a building and used for a long time, so that it has high durability and also comes into contact with concrete. A material having high alkali resistance is desired, and as the material, an asphalt sheet, a rubber sheet, a rubber mat and the like can be considered. As an example, as the base adjustment sheet 3, an asphalt sheet having a thickness of 2 to 10 mm is used. The asphalt sheet has a track record as a waterproof sheet on a roof or the like, is excellent in waterproofness, and has an excellent effect of preventing water from entering through the ground 1 and the adjustment ground 2. The loss coefficient (tan δ), which is one of the indexes for evaluating the vibration damping characteristics, is as large as 0.35, and is adopted because it is a preferable material as a vibration-proof material. Alternatively, a rubber-based waterproof sheet may be used.

下地調整シート3の上層に、第1の摺動材41が敷設される。当該摺動材41は、対向する第2の摺動材42との間で振動吸収のための相互摺動をすることから、両者間での静摩擦抵抗が極力低くなる材料であることが必須の条件となる。具体的には、第1と第2の摺動材41、42間の静摩擦係数が0.2ほどであることが好ましく、さらにはこれが0.15であればより好ましい。これを実現できる材料としては、フッ素樹脂系のシート、あるいは超高分子樹脂系のシートが挙げられる。   A first sliding member 41 is laid on the upper layer of the base adjustment sheet 3. Since the sliding member 41 slides mutually for absorbing vibration between the opposing second sliding member 42, it is indispensable that the sliding member 41 be a material that minimizes the static friction resistance between the two. Condition. Specifically, the coefficient of static friction between the first and second sliding members 41 and 42 is preferably about 0.2, and more preferably 0.15. As a material that can realize this, a fluororesin-based sheet or a superpolymer resin-based sheet can be used.

第1の摺動材41の材料としては、上述のように何よりもまず静摩擦係数が低いものであることのほか、耐熱、耐薬品、耐アルカリ性のあるものが好ましい。第1の摺動材41の例として、0.05〜2.0mm厚、好ましくは0.075〜0.5mm厚のフッ素樹脂シートが使用される。下層に位置するアスファルトシートからなる下地調整シート3には粘着性があるため、フッ素樹脂シートはその表面に延展するだけで下地調整シート3に粘着固定される。また、下地調整シート3にゴム系防水シートを使用する場合、第1の摺動材41との間に全面ないし部分的に両面粘着テープで貼付し固定してもよい。   As a material of the first sliding member 41, in addition to the material having a low static friction coefficient as described above, a material having heat resistance, chemical resistance, and alkali resistance is preferable. As an example of the first sliding member 41, a fluororesin sheet having a thickness of 0.05 to 2.0 mm, preferably 0.075 to 0.5 mm is used. Since the base adjustment sheet 3 made of an asphalt sheet located in the lower layer has adhesiveness, the fluororesin sheet is adhesively fixed to the base adjustment sheet 3 only by extending on the surface thereof. When a rubber-based waterproof sheet is used as the base adjustment sheet 3, it may be fixed to the first sliding member 41 by being entirely or partially adhered with a double-sided adhesive tape.

第1の摺動材41より上の層は、基本的にこれまでの構成を反転したものとなり、すなわち、第1の摺動材41に対向してその上に第2の摺動材42が被せられ、コンクリートで構築される基礎8との間の平坦度を確保するため、さらに防振ゴム5がその上に被せられる。防振ゴム5の上には基礎8のコンクリートが打設されるが、これ以降の手順は従来建築と同様である。なお、ここでは調整地盤2と基礎8の間での相対摺動で振動を吸収するものであることから、この両者が全面で対向していることが好ましく、したがって基礎8は、いわゆる「べた基礎」であることが好ましく、あるいは「連続基礎(布基礎)」であっても良い。   The layer above the first sliding member 41 is basically the reverse of the structure up to now, that is, the second sliding member 42 is opposed to and on the first sliding member 41. In order to ensure a flatness between the base and the foundation 8 constructed of concrete, an anti-vibration rubber 5 is further covered thereon. The concrete of the foundation 8 is cast on the vibration-proof rubber 5, but the procedure thereafter is the same as that of the conventional building. Here, since the vibration is absorbed by the relative sliding between the adjustment ground 2 and the foundation 8, it is preferable that both of them are opposed to each other on the entire surface. "Or a" continuous foundation (cloth foundation) ".

第2の摺動材42は、第1の摺動材41の上に被せるように展開する。第1の摺動材41と同様、第2の摺動材42の例としては摩擦係数の低い0.075mm厚のフッ素樹脂シートが使用される。振動減衰手段4として、このフッ素樹脂シート41、42同士の配置が摩擦力の観点から現状で考えられる最も好ましい組合せとなるが、コスト的な問題もあり、この内のいずれか一方を超高分子樹脂シートに置き換えることも可能である。具体的には超高分子ポリエチレンシートが考えられ、この際の分子量は100万以上であることが好ましい。上記の様な材料で構成されていることにより、第1の摺動材(41)と第2の摺動材(42)との静摩擦係数を0.15〜0.4の範囲に設定することができる。   The second sliding member 42 is developed so as to cover the first sliding member 41. As in the case of the first sliding member 41, as an example of the second sliding member 42, a fluorine resin sheet having a low friction coefficient and a thickness of 0.075 mm is used. As the vibration damping means 4, the arrangement of the fluororesin sheets 41 and 42 is the most preferable combination that can be considered at present from the viewpoint of frictional force. However, there is a problem in terms of cost. It is also possible to replace with a resin sheet. Specifically, an ultrahigh molecular weight polyethylene sheet is considered, and the molecular weight at this time is preferably 1,000,000 or more. By being composed of the above-mentioned materials, the coefficient of static friction between the first sliding member (41) and the second sliding member (42) is set in the range of 0.15 to 0.4. Can be.

次に、第2の摺動材42の上層に、基礎8を含む建物(図示省略)の鉛直荷重を支持すると共に、鉛直方向および水平方向の地震の揺れを更に減衰するための平板状の防振ゴム5が配置されている。防振ゴム5の素材としては、下地調整シート3と同じアスファルトシートとすることもでもよいが、他の例として耐酸性、耐アルカリ性、耐水性、耐微生物性、耐油性、耐有機溶剤性に優れたゴムとすることができる。一例として、新幹線軌道のバラスト下にメンテナンスフリーとして使用されるなどの実績のあるゴムマット(バラストマット)の使用が可能である。このバラストマットは25mm厚、100mm×100mmで鉛直パネル定数が4,500kg/cmである。よってm当りでは鉛直パネル定数は450,000kg/cmとなる。標準的2階建て木造住宅の荷重はm当り1tであるので、25mm厚の歪み量は、1/450=0.002cm=0.02mm程度となる。よって25mmのバラストマットをスライスして厚みを2mm〜10mmに調整して使用することが好ましい。 Next, on the upper layer of the second sliding member 42, a flat load for supporting a vertical load of a building (not shown) including the foundation 8 and further attenuating the shaking of the vertical and horizontal earthquakes. The vibration rubber 5 is arranged. The material of the vibration-proof rubber 5 may be the same asphalt sheet as the base adjustment sheet 3, but other examples include acid resistance, alkali resistance, water resistance, microbial resistance, oil resistance, and organic solvent resistance. Excellent rubber can be obtained. As an example, it is possible to use a rubber mat (ballast mat) that has a track record of being used as a maintenance-free device under a ballast of a Shinkansen track. This ballast mat is 25 mm thick, 100 mm × 100 mm, and has a vertical panel constant of 4,500 kg / cm. Thus vertical panel constant in m 2 per becomes 450,000kg / cm. Since the load of a standard two-story wooden house is 1 t per m 2 , the amount of distortion of 25 mm thickness is about 1/450 = 0.002 cm = 0.02 mm. Therefore, it is preferable to slice a 25 mm ballast mat and adjust the thickness to 2 mm to 10 mm before use.

最後に、基礎8のコンクリートが防振ゴム5の上に打設される。コンクリート打設の際、内部の空気穴を除くための特殊用具に振動を与えてコンクリートを突き、あるいは攪拌させる。このような場合にも、アスファルトシートと異なってゴムマット5であれば突き破られて特殊用具が摺動材41、42にまで突き当たる事態が回避され、都合がよい。   Finally, the concrete of the foundation 8 is cast on the rubber cushion 5. When concrete is poured, a special tool for removing air holes inside is vibrated to push or agitate the concrete. Also in such a case, unlike the asphalt sheet, if the rubber mat 5 is pierced, the situation in which the special tool is pierced and collides with the sliding members 41 and 42 is avoided, which is convenient.

図5に戻って、根切り部11の内周部には、当該内周部の崩壊を防止するためコンクリートブロックや地先ブロックを配列したりコンクリートを打設したりして成る側壁61が設けられていてもよい。基礎8と側壁61との間には、基礎8が相対移動する際の移動代として約35cm〜50cmの緩衝空隙が設けられ、この空隙には基礎8の水平方向の揺動を緩衝するよう、例えば大きな粒径、好ましくは10〜50mmの粒径のゴムチップから成る緩衝材62が充填される。なお、緩衝材62としてゴムチップを充填する場合は、振動減衰手段4の第1の摺動材41と第2の摺動材42の間にゴムチップが入り込まない様、防振ゴム5の外周部および第1の摺動材41の外周部を覆う保護シート63が敷設される。   Returning to FIG. 5, a side wall 61 formed by arranging concrete blocks or land blocks or placing concrete is provided on the inner peripheral portion of the root cutting portion 11 in order to prevent collapse of the inner peripheral portion. It may be. Between the base 8 and the side wall 61, a buffer space of about 35 cm to 50 cm is provided as a movement allowance when the base 8 relatively moves, and in this space, the swing of the base 8 in the horizontal direction is buffered. For example, the cushioning material 62 made of a rubber chip having a large particle diameter, preferably 10 to 50 mm is filled. When a rubber chip is filled as the cushioning member 62, the outer peripheral portion of the vibration-proof rubber 5 and the outer peripheral portion of the vibration-proof rubber 5 are prevented so that the rubber chip does not enter between the first sliding member 41 and the second sliding member 42 of the vibration damping means 4. A protective sheet 63 covering the outer peripheral portion of the first sliding member 41 is laid.

上記の様な緩衝材62を充填した場合には、地震動による防振ゴム5及び基礎8の水平方向への移動ならびに変形に追従して緩衝材62の層全体が変形し、防振ゴム5の変形を制限することがないため、揺れに対して防振ゴム5の減衰特性を十分に発揮させることが出来る。上記の緩衝材62は、地表面に相当する高さ(グランドレベル)まで充填され、そして、地盤内への雨水などの浸透を防止するため、側壁61及び緩衝材62の上端は、ブチルゴム等のゴム製あるいはポリエチレン等の樹脂製の防水シート7で覆われる。   When the cushioning material 62 is filled as described above, the entire layer of the cushioning material 62 is deformed following the horizontal movement and deformation of the vibration isolating rubber 5 and the foundation 8 due to the seismic motion. Since the deformation is not limited, the damping characteristics of the vibration isolating rubber 5 against the shaking can be sufficiently exhibited. The above-described cushioning material 62 is filled up to the height (ground level) corresponding to the ground surface, and the upper ends of the side wall 61 and the cushioning material 62 are made of butyl rubber or the like in order to prevent penetration of rainwater or the like into the ground. It is covered with a waterproof sheet 7 made of rubber or resin such as polyethylene.

上記の様に、特許文献1に開示された改良地盤は、根切り部11に対し、調整地盤2、下地調整シート3、シート状の振動減衰手段4及び防振ゴム5が順次積層された層構造を備え、且つ振動減衰手段4が防振ゴム5の下面全体に対応させて配置されているため、施工が簡単であるとされる。また、当該改良地盤においては、振動減衰手段4と防振ゴム5とが積層され、しかも、フッ素樹脂シート又は超高分子ポリエチレンシートからそれぞれ成る第1の摺動材41及び第2の摺動材42を重ね合わせて振動減衰手段4が構成されているため、地震の際に地盤1から基礎8へ伝わる地震力を低減でき、特に地震の水平方向の衝撃力を大幅に低減させることが出来る。   As described above, the improved ground disclosed in Patent Document 1 has a layer in which the adjustment ground 2, the ground adjustment sheet 3, the sheet-shaped vibration damping means 4, and the vibration-proof rubber 5 are sequentially laminated on the root cutting portion 11. Since the structure is provided, and the vibration damping means 4 is disposed so as to correspond to the entire lower surface of the vibration isolating rubber 5, the construction is considered to be simple. Further, in the improved ground, the vibration damping means 4 and the vibration damping rubber 5 are laminated, and the first sliding member 41 and the second sliding member are each made of a fluororesin sheet or an ultra-high-molecular polyethylene sheet. Since the vibration damping means 4 is formed by superimposing 42, the seismic force transmitted from the ground 1 to the foundation 8 during an earthquake can be reduced, and in particular, the horizontal impact force of the earthquake can be significantly reduced.

地震発生時の動作としては、地盤1から調整地盤2へ水平方向の地震動が伝わった際、下地調整シート3の上面の振動減衰手段4は、加速度(衝撃力)が所定の大きさ(例えば、約200gal)に至らない比較的弱い揺れに対しては調整地盤2及び下地調整シート3に追従して共に挙動する。しかしながら、地震動の加速度(衝撃力)が所定の大きさを越えると、振動減衰手段4において、第1の摺動材41と第2の摺動材42の相互の摩擦力が極めて低いため、基礎8の荷重が掛かる第2の摺動材42は、その慣性力により調整地盤2及び下地調整シート3と共に振動する第1の摺動材41に追従して振動することがなくなり、当初の位置を中心に微動する。更に、基礎8の荷重が掛かる防振ゴム5は、それ自体の弾性変形により、基礎8へ伝わる鉛直方向の振動を低減させる。その結果、上記の様に基礎8に対する鉛直方向の地震の衝撃力を低減することが出来る。しかも、当該改良地盤においては、シート状および板状の部材の積層によって構成され、機械構造部分がないため、優れた耐久性能を発揮できるものとされる。   As an operation at the time of occurrence of an earthquake, when a horizontal earthquake motion is transmitted from the ground 1 to the adjustment ground 2, the vibration damping means 4 on the upper surface of the ground adjustment sheet 3 causes the acceleration (impact force) to have a predetermined magnitude (for example, For relatively weak shaking that does not reach about 200 gal), both follow the adjustment ground 2 and the ground adjustment sheet 3 and behave together. However, when the acceleration (impact force) of the seismic motion exceeds a predetermined magnitude, the mutual frictional force between the first sliding member 41 and the second sliding member 42 in the vibration damping means 4 is extremely low. The second sliding member 42 to which the load of 8 is applied does not follow the first sliding member 41 which vibrates together with the adjustment ground 2 and the ground adjustment sheet 3 due to its inertia force, and does not vibrate. Move slightly to the center. Furthermore, the vibration-proof rubber 5 to which the load of the foundation 8 is applied reduces the vertical vibration transmitted to the foundation 8 by its own elastic deformation. As a result, it is possible to reduce the impact force of the vertical earthquake on the foundation 8 as described above. In addition, the improved ground is formed by laminating sheet-like and plate-like members, and has no mechanical structure, so that excellent durability can be exhibited.

特許文献4には、上述の特許文献1に示すような改良地盤に利用可能な原点復帰手段が開示されており、当該原点復帰手段は、地震時にずれが生じた建物の基礎を手動により原点復帰させるよう構成されている。図6はその構造を示しており、原点復帰手段30は、地盤側に固定されて上方に突出する基準心棒31と、それを囲むように建物の基礎に開けられた調整穴32とから構成されている。摺動免震機構(図6の符号10)の作用により建物の基礎が位置ずれした場合、この基準心棒31と調整穴32の間に図示しないジャッキをかませて操作することにより、ズレの調整が手動により可能となる。なお、この原点復帰手段30を用いることで、基準心棒31と調整穴32の間にスプリングなどの弾性部材を配して自動的な原点復帰を行うことも可能である。   Patent Literature 4 discloses an origin return means that can be used for an improved ground as disclosed in Patent Literature 1 described above. The origin return means manually returns the origin of a building in which a displacement has occurred during an earthquake to an origin. It is configured to be. FIG. 6 shows the structure. The origin returning means 30 is composed of a reference mandrel 31 fixed to the ground side and protruding upward, and an adjustment hole 32 formed in the foundation of the building so as to surround it. ing. When the foundation of the building is displaced by the action of the sliding seismic isolation mechanism (reference numeral 10 in FIG. 6), the gap is adjusted by operating a jack (not shown) between the reference mandrel 31 and the adjustment hole 32. Can be made manually. By using the origin return means 30, it is also possible to arrange an elastic member such as a spring between the reference mandrel 31 and the adjustment hole 32 to perform automatic origin return.

次に図7は、特許文献2に示す、同じく地盤に対する建物の基礎の相対移動を摺動免震機構によって許容するよう構成された免震構造を示している。同図に於いて摺動免震機構(図7の符号5。同文献では「滑り手段」と呼称。)は、摺動面を構成する部材としてはセラミックコーティング膜を形成したセメント系硬化材、フッ素樹脂などの低摩擦材をコーティングした鋼板、セラミック板、FRP板などが用いられている。地震の後の建物の基礎のずれを調整するため、当該免震構造はゴム、熱可塑性エラストマーなどの弾性材からなる原点復帰手段(図7の符号16。同文献では「弾性復元装置」と呼称。)を備えている。基礎側にずれが生じた場合には、この原点復帰手段(16)が備える弾性力によって元の位置に復帰することが企図されている。   Next, FIG. 7 shows a seismic isolation structure shown in Patent Document 2, which is also configured to allow relative movement of the foundation of the building with respect to the ground by a sliding seismic isolation mechanism. In the figure, a sliding seismic isolation mechanism (reference numeral 5 in FIG. 7; referred to as "sliding means" in the document) is a cement-based hardened material formed with a ceramic coating film as a member constituting a sliding surface. Steel plates, ceramic plates, FRP plates and the like coated with a low friction material such as fluororesin are used. In order to adjust the displacement of the foundation of the building after the earthquake, the seismic isolation structure is a return-to-origin means made of an elastic material such as rubber or thermoplastic elastomer (reference numeral 16 in FIG. 7; referred to as "elastic restoration device" in the document). )). In the event that the base side is displaced, it is intended to return to the original position by the elastic force of the origin return means (16).

さらに図8は、特許文献3に開示された転がり免震構造の概要を示しており、ここでは複数の鋼板(符号2、3、4)の表面の表裏別々に設けられた図の直交するX方向、Y方向の複数の溝の中に多数のローラ(図8の符号5)を配し、地震による振動をX、Y両方向のローラの回転により吸収して地盤に対する建物の基礎の移動を許容している。ローラの嵌る溝はそれぞれ湾曲しているため、重力の作用によって建物の基礎(図8の符号6。同文面では「免震構造物」と呼称。)が元の位置に復帰するよう構成されている。   Further, FIG. 8 shows an outline of the rolling seismic isolation structure disclosed in Patent Literature 3. In this case, the X-axis perpendicular to the figure provided separately on the front and back surfaces of a plurality of steel plates (reference numerals 2, 3, and 4) is shown. A large number of rollers (reference numeral 5 in FIG. 8) are arranged in a plurality of grooves in the direction and the Y direction, and the vibration caused by the earthquake is absorbed by the rotation of the rollers in both the X and Y directions to allow movement of the foundation of the building with respect to the ground. are doing. Since the grooves into which the rollers fit are curved, the foundation of the building (reference numeral 6 in FIG. 8; referred to as “seismically isolated structure” in the text) is returned to the original position by the action of gravity. I have.

特許第4983326号公報Japanese Patent No. 4983326 特開2008−150870号公報JP 2008-150870 A 特開平11−351319号公報JP-A-11-351319 特開2010−059690号公報JP 2010-059690 A

しかしながら、上述した各原点復帰手段にはそれぞれ改善すべき余地があった。特許文献1並びに4に記載の復帰手段では、手動による原点復帰操作が要求されるほか、当該機構の設置は大掛かりとなり、コスト的に不利な面があった。特許文献2に記載の復元機構では、当該機構が少なくとも建物のほぼ中央の1箇所設置されるものであることから、取り付け、取り外し、メンテナンスなどの取り扱い時の困難性があった。特許文献3に記載の原点復帰手段では、建物の基礎全体の荷重を支えながら相対移動するため、強度的な要求が避けられず、且つローラが嵌る溝を備えた鋼板の加工、組み立てに高い精度が要求されるなど、コスト的にも不利な面があった。   However, each of the above-mentioned origin return means has room for improvement. The return means described in Patent Literatures 1 and 4 require manual origin return operation, and the installation of the mechanism is large-scale, which is disadvantageous in cost. In the restoring mechanism described in Patent Literature 2, since the mechanism is installed at least at one location substantially at the center of the building, there is difficulty in handling such as mounting, removing, and maintenance. In the origin return means described in Patent Literature 3, since the relative movement is performed while supporting the load of the entire foundation of the building, high strength is inevitable, and high precision is required for processing and assembling a steel plate having a groove into which a roller fits. However, there were disadvantages in terms of cost, such as the requirement for

以上より、本発明はこれら従来技術に見られる課題を解消し、設置、取り外し、メンテナンスが容易であり、かつコスト的にも有利となる免震構造の原点復帰手段及び原点復帰方法、ならびに該手段を備えた改良地盤を提供することを目的としている。   As described above, the present invention solves these problems in the prior art, and facilitates installation, removal, and maintenance, and is also advantageous in terms of cost. It is intended to provide an improved ground with

本発明は、建物の基礎と、当該基礎の周囲に配置される地盤の根切り部との間に引っ張り力又は押圧力を付加する原点復帰手段を配置することによって、着脱が容易であり、コスト的にも有利となる原点復帰手段を提供して上述の課題を解消するもので、具体的には以下の内容を含む。   The present invention is easy to attach / detach by disposing an origin return means for applying a pulling force or a pressing force between a foundation of a building and a root cutting portion of the ground disposed around the foundation, thereby facilitating attachment and detachment. The present invention solves the above-mentioned problems by providing an origin return means which is also advantageous in terms of the present invention, and specifically includes the following contents.

すなわち、本発明に係る1つの態様は、免震構造によって地震時に地盤に対して相対移動した建物の基礎のずれを元の位置に復帰させる原点復帰手段であって、地盤側と建物の基礎側とを直接もしくは間接につなぐよう建物の基礎の周囲にある緩衝空隙内に複数個配置され、ずれによって前記原点復帰手段に生じた引張り力もしくは押圧力のいずれか一方もしくは双方を利用して前記ずれを解消させることを特徴とする原点復帰手段に関する。   That is, one aspect according to the present invention is origin returning means for returning a displacement of a foundation of a building relatively moved to the ground during an earthquake by a seismic isolation structure to an original position, wherein the ground side and the foundation side of the building are provided. Are arranged in a buffer space around the foundation of the building so as to directly or indirectly connect them, and either or both of the pulling force and the pressing force generated in the origin return means due to the displacement are used for the displacement. The present invention relates to an origin returning means characterized by eliminating the above.

前記原点復帰手段は、引張り力を提供する弾性材、もしくは押圧力を提供する押圧部材のいずれかから構成することができる。弾性材の場合、環状、棒状、もしくは板状のゴム材のいずれかの形態が利用することができる。ゴム材としては耐久性のあるゴム素材、好ましくは超低硬度ゴム材とすることができる。また、前記弾性材は、地盤側と基礎側との側面周囲を覆い、防水機構を兼ねる板状のゴム材とすることができる。   The return-to-origin means can be made of either an elastic material that provides a tensile force or a pressing member that provides a pressing force. In the case of an elastic material, any form of an annular, rod-like, or plate-like rubber material can be used. The rubber material may be a durable rubber material, preferably an ultra-low hardness rubber material. Further, the elastic material may be a plate-like rubber material which covers the periphery of the side surface between the ground side and the foundation side and also serves as a waterproof mechanism.

本発明に係る他の態様は、地震時に地盤と建物の基礎との間の水平方向の相対移動を許容することによって地震力を低減させる免震構造を備えた改良地盤であって、当該改良地盤は前記相対移動によって生じた建物の基礎のずれを元の位置に復帰させる原点復帰手段をさらに備えており、当該原点復帰手段が上述したいずれかの原点復帰手段であることを特徴とする改良地盤に関する。この改良地盤の建物の基礎の周囲にある緩衝空隙内には、プラスチック廃材から再生した小口径パイプ材を短く切断して形成された通称「排水パイプ」を緩衝材として充填することもできる。   Another aspect according to the present invention is an improved ground having a seismic isolation structure that reduces a seismic force by allowing horizontal relative movement between the ground and a foundation of a building during an earthquake. Further comprises origin return means for returning the displacement of the foundation of the building caused by the relative movement to the original position, wherein the origin return means is any of the above-mentioned origin return means. About. The buffer space around the foundation of the building on the improved ground may be filled with a so-called "drainage pipe" formed by cutting a small-diameter pipe material recovered from plastic waste material into a short length as a buffer material.

本発明に係るさらに他の態様は、地震時に建物の基礎と地盤との間の水平方向の相対移動を許容して地震力を低減させる免震構造によって生じた建物の基礎のずれを元の位置に復帰させるための原点復帰方法であって、地盤側と建物の基礎側との間を直接もしくは間接につなぐよう、弾性材もしくは押圧部材からなる原点復帰手段を建物の基礎の周囲に設けられた緩衝空隙内に複数個配置し、ずれによって該原点復帰手段に生じた引張り力もしくは押圧力のいずれか一方もしくは双方を利用して前記ずれを解消させることを特徴とする原点復帰方法に関する。原点復帰手段は、ずれによって生じた超低硬度ゴムの引張り力を利用するものとすることができる。   Still another aspect according to the present invention is to displace the foundation of a building caused by a base-isolated structure that allows horizontal relative movement between the foundation of the building and the ground during an earthquake to reduce seismic force. A method of returning to the original position, wherein an origin returning means made of an elastic material or a pressing member is provided around the foundation of the building so as to directly or indirectly connect the ground side and the foundation side of the building. The present invention relates to a method of returning to the origin, characterized in that a plurality of the arrangements are arranged in a buffer gap, and the deviation is eliminated by using one or both of a pulling force and a pressing force generated in the origin returning means by the deviation. The origin returning means may use the tensile force of the ultra-low hardness rubber generated by the deviation.

本発明に係る原点復帰手段によれば、地盤1に対する基礎8の相対移動の際の移動代を確保するために必要となる緩衝空隙をそのまま利用して配置することができるため、例えば、特許文献4に記載された手段と比較すれば追加の設備対応が不要となってコスト的にも有利である。また、特許文献2に記載された手段と比較して緩衝空隙へのアクセスも容易であり、原点復帰手段の着脱も容易となることからメンテナンスも楽に行えるものとなる。さらに特許文献3に記載された手段に対しては曲面への精度の高い溝加工などが不要となり、コスト的に有利となる。これらの要因により、従来技術に見られる原点復帰手段に対してよりシンプルでより安価な原点復帰機能を提供することが可能となる。   According to the origin return means according to the present invention, since the buffer space necessary for securing a movement allowance when the base 8 is relatively moved with respect to the ground 1 can be arranged as it is, for example, Japanese Patent Application Laid-Open No. H10-163,089 is disclosed. As compared with the means described in item 4, no additional equipment is required, which is advantageous in cost. In addition, compared to the means described in Patent Document 2, access to the buffer gap is easy, and attachment / detachment of the home position return means becomes easy, so that maintenance can be performed easily. Further, the means described in Patent Document 3 does not require highly accurate groove processing on a curved surface, which is advantageous in cost. These factors make it possible to provide a simpler and less expensive origin return function for the origin return means found in the prior art.

本発明の実施の形態に係る原点復帰手段を備えた改良地盤の平面図(a)及び側面断面図(b)である。It is the top view (a) and side view sectional view (b) of the improved ground provided with the origin return means concerning an embodiment of the invention. 図1に示す原点復帰手段の取付け状況を示す斜視図である。FIG. 2 is a perspective view illustrating a mounting state of the home position return unit illustrated in FIG. 1. 図2に示す原点復帰手段に使用される弾性部材とその代替案を示す斜視図である。FIG. 3 is a perspective view showing an elastic member used in the origin returning means shown in FIG. 2 and an alternative thereof. 本発明の他の実施の形態に係る原点復帰手段を備えた改良地盤の斜視図である。It is a perspective view of the improved ground provided with the origin return means concerning other embodiments of the present invention. 従来技術に係る摺動免震機構を備えた改良地盤を示す側面断面図である。It is a side sectional view showing the improved ground provided with the sliding seismic isolation mechanism concerning a conventional technology. 図5に示す改良地盤に適用可能な原点復帰手段を示す側面断面図(a)及び平面概略図(b)である。It is a side sectional view (a) and a schematic plan view (b) showing an origin returning means applicable to the improved ground shown in FIG. 従来技術に係る摺動免震機構を備えた他の改良地盤を示す側面断面図である。It is a side sectional view showing other improved ground provided with a sliding seismic isolation mechanism concerning a conventional technology. 従来技術に係る転がり免震機構を備えた他の改良地盤を示す側面断面図である。It is a sectional side view which shows the other improved ground provided with the rolling seismic isolation mechanism which concerns on a prior art.

本発明の第1の実施の形態に係る原点復帰手段、並びに該原点復帰手段を備えた改良地盤について、図面を参照して説明する。図1は、本実施の形態に係る原点復帰手段を備えた改良地盤の概要を示すもので、(a)は平面図、(b)は側面断面図である。両図において、本実施の形態に係る改良地盤は、基本的に従来技術の項で説明した特許文献1に開示された摺動免震機構を利用する改良地盤の構成を踏襲しており、これに加えて以下に述べる原点復帰手段20をさらに備えるものである。ただし、本発明の適用は図示の摺動免震機構によるものに限定されるものではなく、転がり免震機構による免震構造であっても、地盤に対する基礎の相対移動を許容するその他の免震構造に対しても適用可能である。   With reference to the drawings, a description will be given of an origin returning unit according to a first embodiment of the present invention and an improved ground provided with the origin returning unit. FIGS. 1A and 1B show an outline of an improved ground provided with an origin returning means according to the present embodiment, wherein FIG. 1A is a plan view and FIG. 1B is a side sectional view. In both figures, the improved ground according to the present embodiment basically follows the structure of the improved ground using the sliding seismic isolation mechanism disclosed in Patent Document 1 described in the section of the prior art. In addition to the above, an origin return means 20 described below is further provided. However, the application of the present invention is not limited to the sliding seismic isolation mechanism shown in the drawing, and other seismic isolation that allows relative movement of the foundation with respect to the ground It is also applicable to structures.

図1(a)、(b)において、当該改良地盤は、地盤1の根切り部11内で側壁61によって囲われた平坦な調整地盤2を備え、その上に振動減衰手段4を介して基礎8が設けられている。基礎8はやはり平坦なベタ基礎であることが好ましく、基礎8の上には図示しない建物が構築される。なお、図では説明簡略化のため下地調整シート3、防振ゴム5の表記を省略しているが、特許文献1と同様にこれらを設けることも勿論可能である。振動減衰手段4は、ここでは対向して配置された調整地盤2側の第1の摺動材41と基礎8側の第2の摺動材42とから構成されており、これらを保護シート71で包むことによって両摺動材41、42間への異物、水分の混入を防いでいる。保護シート71は、地震時の両摺動材41、42間における相対移動に追従できる柔軟性と伸縮性が求められ、本実施の形態では0.2mm厚のポリエチレンシートが用いられているが、ゴム材など他のシート材が用いられてもよい。地震の際の振動は、両摺動材41、42の間の摺動(滑り)によって吸収され、地盤側から基礎8への伝わる振動を減衰させる。この構造は先の従来技術で特許文献1を参照して説明したものと同様である。   1 (a) and 1 (b), the improved ground is provided with a flat adjusting ground 2 surrounded by a side wall 61 in a root cut portion 11 of the ground 1, on which a foundation is provided via vibration damping means 4. 8 are provided. The foundation 8 is also preferably a flat solid foundation, and a building (not shown) is constructed on the foundation 8. Although the illustration of the base adjustment sheet 3 and the anti-vibration rubber 5 is omitted in the figure for simplicity of explanation, it is of course possible to provide them as in Patent Document 1. The vibration damping means 4 is composed of a first sliding member 41 on the adjustment ground 2 side and a second sliding member 42 on the base 8 which are arranged to face each other. By wrapping it, foreign matter and moisture are prevented from being mixed between the sliding members 41 and 42. The protection sheet 71 is required to have flexibility and elasticity that can follow relative movement between the sliding members 41 and 42 during an earthquake, and in this embodiment, a polyethylene sheet having a thickness of 0.2 mm is used. Another sheet material such as a rubber material may be used. The vibration at the time of the earthquake is absorbed by the sliding (slipping) between the sliding members 41 and 42, and attenuates the vibration transmitted from the ground side to the foundation 8. This structure is the same as that described with reference to Patent Document 1 in the prior art.

側壁61と基礎8との間の間隙である緩衝空隙70は、地震の際に調整地盤2に対して摺動により相対移動する基礎8の移動代を見込むもので、一般には35cm〜50cmほどの幅を有する。図5に示す従来技術では、この緩衝空隙70内に緩衝材62(図5参照)が充填されており、緩衝材62としてゴムチップの他に砂などが使用できるが、好ましくはゴムチップ、さらには後述する排水パイプが好ましい。あるいは、緩衝材62を無充填とすることでもよい。本実施の形態ではこの緩衝空隙70を利用して原点復帰手段20が設けられ、複数の原点復帰手段20が基礎8の周囲に配置される。このように緩衝空隙70のスペースをそのまま利用することにより、本実施の形態では原点復帰のための特別な設備対応が不要となる利点がある。原点復帰手段20は、ゴムなどの弾性材23によって基礎8側と側壁61とをつないで結ぶもので、このため基礎8側と側壁61側のそれぞれに取付け具21、22が設けられる。図示の例では、このような原点復帰手段20が平面四辺形の基礎8の四辺にそれぞれ2個ずつ配置されているが、この数量と配置については後述するように建物を含む基礎8の重量、振動減衰手段4の諸元、基礎8の形状に応じて適切に設定可能である。例えば基礎8が四辺形であれば、各辺において少なくとも1個もしくは2個の原点復帰手段20が配置されていることが平面の2軸方向のズレを復元するために好ましく、他の平面形状の場合にあってもこれに準じた配置がされることが好ましい。なお、図1において根切り部11の内側には側壁61が設けられているが、この側壁61が設けられない場合もあり得る。そのような場合には、調整地盤2から垂直に取付具22を立ち上げ、これに弾性材23を取付けるようにしても良い。   The buffer gap 70, which is a gap between the side wall 61 and the foundation 8, is designed to allow for the movement allowance of the foundation 8 which moves relative to the adjustment ground 2 by sliding during an earthquake, and is generally about 35 cm to 50 cm. Have a width. In the prior art shown in FIG. 5, a buffer material 62 (see FIG. 5) is filled in the buffer space 70, and sand or the like can be used as the buffer material 62 in addition to a rubber chip. Drainage pipes are preferred. Alternatively, the buffer material 62 may be unfilled. In the present embodiment, the origin return means 20 is provided using the buffer gap 70, and a plurality of origin return means 20 are arranged around the foundation 8. By utilizing the space of the buffer gap 70 as it is, the present embodiment has an advantage that special equipment for returning to the origin is not required. The origin returning means 20 connects and connects the base 8 side and the side wall 61 with an elastic material 23 such as rubber. For this reason, mounting tools 21 and 22 are provided on the base 8 side and the side wall 61 side, respectively. In the example shown in the figure, two such home position return means 20 are arranged on each of the four sides of the plane quadrilateral foundation 8, but the number and arrangement thereof will be described later. It can be set appropriately according to the specifications of the vibration damping means 4 and the shape of the foundation 8. For example, if the base 8 is a quadrilateral, it is preferable to arrange at least one or two origin return means 20 on each side in order to restore the displacement of the plane in the two axial directions. Even in such a case, it is preferable that an arrangement according to this is performed. Although the side wall 61 is provided inside the root cutting portion 11 in FIG. 1, the side wall 61 may not be provided in some cases. In such a case, the attachment 22 may be raised vertically from the adjustment ground 2 and the elastic member 23 may be attached thereto.

図2は、原点復帰手段20が基礎8と側壁61(地盤1)の間に配置された状況を示す斜視図である。図2において、原点復帰手段20は、環状の弾性材23(以下「環状ゴム材23」とも言う。)を、基礎8側に設けられた取付け具21と側壁61側に設けられた取付け具22にそれぞれ嵌めることによって固定している。このため、環状ゴム材23の着脱は極めて容易となり、原点復帰手段20の着脱、メンテナンスに手間がかかることはない。図1(b)の側面断面図に見られるように、緩衝空隙70の上面には適当な強度を備えた防水カバー73を被せることで原点復帰手段20へのアクセスも容易である。地震時に防水カバー73は、基礎8と一体となって移動し、基礎8の相対移動を拘束することがない。あるいは図5に示す従来技術にあるように、緩衝空隙70には緩衝材62を充填してもよく、この際には緩衝材62として原点復帰手段20へのアクセスの障害とならない材料、また地震時の基礎8の相対移動を阻害しない材料、例えば排水パイプ、を選択することが好ましい。これに関しては後述する。   FIG. 2 is a perspective view showing a state where the origin returning means 20 is disposed between the foundation 8 and the side wall 61 (the ground 1). In FIG. 2, the origin returning means 20 includes an annular elastic member 23 (hereinafter also referred to as “annular rubber member 23”) and an attachment 21 provided on the base 8 side and an attachment 22 provided on the side wall 61 side. Are fixed by fitting them into the respective parts. For this reason, the attachment and detachment of the annular rubber material 23 becomes extremely easy, and the attachment and detachment of the origin return means 20 and the maintenance are not required. As can be seen from the side sectional view of FIG. 1B, the upper surface of the buffer space 70 is covered with a waterproof cover 73 having appropriate strength, so that access to the origin return means 20 is easy. During an earthquake, the waterproof cover 73 moves integrally with the foundation 8 and does not restrict the relative movement of the foundation 8. Alternatively, as in the prior art shown in FIG. 5, the cushioning space 70 may be filled with a cushioning material 62, in which case the cushioning material 62 may be made of a material that does not hinder access to the origin return means 20, It is preferable to select a material that does not hinder the relative movement of the foundation 8 at the time, for example, a drain pipe. This will be described later.

図3は、弾性材23の具体的な形状例を示しており、この内図3(a)は、図2に表示した所定幅の環状ゴム材23の例を示している。図3(b)は、同じく代替となる棒状(もしくは板状)ゴムからなる弾性材23を示している。この場合には長手方向両端に取付け用のフランジ部材23a、23aが焼き付けなどにより取付けられ、この部分が基礎8及び側壁61に設けられる取付け具21a、22bに差し込まれて固定される。これらの形態は一例であって、弾性材23の形状、取付け手段については他の従来技術で知られた形態、対応策の適用が可能である。   FIG. 3 shows a specific example of the shape of the elastic member 23, and FIG. 3A shows an example of the annular rubber member 23 having a predetermined width shown in FIG. FIG. 3B shows an alternative elastic member 23 made of a rod-shaped (or plate-shaped) rubber. In this case, mounting flange members 23a, 23a are attached to both ends in the longitudinal direction by baking or the like, and these portions are inserted and fixed into attachments 21a, 22b provided on the foundation 8 and the side wall 61. These forms are merely examples, and the form of the elastic member 23 and the attaching means can be applied to other forms and countermeasures known in the related art.

弾性材23のゴム材としては、優れた柔軟性、衝撃吸収性を備え、かつ強度や耐候性にも優れたゴム材を選択することが望まれる。具体的には、超低硬度ゴムを使用することが好ましく、ただし条件を満たすものであればその他のゴム材が使用されてもよい。超低硬度ゴムには、EPDM系、シリコーンゴム系、ブチルゴム系などが見られ、用途により選択可能である。一例として、テストに供した超低硬度ゴムの物性は、硬度(JIS−A):26、引張り強さ:5.6メガパスカル、破断伸び:872%、100%伸び時の引張り強さ:0.29メガパスカル、200%伸び時の引張り強さ:0.39メガパスカルであった。このような弾性材23を基礎8の周囲の緩衝空隙70内で対向する両側の取付け具21、22を介して適切に配置して取り付けることにより、基礎8がいずれかの方向に移動した際に少なくとも引っ張られた側に配置された原点復帰手段20の弾性材23が伸ばされ、これが収縮する際に基礎8を原点復帰させる復元力(引っ張り力)を提供するものとなる。   As the rubber material of the elastic member 23, it is desired to select a rubber material having excellent flexibility and shock absorption, and also having excellent strength and weather resistance. Specifically, it is preferable to use an ultra-low hardness rubber, but other rubber materials may be used as long as the conditions are satisfied. Ultra-low hardness rubbers include EPDM, silicone rubber, and butyl rubber, and can be selected depending on the application. As an example, the physical properties of the ultra-low hardness rubber subjected to the test are as follows: hardness (JIS-A): 26, tensile strength: 5.6 MPa, elongation at break: 872%, tensile strength at 100% elongation: 0 .29 MPa, tensile strength at 200% elongation: 0.39 MPa. By appropriately arranging and mounting such elastic members 23 via the mounting members 21 and 22 on both sides facing each other in the buffer space 70 around the foundation 8, when the foundation 8 moves in either direction. At least the elastic member 23 of the home position return means 20 disposed on the pulled side is stretched, and provides a restoring force (pulling force) for returning the base 8 to the home position when it contracts.

所定の寸法諸元を有する弾性材23を使用する場合の例として、原点復帰手段20の必要数量は以下のように算定できる。例えば、建物面積が8m×8mの2階建て建物を想定すると、建物荷重は約64トン(1トン/mとする。)となり、同質量は65.3kg・sec/cm(64,000÷980cm/ sec)となって、この質量をMとする。地震時には、固有振動数0.5Hz付近がキラーパルス領域(共振を起す危険な振動数領域)となるため、地震による建物の共振を回避するには原点復帰手段20を介した場合の建物の固有振動数を0.1Hzほどとすることが狙い目となる。その時の原点復帰手段20のバネ定数をK(kg/cm)、振動周波数をfrとすると、
fr=1/2π・(K/M)1/2
の関係より、バネ乗数Kは、
K=fr×4×π×M=25.7kg/cm
となる。
As an example in the case of using the elastic material 23 having predetermined dimensions, the required quantity of the origin returning means 20 can be calculated as follows. For example, assuming a two-story building having a building area of 8 m × 8 m, the building load is about 64 tons (1 ton / m 2 ) and the mass is 65.3 kg · sec 2 / cm (64,000). {980 cm / sec 2 ), and this mass is defined as M. At the time of an earthquake, the natural frequency around 0.5 Hz is a killer pulse region (a dangerous frequency region that causes resonance). The aim is to make the frequency about 0.1 Hz. Assuming that the spring constant of the origin return means 20 at that time is K (kg / cm) and the vibration frequency is fr,
fr = 1 / 2π · (K / M) 1/2
From the relationship, the spring multiplier K is
K = fr 2 × 4 × π 2 × M = 25.7 kg / cm
Becomes

一方、図3(a)を参照して、弾性材23として厚さW=20mm、幅S=100mm、半折長L=300mmの超低硬度ゴムからなる環状ゴム材を使用した場合の環状ゴム材1本当たりの引っ張りバネ定数Kを算出すると、上述したように超低硬度ゴムの100%モジュラスは0.29メガパスカル(2.9kg/cm)、同じく200%モジュラスは3.9メガパスカル(3.9kg/cm)であるから、この間の100%伸び時の引張り強さの差は1.0kg/cmとなる。この間の100%伸び変化時の引張り力は
2(cm)×10(cm)×1.0kg/cm×2(環状ゴム材の両側)=40kg
となる。これより、変化量が300mmとした場合の環状ゴム材からなる弾性材23の一本当たりの引張りバネ定数Kを算出すれば、
K=40kg/30cm≒1.3kg/cm
となる。
On the other hand, with reference to FIG. 3A, a ring rubber in the case of using a ring rubber material made of ultra-low hardness rubber having a thickness W = 20 mm, a width S = 100 mm, and a half-fold length L = 300 mm as the elastic member 23. When the tensile spring constant K per material is calculated, the 100% modulus of the ultra-low hardness rubber is 0.29 megapascal (2.9 kg / cm 2 ), and the 200% modulus is 3.9 megapascal, as described above. (3.9 kg / cm 2 ), the difference in tensile strength at 100% elongation between them is 1.0 kg / cm 2 . The tensile force when 100% elongation changes during this period is 2 (cm) × 10 (cm) × 1.0 kg / cm 2 × 2 (both sides of the annular rubber material) = 40 kg
Becomes From this, if the tension spring constant K per elastic member 23 made of the annular rubber material when the variation is 300 mm is calculated,
K = 40kg / 30cm ≒ 1.3kg / cm
Becomes

次に、図1(a)に示すような平面が矩形形状の基礎8の周囲各辺に等しい数の弾性材23(図示の例では各辺に2本のみを表示)が配置されていると仮定して、その各辺に配置される弾性材23の必要本数Aを算出してみる。今、地震時に基礎8が図の左側に相対移動する場合を想定すると、図の右側の辺に位置するA本の弾性材23には引張り力が加わるが、左側の辺に位置する弾性材23は緩む方向の移動となるため何らの力も作用していない。これに対して上下面の2辺に位置する各A本の弾性材23には斜めに引張り力が加わり、この際の引張り力は仮に右側の辺に作用する引張り力の1/3と想定する。これにより、基礎8の周囲で引張り力として作用する弾性材23の合計本数は、A+2×A×1/3=5/3・A本と算出される。上述した1本当たりのバネ定数Kが1.3kg/cmであることから、
A=K/K・3/5=25.7kg/cm/1.3kg/cm・3/5=11.9本
となり、一辺当りの必要本数Aは約12本となる。すなわち基礎8の矩形形状の各辺に12本の環状ゴムの弾性材23を配置すれば、基盤8(建物含む)の固有振動数を0.1Hzに設定することができる。
Next, as shown in FIG. 1A, it is assumed that the same number of elastic members 23 (only two are shown on each side in the illustrated example) are arranged on each side around the base 8 having a rectangular shape on a plane. Assuming that the required number A of the elastic members 23 arranged on each side is calculated. Now, assuming that the foundation 8 relatively moves to the left side of the figure during an earthquake, a tensile force is applied to the A elastic members 23 located on the right side of the figure, but the elastic members 23 located on the left side of the figure. Does not act at all because it moves in the loosening direction. On the other hand, a tensile force is obliquely applied to each of the A elastic members 23 located on the two sides of the upper and lower surfaces, and the tensile force at this time is temporarily assumed to be 1/3 of the tensile force acting on the right side. . Thus, the total number of elastic members 23 acting as a tensile force around the foundation 8 is calculated as A + 2 × A ×× = 5/3 · A. Since the above-mentioned spring constant K per one is 1.3 kg / cm,
A = K / K · 3/5 = 25.7 kg / cm / 1.3 kg / cm · 3/5 = 11.9, and the required number A per side is about 12. That is, if twelve annular rubber elastic members 23 are arranged on each side of the rectangular shape of the base 8, the natural frequency of the base 8 (including the building) can be set to 0.1 Hz.

ただし、ここに挙げた環状ゴムの各諸元並びに基礎8の形状、質量等は一例であって、条件が異なれば弾性材23の必要本数も当然に異なるものとなる。例えば、弾性材23としてEPDMなどのゴム系防水シートを使用し、図3(a)に示す寸法諸元を、厚さW=1.5mm、幅S=100mm、半折長L=300mmとしてこれを2枚かさねて1セットとした環状ゴム材を使用した場合を想定すると、100%伸び変化時の引張り力は78kg、1本当たりの引張りバネ定数は2.6kg/cmとなるため、1辺当りの弾性材23の必要本数は6セット(12枚)と算出される。   However, the specifications of the annular rubber and the shape, mass, and the like of the base 8 are merely examples, and the required number of the elastic members 23 naturally differs under different conditions. For example, a rubber-based waterproof sheet such as EPDM is used as the elastic member 23, and the dimensions shown in FIG. 3A are set as follows: thickness W = 1.5 mm, width S = 100 mm, and half-fold length L = 300 mm. Assuming that a set of two annular rubber materials is used, a tensile force at the time of 100% elongation change is 78 kg, and a tensile spring constant per one is 2.6 kg / cm. The required number of elastic members 23 per hit is calculated as 6 sets (12 sheets).

図1、2に戻って、万一の共振を回避するため、および弾性材23の伸縮による建物の振動継続を早期に減衰させるため、改良地盤には原点復帰手段20に沿って図示のようにダンパなどの減衰手段25が設けられていることが好ましい。この減衰手段25は、図示の例では2軸方向にそれぞれ1つずつ設けられているが、水平面での振動を減衰するため、このように平面上の2軸に沿って少なくとも各1つが設けられることが好ましいが、その数はこれに限定されない。減衰手段25は、基礎8の側面と側壁61とにジョイントを介してボルト止めされてもよく、あるいは着脱を容易にするために図2(b)に示すものと同様に差込式にして固定することでもよい。なお、減衰手段25の設置に関しては次に示す実施の形態についても同様に適用可能である。   Returning to FIGS. 1 and 2, in order to avoid an unexpected resonance and to attenuate the continuation of the vibration of the building due to the expansion and contraction of the elastic member 23 at an early stage, the improved ground is moved along the origin returning means 20 as shown in the drawing. Preferably, a damping means 25 such as a damper is provided. In the illustrated example, one damping means 25 is provided in each of two axial directions. However, in order to attenuate vibration in a horizontal plane, at least one damping means 25 is provided along two axes on a plane as described above. However, the number is not limited to this. The damping means 25 may be bolted to the side surface of the base 8 and the side wall 61 via a joint, or may be plugged and fixed as shown in FIG. It may be. The installation of the damping means 25 is similarly applicable to the following embodiment.

図1に示す例では、緩衝空隙70を空洞のままとして原点復帰手段20を配置しているが、これを例えば図5に示すように原点復帰手段20をそのまま含めて緩衝材62を充填するか、あるいは原点復帰手段20の部分のみが空洞となるよう区画してその他の箇所に緩衝材62を充填してもよい。本実施の形態ではこの緩衝材62として、「排水マット」の材料として不織布の袋に詰めて使用される通称「排水パイプ」と呼ばれるプラスチック製小口径の中空円筒材を多数充填して用いられている。「排水パイプ」は、ポリエチレンなどのプラスチック廃材をペレット状にし、特殊加工によって例えば外径約8mm、肉厚約1.5mm、長さ約10mm程度の中空円筒状に再生した材料で、新潟県新潟市にある株式会社オリス、鳥取県米子市にあるフジ化成工業株式会社ほかから入手可能である。   In the example shown in FIG. 1, the origin return means 20 is disposed with the buffer space 70 remaining hollow, but for example, as shown in FIG. Alternatively, the cushioning material 62 may be filled in other portions by dividing only the portion of the origin returning means 20 into a cavity. In the present embodiment, as the cushioning material 62, a large number of small-diameter plastic hollow cylindrical materials called “drainage pipes”, which are used by packing in a nonwoven bag as a material of a “drainage mat”, are used. I have. "Drainage pipe" is a material made by recycling plastic waste materials such as polyethylene into pellets, and by special processing, reclaimed into a hollow cylindrical shape with an outer diameter of about 8 mm, a wall thickness of about 1.5 mm, and a length of about 10 mm. Niigata, Niigata Prefecture Available from Oris Co., Ltd. in the city, Fuji Kasei Kogyo Co., Ltd. in Yonago, Tottori.

緩衝材62としてこの「排水パイプ」を使用することのメリットは、廃材利用であるために資源的、コスト的に有利であることのほか、土、砂、砂利を充填材とした場合にはこれらがブレーキとなって地震時に振動減衰手段10のすべり性能を阻害させることがあるのに対し、「排水パイプ」にはそれが見られず、良好な干渉特性を得ることができる点が挙げられる。また特に寒冷地において、土、砂、砂利を緩衝材として使用されると水が内部に進入した際にこれが凍結して減衰手段のすべり性能に更なる悪影響を及ぼすことになるのに対し、「排水パイプ」では透水性に優れるためにこのような悪影響が生じ難く、また「排水パイプ」自身が凍結しても僅かなショックでこれが破砕されるため、緩衝特性が大きく損なわれることがない。加えて、土等と異なって「排水パイプ」自身が弾性材料であることから、振動のショックを吸収すると共に、ある程度の原点復帰効果をも期待することができる。従来技術で使用されているゴムチップからなる緩衝材62と比べても、中空材であるために柔軟性と排水性が高まり、特には凍結時の緩衝特性に優れている。この緩衝材62の上に防水シートをかぶせ、さらのその上から砕石又は砂利を敷設すれば、外観上の違和感がなくなる。例えば緩衝材62の厚さ(深さ)を10cm、砕石の厚さを5cmとすることで、踏み込み感もフワフワ感もなく、普通に歩行することができるようになり、一見して一般の建物との見分けができないほどとなる。   The advantages of using this “drainage pipe” as the cushioning material 62 are that it is advantageous in terms of resources and cost due to the use of waste materials, and when soil, sand and gravel are used as fillers, May act as a brake to hinder the sliding performance of the vibration damping means 10 during an earthquake, whereas the "drainage pipe" does not show this, and a good interference characteristic can be obtained. Also, especially in cold regions, when soil, sand, or gravel is used as a cushioning material, when water enters the interior, it freezes and has a further adverse effect on the slip performance of the damping means. The drainage pipe is excellent in water permeability, so that such adverse effects hardly occur, and even if the drainage pipe itself freezes, it is crushed by a slight shock, so that the buffer characteristics are not significantly impaired. In addition, unlike the soil and the like, the “drainage pipe” itself is an elastic material, so that it is possible to absorb the shock of vibration and to expect a certain degree of return to origin. Compared to the cushioning material 62 made of a rubber chip used in the prior art, since it is a hollow material, flexibility and drainage are enhanced, and particularly, the cushioning property at the time of freezing is excellent. If a waterproof sheet is put on the cushioning material 62 and crushed stones or gravel are further laid thereon, there is no strange feeling in appearance. For example, by setting the thickness (depth) of the cushioning material 62 to 10 cm and the thickness of the crushed stone to 5 cm, it becomes possible to walk normally without a feeling of stepping and fluffy, and at first glance a general building And cannot be distinguished.

以上、本発明の第1の実施の形態に係る原点復帰手段20について説明してきたが、当該原点復帰手段20によれば、取付けが容易であり、材料と諸元を選択することによって地震による基礎8と調整地盤2(地盤1)との間のずれを解消して自動的に原点復帰させることができる。上述したような物性を有する超低硬度ゴムを使用して入力加速度800gal、周波数5Hzと3Hzの振動を付与して行ったテスト結果によれば、いずれも基盤8側の応答加速度は230galに減少し、また残留変位(ずれ)は0mmであった。なお、地震直後には完全に原点復帰できない場合であっても、例えば加速度200gal以下で摺動材41、42の間で滑りが発生しない程度の地震時などにも弾性材23の作用によっても復元力が作用して原点復帰ができるものとなる。この他にも体に感じない微小地震や鉄道、大型車両走行等に起因する住環境侵入振動によっても、基礎8にずれが残っている限りは原点復帰する方向への引張り力が働くことが想定でき、これらの作用によっても原点復帰能力を果たすものとなる。 As described above, the origin return means 20 according to the first embodiment of the present invention has been described. However, according to the origin return means 20, it is easy to mount, and by selecting the material and the specifications, the foundation by the earthquake can be obtained. 8 and the adjustment ground 2 (ground 1) can be eliminated and the origin can be automatically returned. According to the test results obtained by using the ultra-low hardness rubber having the above-described physical properties and applying an input acceleration of 800 gal and vibrations at frequencies of 5 Hz and 3 Hz, the response acceleration of the base 8 side is reduced to 230 gal in all cases. , And the residual displacement (deviation) was 0 mm. Even if it is not possible to completely return to the original position immediately after the earthquake, the elastic member 23 restores the position even when the sliding member 41 and 42 do not slip between the sliding members 41 and 42 at an acceleration of 200 gal or less. The force acts to return to the origin. In addition to this, it is assumed that a pulling force in the direction of returning to the origin will work as long as the base 8 remains displaced by the intrusion of the living environment caused by a microearthquake that does not feel to the body, a railway running, a large vehicle running, etc. It is possible to achieve the origin return capability by these actions.

次に、本発明の第2の実施の形態に係る原点復帰手段、並びに該原点復帰手段を備えた改良地盤について、図面を参照して説明する。図4は、本実施の形態に係る原点復帰手段20aを備えた改良地盤の概要を斜視図で示している。図において、本実施の形態に係る改良地盤は、基本的に従来技術の項で説明した特許文献1あるいは特許文献4に開示され摺動免震機構を利用する改良地盤の構成を踏襲しており、これに原点復帰手段20aを備えたものである。ただし、本発明の適用は図示の摺動免震機構によるものに限定されるものではなく、転がり免震機構による免震構造であっても、地盤に対する基礎の相対移動を許容するその他の免震構造に対しても適用可能である。   Next, an origin returning unit according to a second embodiment of the present invention and an improved ground provided with the origin returning unit will be described with reference to the drawings. FIG. 4 is a perspective view showing an outline of an improved ground provided with the origin return means 20a according to the present embodiment. In the figure, the improved ground according to the present embodiment basically follows the configuration of the improved ground using the sliding seismic isolation mechanism disclosed in Patent Document 1 or Patent Document 4 described in the section of the prior art. , Which is provided with origin return means 20a. However, the application of the present invention is not limited to the sliding seismic isolation mechanism shown in the drawing, and even if the seismic isolation structure is based on the rolling seismic isolation mechanism, other seismic isolation that allows relative movement of the foundation with respect to the ground It is also applicable to structures.

図4において、当該改良地盤は特許文献1に開示されている構造と同様に、調整地盤2が地盤1の上に打設されており、さらにその上に振動減衰手段4を介して基礎8が設けられている。基礎8はやはり平坦なベタ基礎であることが好ましく、基礎8の上には図示しない建物が構築される。振動減衰手段4は、ここでは対向して配置された調整地盤2側の第1の摺動材41と基礎8側の第2の摺動材42とから構成されている。図4では説明簡略化のため省略しているが、これらの摺動材41、42を図1(b)に示す保護シート71で包んで異物、水分の混入を防ぐようにしてもよい。さらに同じく図4では省略されているが、図1(b)の場合と同様、下地調整シート3、防振ゴム5(図5参照)によって摺動材41、42を挟むように配置することも勿論可能である。   In FIG. 4, similarly to the structure disclosed in Patent Literature 1, the improved ground has an adjustment ground 2 placed on the ground 1, and a foundation 8 is further placed thereon via a vibration damping means 4. Is provided. The foundation 8 is also preferably a flat solid foundation, and a building (not shown) is constructed on the foundation 8. Here, the vibration damping means 4 is composed of a first sliding member 41 on the adjustment ground 2 side and a second sliding member 42 on the base 8 side, which are arranged to face each other. Although not shown in FIG. 4 for simplicity of description, these sliding members 41 and 42 may be wrapped in a protective sheet 71 shown in FIG. Further, although not shown in FIG. 4, as in the case of FIG. 1B, the sliding members 41 and 42 may be arranged so as to sandwich the base adjustment sheet 3 and the vibration isolating rubber 5 (see FIG. 5). Of course it is possible.

本実施の形態に示す改良地盤では、調整地盤2と基礎8の両側面をつなぐように板状の弾性材23aが両者に跨って配置され、取付け具21a、22b(図示の例では適切に配置された複数のコンクリートボルト)によってそれぞれ基礎8側と調整地盤2側に固定されている。固定のために必要であれば、弾性材23aの固定部分に固定用の鋼板などが焼き付けされていてもよい。弾性材23aのゴム材としては、先の実施の形態と同様に超低硬度ゴムを使用することが好ましいが、ただし条件を満たすものであればその他のゴム材が使用されてもよい。図示の例では、このような原点復帰手段20が平面四辺形の基礎8の四辺にそれぞれ1個ずつ配置されている。ただし、この数量と配置については後述するように、建物を含む基礎8の重量、振動減衰手段4の諸元、基礎8の形状に応じて適切に設定可能である。例えば基礎8が四辺形であれば、各辺において少なくとも1個もしくは2個の原点復帰手段20が配置されていることが平面の2軸方向のズレを復元するために好ましく、他の平面形状の場合にあってもこれに準じた配置がされることが好ましい。   In the improved ground shown in the present embodiment, a plate-like elastic material 23a is arranged over both sides of the adjustment ground 2 and the foundation 8 so as to connect the two sides, and the mounting tools 21a, 22b (appropriately arranged in the illustrated example) Are fixed to the foundation 8 side and the adjustment ground 2 side, respectively. If necessary for fixing, a fixing steel plate or the like may be baked on the fixing portion of the elastic member 23a. As the rubber material of the elastic material 23a, it is preferable to use an ultra-low hardness rubber as in the above embodiment, but other rubber materials may be used as long as the conditions are satisfied. In the illustrated example, one such origin return means 20 is disposed on each of the four sides of the flat quadrilateral base 8. However, this quantity and arrangement can be appropriately set according to the weight of the foundation 8 including the building, the specifications of the vibration damping means 4, and the shape of the foundation 8, as described later. For example, if the base 8 is a quadrilateral, it is preferable to arrange at least one or two origin return means 20 on each side in order to restore the displacement of the plane in the two axial directions. Even in such a case, it is preferable that an arrangement according to this is performed.

なお、図4では表示を省略しているが、調整地盤2と基礎8の周囲は地盤1の根切り部によって取り囲まれており、根切り部との間には地震の際の基礎8の相対移動を許容するための緩衝空隙70(図1(b)参照)が設けられていること、そしてその緩衝空隙70内には緩衝材62の充填ができることは先の実施の形態と同様である。但し、根切り部11の内側に設ける側壁61(いずれも図1参照)の設置は、必ずしも必要ではない。   Although not shown in FIG. 4, the surroundings of the adjustment ground 2 and the foundation 8 are surrounded by a root cut portion of the ground 1, and the relative position of the base 8 at the time of the earthquake is between the ground cut portion and the root cut portion. As in the previous embodiment, a buffer space 70 (see FIG. 1B) for allowing movement is provided, and the buffer material 62 can be filled in the buffer space 70. However, it is not always necessary to install the side wall 61 provided inside the root cutting portion 11 (refer to FIG. 1).

地震の際の振動は、両摺動材41、42の間の摺動(滑り)によって吸収され、地盤側から基礎8への伝わる振動を減衰させる。この構造は先の従来技術で説明したものと同様である。図4では、改良地盤2と基礎8とが地震によりX方向に相対移動した状態を示しており、この場合にはX方向の両側に配置された原点復帰手段20aの弾性材23aには、先の実施の形態とは異なって両側のいずれにも引張り力が発生し、また、Y方向の両側に配置された原点復帰手段20aの弾性材23aにはせん断力が加わることを示している。各原点復帰手段20aは、根切り部との間の緩衝空隙内に配置されているため、その着脱、メンテナンスを容易に行うことができるのは先の実施の形態と同様である。   The vibration at the time of the earthquake is absorbed by the sliding (slipping) between the sliding members 41 and 42, and attenuates the vibration transmitted from the ground side to the foundation 8. This structure is similar to that described in the prior art. FIG. 4 shows a state in which the improved ground 2 and the foundation 8 have relatively moved in the X direction due to the earthquake, and in this case, the elastic members 23a of the origin returning means 20a arranged on both sides in the X direction have first In contrast to the embodiment, a tensile force is generated on both sides, and a shear force is applied to the elastic member 23a of the origin return means 20a disposed on both sides in the Y direction. Each of the origin return means 20a is disposed in the buffer gap between the root return part, so that attachment / detachment and maintenance can be easily performed as in the previous embodiment.

弾性材23aのゴム材としては、優れた柔軟性、衝撃吸収性を備え、かつ強度や耐候性にも優れたゴム材を選択することが望まれ、具体的にはここでも超低硬度ゴムを使用することが好ましいが、ただし条件を満たすものであればその他のゴム材が使用されてもよい。所定の寸法諸元を有する弾性材23aを使用する場合の例として、原点復帰手段20の必要数量は先の実施の形態と同様にして算定することができる。建物面積等の条件を先の実施の形態と同様(8m×8m、2階建、建物荷重は約64トン)とすれば、地震時の固有振動数0.5Hz付近のキラーパルス領域を回避して固有振動数0.1Hzを狙い目とすると、バネ定数Kも同様に25.7kg/cmとなることが目標となる。   As the rubber material of the elastic material 23a, it is desired to select a rubber material having excellent flexibility and shock absorbing properties, and also having excellent strength and weather resistance. It is preferable to use, but other rubber materials may be used as long as the conditions are satisfied. As an example in the case of using the elastic material 23a having predetermined dimensions, the required quantity of the origin returning means 20 can be calculated in the same manner as in the above embodiment. If the conditions such as the building area are the same as those in the previous embodiment (8 m × 8 m, 2 stories, building load is about 64 tons), the killer pulse region near the natural frequency of 0.5 Hz during an earthquake is avoided. If the natural frequency is set to 0.1 Hz, the spring constant K is also set to 25.7 kg / cm.

一方、図4において、弾性材23aが超低硬度ゴムとしてその厚さを5mm、上下方向の幅を100mm(可動領域)、長さを1mとし、先の実施の形態と同様に計算すると、100%伸び変化時の引張り力は50kg、弾性材23a一本当たりの引張りバネ定数は約5kg/cmとなる。基礎8の各周囲に配置される弾性材23aの数をAとすれば、X方向の両側の弾性材23aに引張り力が発生し、Y方向の両側に加わるせん断力を引張り力の1/3とみると、引張りに換算した場合の関与する弾性材23aの合計本数は2A+2A/3=8/3・Aとなる。上記共振を回避するに必要なバネ定数Kと、弾性材23aのバネ定数、ならびに関与する弾性材23aの本数とから、基礎8の一辺に必要な弾性材23aの必要本数Aは、
A=K/K・3/8=25.7kg/cm/5kg/cm・3/8≒2本
となり、すなわち基礎8の矩形形状の各辺に2本の板状ゴムの弾性材23aを配置すれば、基盤8(建物含む)の固有振動数を0.1Hzに設定することができる。ただし、ここに挙げた板状ゴムの諸元並びに基礎8の形状、大きさも一例であって、条件が異なれば必要本数も当然に異なるものとなる。例えば、弾性材23aとして、厚さ1.5mm、幅100mm、長さ0.5mの板状のゴム系防水シートを使用した場合、基礎8の各辺ごとの必要数量は1本となる。
On the other hand, in FIG. 4, the elastic material 23a is made of ultra-low hardness rubber, the thickness is 5 mm, the width in the vertical direction is 100 mm (movable area), and the length is 1 m. The tensile force when the% elongation changes is 50 kg, and the tensile spring constant per elastic member 23a is about 5 kg / cm. Assuming that the number of elastic members 23a arranged around each of the foundations 8 is A, a tensile force is generated in the elastic members 23a on both sides in the X direction, and the shear force applied to both sides in the Y direction is reduced to 1/3 of the tensile force. Thus, the total number of the elastic members 23a involved when converted to tension is 2A + 2A / 3 = 8/3 · A. From the spring constant K required to avoid the resonance, the spring constant of the elastic member 23a, and the number of the elastic members 23a involved, the required number A of the elastic members 23a required on one side of the foundation 8 is as follows:
A = K / K · 3/8 = 25.7 kg / cm / 5 kg / cm · 3/8 ≒ 2, that is, two plate-like rubber elastic members 23 a are arranged on each side of the rectangular shape of the foundation 8. Then, the natural frequency of the base 8 (including the building) can be set to 0.1 Hz. However, the specifications of the plate-like rubber and the shape and size of the base 8 described above are merely examples, and the number of required rubbers will naturally differ according to different conditions. For example, when a plate-shaped rubber-based waterproof sheet having a thickness of 1.5 mm, a width of 100 mm, and a length of 0.5 m is used as the elastic member 23a, the required quantity for each side of the base 8 is one.

本実施の形態における調整地盤2並びに基礎8の周囲に設けられる緩衝空隙70(図1参照)の処理については、先の実施の形態と同様とすることでよい。また、本実施の形態に係る原点復帰手段20aが、取付け容易であり、材料と諸元を選択することによって地震による基礎8と調整地盤2(地盤1)との間のずれを解消して自動的に原点復帰させることができるという効果を奏することも同様であるが、さらに加えて、特許文献4に示すような防水シート(同文献の符号21)としても機能させるという効果をも発揮させることができる。すなわち、弾性材23aが調整地盤2と基礎8とを跨いで配置されると言う特性から、弾性材23aで両者の周囲をぐるりと取り囲み、弾性材23aによって調整地盤2と基礎8との間の摺動材41、42を覆うことによって、両摺動材41、42の間に異物、水分が混入するのを防ぎ、振動吸収のための摺動抵抗を劣化させる要因を排除する効果を生ずるものとなる。   The processing of the buffer space 70 (see FIG. 1) provided around the adjustment ground 2 and the foundation 8 in the present embodiment may be the same as in the previous embodiment. In addition, the origin return means 20a according to the present embodiment is easy to mount, eliminates the displacement between the foundation 8 and the adjusted ground 2 (ground 1) due to the earthquake by selecting the material and the specifications, and automatically performs the operation. The same effect can be obtained in that it can be returned to the original point, but in addition, it also has the effect of functioning as a waterproof sheet (reference numeral 21 in the document) as shown in Patent Document 4. Can be. That is, from the characteristic that the elastic member 23a is disposed across the adjustment ground 2 and the foundation 8, the elastic member 23a surrounds the periphery of both of them, and the elastic member 23a provides a space between the adjustment ground 2 and the foundation 8. By covering the sliding members 41 and 42, foreign matter and moisture are prevented from being mixed between the two sliding members 41 and 42, and an effect of eliminating a factor that deteriorates sliding resistance for vibration absorption is produced. Becomes

本発明に係る原点復帰手段には幾つもの変形が考えられる。上記各実施の形態に示す例では弾性材23としてゴム(超低硬度ゴム)を使用するものとしているが、これはコイルばねなどの他の弾性材料が使用されてもよい。弾性材23としてゴムが使用された場合には、復元力は基本的に引っ張り側のみとなるが、ばねを使用した場合には圧縮側と引張り側の両方で作用するため、復元力を分散することができる。ただし、このため振動の減衰には不利となることが考えられ、ダンパなどの減衰手段25が追加して設けられることが好ましい。   A number of variations are conceivable for the origin return means according to the present invention. In the examples shown in the above embodiments, rubber (ultra-low hardness rubber) is used as the elastic material 23, but another elastic material such as a coil spring may be used. When rubber is used as the elastic member 23, the restoring force is basically only on the pulling side, but when a spring is used, the restoring force is dispersed because it acts on both the compressing side and the pulling side. be able to. However, this is considered to be disadvantageous for damping the vibration, and it is preferable to additionally provide damping means 25 such as a damper.

他の変形例として、弾性材23の代わりにガス封入ダンパが使用されても良い。この場合の復元力はゴムの場合が引張り力であるのとは異なって、圧縮された側のガス封入ダンパによる押圧力が利用されるものとなる。ガス封入ダンパの着脱には、図3(b)の弾性材23のような両端にブラケット23aを設けて、これを取付具21a、22aに差し込むようにすれば簡単であり、また封入されたガスが漏れて押圧力が減退した場合のメンテナンスも容易である。なお、本明細書ではゴム、ばねなどを「弾性材」と呼ぶのに対応し、ガス封入ダンパなどの押圧力を発生させる部材は「押圧部材」と呼ぶものとする。押圧部材には、ガス封入ダンパのような伸縮式(テレスコピックタイプ)のものに限定されず、圧縮されることによって押圧力を発生させる屈曲式(マニピュレータタイプ)のものが使用されてもよい。さらに、弾性材23からなる原点復帰手段20と、押圧部材からなる原点復帰手段とを基礎8の周囲に混在させて配置してもよい。   As another modification, a gas-filled damper may be used instead of the elastic member 23. In this case, the restoring force is different from the tensile force in the case of rubber, and the pressing force by the gas-filled damper on the compressed side is used. The gas-filled damper can be easily attached and detached by providing brackets 23a at both ends, such as the elastic member 23 in FIG. 3B, and inserting the brackets 23a and 22a into the fittings 21a, 22a. When the pressing force decreases due to leakage, maintenance is easy. In the present specification, a member that generates a pressing force, such as a gas-filled damper, is referred to as a “pressing member”, while rubber, a spring, and the like are referred to as “elastic materials”. The pressing member is not limited to a telescopic type (telescopic type) such as a gas-filled damper, but may be a bending type (manipulator type) that generates a pressing force by being compressed. Further, the origin returning means 20 made of the elastic material 23 and the origin returning means made of the pressing member may be arranged in a mixture around the base 8.

また、図2ほかに示す例では、原点復帰手段20を基礎8と側壁61(もしくは調整地盤2)に直接固定するものとしているが、間接的に固定する他の方法が用いられてもよい。例えば、基礎8と側壁61との間にパンタグラフ状部材やアーム状屈曲部材を配置し、これら部材の要素に取り付けられた弾性材、押圧部材の伸縮を利用してずれを復元するようにしてもよい。これによって振幅の大小に対する原点復帰手段の復元力、復元ストローク量を調整することもできる。   Further, in the examples shown in FIG. 2 and other figures, the origin return means 20 is directly fixed to the foundation 8 and the side wall 61 (or the adjustment ground 2), but another method of indirectly fixing may be used. For example, a pantograph-shaped member or an arm-shaped bent member may be arranged between the foundation 8 and the side wall 61, and the displacement may be restored by using the elastic material attached to the elements of these members and the expansion and contraction of the pressing member. Good. This makes it possible to adjust the restoring force and restoring stroke amount of the origin returning means with respect to the magnitude of the amplitude.

上記第1の実施の形態に係る原点復帰手段20の他の応用例として、上記説明では、基礎8と調整地盤2の相対移動によるずれを、基盤8の周囲に配置された原点復帰手段20を利用するものであった。同じ原点復帰手段20を利用して、図6に示すような調整地盤側(同図の符号4)に設けられた基準心棒31と、基礎(同、符号5)側に設けられた調整穴32との間に設けて基礎側のずれを原点復帰させてもよい。調整穴32側(基礎側)に設けられる取付け具と、心棒31側(調整地盤側)に設けられる取付け具とに上述した弾性材23を嵌めて固定する原点復帰手段20を心棒31の周囲に少なくとも3つ、好ましくは4つもしくはそれ以上配置し、弾性材23の引張り力によってずれを復元させる。このような例では原点復帰手段20の配置が屋内となるため、弾性材23の対候性要件が緩和され、また着脱等もさらに容易となる。このような原点復帰手段20としては、特許文献4に示すようなコイルばねなどの他の弾性調整手段が用いられても良い。   As another application example of the origin returning means 20 according to the first embodiment, in the above description, the displacement caused by the relative movement between the base 8 and the adjustment ground 2 is changed to the origin returning means 20 arranged around the base 8. It was something to use. Using the same origin return means 20, a reference mandrel 31 provided on the adjustment ground side (reference numeral 4 in FIG. 6) and an adjustment hole 32 provided on the foundation (reference numeral 5) as shown in FIG. May be provided between them so that the deviation on the base side is returned to the origin. Around the mandrel 31, return-to-origin means 20 for fitting and fixing the above-mentioned elastic material 23 to a mounting tool provided on the adjustment hole 32 side (foundation side) and a mounting tool provided on the mandrel 31 side (adjustment ground side) are provided. At least three, preferably four or more are arranged, and the displacement is restored by the tensile force of the elastic member 23. In such an example, since the arrangement of the origin return means 20 is indoors, the requirement for weatherability of the elastic member 23 is relaxed, and attachment / detachment is further facilitated. As such an origin return means 20, another elastic adjustment means such as a coil spring as shown in Patent Document 4 may be used.

本発明に係る原点復帰手段及び原点復帰方法、並びに該原点復帰手段を備えた改良地盤は、免震構造を備えた建物の開発、製造、販売、利用を図る産業分野において広く利用することができる。   INDUSTRIAL APPLICABILITY The origin returning means and the origin returning method according to the present invention, and the improved ground provided with the origin returning means can be widely used in the industrial field for developing, manufacturing, selling, and utilizing a building having a seismic isolation structure. .

1.地盤、 2.調整地盤、 3.下地調整シート、 4.振動減衰手段、 5.防振ゴム、 7.防水シート、 8.基礎、 11.根切り部、 20、20a.原点復帰手段、 21、22.取付け具、 23.弾性材(環状ゴム材)、 23a.フランジ部材、板状弾性材、 25.減衰手段、 30.原点復帰手段、 41.第1の摺動材、 42.第2の摺動材、 61.側壁、 62.緩衝材、 70.緩衝空隙。
73.防水カバー、
1. Ground, 2. 2. adjusting ground; 3. ground adjustment sheet; 4. vibration damping means; 6. Anti-vibration rubber, 7. tarpaulin, Basics, 11. Root cutting, 20, 20a. Origin return means, 21, 22. Fittings, 23. Elastic material (annular rubber material), 23a. 25. Flange member, plate-like elastic material, 30. damping means; Origin return means, 41. 42. first sliding material; 62. second sliding material; Sidewalls, 62. Cushioning material, 70. Buffer void.
73. Waterproof cover,

Claims (7)

地盤と、建物の基礎と、地震時に前記地盤と建物の基礎との間の相対移動により地震力を低減させる免震機構と、前記相対移動により生じた地盤に対する建物の基礎のずれを元の位置に復帰させる原点復帰手段とを含む建物の免震構造において、
前記原点復帰手段が、前記地盤側と建物の基礎側とをつないで地震時に両者間の相対移動に伴って引張り力が生ずるよう、前記地盤側と基礎側の双方の側面取付け具を介して接取り付けられて建物の基礎の周囲に複数個配置され、前記相対移動によるずれを前記原点復帰手段に生じた引張り力を利用して解消させることを特徴とする免震構造。
Ground, the foundation of the building, a seismic isolation mechanism for reducing seismic force by relative movement between the ground and the foundation of the building during an earthquake, and a displacement of the foundation of the building relative to the ground caused by the relative movement. In the seismic isolation structure of the building including the origin returning means for returning to
The origin return means connects the ground side and the foundation side of the building so that a tensile force is generated along with the relative movement between the two at the time of the earthquake during an earthquake, so that both sides of the ground side and the foundation side are attached via a fixture. seismic isolation structure, characterized in that attached Ri straight set is plural arranged around the foundation of the building, causing a displacement by the relative movement erased solutions using the resulting tensile force to the neutral position restoration means.
前記原点復帰手段が弾性材からなり、当該弾性材が、環状、棒状、もしくは板状のゴム材のいずれかである、請求項1に記載の免震構造。   The seismic isolation structure according to claim 1, wherein the origin returning means is made of an elastic material, and the elastic material is one of a ring-shaped, a rod-shaped, and a plate-shaped rubber material. 前記弾性材が、地盤側と基礎側との側面周囲を覆い、防水機構を兼ねる板状のゴム材である、請求項2に記載の免震構造。   3. The seismic isolation structure according to claim 2, wherein the elastic material is a plate-like rubber material that covers the side surfaces around the ground side and the foundation side and also serves as a waterproof mechanism. 4. 前記ゴム材が超低硬度ゴム材である、請求項2又は請求項3に記載の免震構造。   The seismic isolation structure according to claim 2 or 3, wherein the rubber material is an ultra-low hardness rubber material. 建物の基礎の周囲にある前記地盤の側壁と建物の基礎の間に設けられた緩衝空隙内に、プラスチック廃材から再生した小口径パイプ材を短く切断して形成された通称「排水パイプ」を緩衝材として充填したことを特徴とする、請求項1に記載の免震構造。   In a buffer space provided between the side wall of the ground around the foundation of the building and the foundation of the building, a so-called "drain pipe" formed by cutting a small-diameter pipe material recovered from plastic waste material into a short length is buffered. The seismic isolation structure according to claim 1, wherein the structure is filled as a material. 地震時に建物の基礎と地盤との間の水平方向の相対移動を許容するよう構成された免震機構により地震力を低減させ、地震後に前記相対移動によって生じた地盤に対する建物の基礎のずれを原点復帰手段により元の位置に復帰させる免震方法において、
地盤側と建物の基礎側とをつないで地震時に両者間の相対移動に伴って引張り力が生ずるよう、弾性材からなる前記原点復帰手段を前記地盤側と基礎側の双方の側面取付け具を介して接取り付けて建物の基礎の周囲に複数個配置し、前記相対移動によるずれを該原点復帰手段に生じた引張り力を利用して解消させることを特徴とする免震方法。
The seismic force is reduced by a seismic isolation mechanism configured to allow horizontal relative movement between the foundation of the building and the ground during an earthquake, and the origin of the displacement of the foundation of the building relative to the ground caused by the relative movement after the earthquake In the seismic isolation method of returning to the original position by the return means,
In order to connect the ground side and the foundation side of the building and generate a tensile force due to the relative movement between the two at the time of an earthquake, the origin returning means made of an elastic material is attached to both the side surfaces of the ground side and the foundation side. seismic isolation method characterized by wearing Ri straight set plurality placed around the building foundation, the erased solutions by utilizing a tensile force generated in the raw position return means a shift by the relative movement through.
前記原点復帰手段が、ずれによって生じた超低硬度ゴムの引張り力を利用するものである、請求項6に記載の免震方法。   The seismic isolation method according to claim 6, wherein the origin returning means uses a tensile force of the ultra-low hardness rubber generated by the displacement.
JP2014121511A 2014-06-12 2014-06-12 Seismic isolation structure of building and seismic isolation method Active JP6635327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121511A JP6635327B2 (en) 2014-06-12 2014-06-12 Seismic isolation structure of building and seismic isolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121511A JP6635327B2 (en) 2014-06-12 2014-06-12 Seismic isolation structure of building and seismic isolation method

Publications (2)

Publication Number Publication Date
JP2016000932A JP2016000932A (en) 2016-01-07
JP6635327B2 true JP6635327B2 (en) 2020-01-22

Family

ID=55076653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121511A Active JP6635327B2 (en) 2014-06-12 2014-06-12 Seismic isolation structure of building and seismic isolation method

Country Status (1)

Country Link
JP (1) JP6635327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705836A (en) * 2020-06-23 2020-09-25 山东大学 Shock attenuation prevention of seepage drainage underground structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737619B (en) * 2022-05-23 2023-10-03 江西省第十建筑工程有限公司 Shock attenuation formula foundation structure and shock attenuation formula building structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263417A (en) * 2000-03-21 2001-09-26 Toyo Tire & Rubber Co Ltd Base isolation device for lightweight structure
JP4128350B2 (en) * 2001-11-14 2008-07-30 フジ化成工業株式会社 Construction method of permeable soil conditioner using waste plastic
WO2006038313A1 (en) * 2004-10-04 2006-04-13 Hiroyasu Tubota Device for dampimg horizontal acceleration acting on structure and device for position returning
JP2007070857A (en) * 2005-09-06 2007-03-22 Panahome Corp Base isolation structure of building
JP2007070859A (en) * 2005-09-06 2007-03-22 Panahome Corp Base isolation construction method and base isolation structure of building
JP4824476B2 (en) * 2006-05-31 2011-11-30 住友林業株式会社 Seismic isolation devices and seismic isolation structures for buildings
JP5201340B2 (en) * 2008-09-04 2013-06-05 武志 菊地 Improved ground including vibration absorbing mechanism, construction method thereof, and building including the improved ground
JP6132224B2 (en) * 2011-07-27 2017-05-24 武志 菊地 Seismic isolation method and base

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705836A (en) * 2020-06-23 2020-09-25 山东大学 Shock attenuation prevention of seepage drainage underground structure
CN111705836B (en) * 2020-06-23 2021-07-02 山东大学 Shock attenuation prevention of seepage drainage underground structure

Also Published As

Publication number Publication date
JP2016000932A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP4983326B2 (en) Improved ground and its construction method
CA2524547A1 (en) Fork configuration dampers and method of using same
JP2007070859A (en) Base isolation construction method and base isolation structure of building
US5353559A (en) Anti-earthquake bearing apparatus
JP6635327B2 (en) Seismic isolation structure of building and seismic isolation method
JP5834223B2 (en) Seismic isolation structure and material with plastic colloid of heavy structure
JP2017166735A (en) Precast concrete vibration-proof base plate
JP4546290B2 (en) Base isolation structure and construction method for structures
JP2002070943A (en) Slip support device for base isolation
JP3671317B2 (en) Seismic isolation mechanism
JP2003147947A (en) Vibration control heat insulating floor structure of building
JP4455941B2 (en) Seismic isolation structure
JP6384809B2 (en) Seismic force attenuation unit, improved ground using the unit, and construction method thereof
JP5332018B2 (en) Ground-isolated structure and ground-isolated construction method using it
JP2007070857A (en) Base isolation structure of building
JP2005090101A (en) Seismic response control structure
JP2000001861A (en) Earthquake-resistant cloth foundation structure
JPH09242376A (en) Vibration isolating device
JPH11141183A (en) Vibration-isolation foundation device for house
KR102490855B1 (en) reinforceing device for seismic
JP7351732B2 (en) Building vibration damping mechanism
JP2011241602A (en) Wind-resistant ground base isolation structure using bearings and construction method thereof
JP2009203741A (en) Vibration damping structure and its construction method
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure
JP2002070039A (en) House damping foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191205

R150 Certificate of patent or registration of utility model

Ref document number: 6635327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250