JP4243475B2 - Seismic sliding bearing - Google Patents

Seismic sliding bearing Download PDF

Info

Publication number
JP4243475B2
JP4243475B2 JP2002340938A JP2002340938A JP4243475B2 JP 4243475 B2 JP4243475 B2 JP 4243475B2 JP 2002340938 A JP2002340938 A JP 2002340938A JP 2002340938 A JP2002340938 A JP 2002340938A JP 4243475 B2 JP4243475 B2 JP 4243475B2
Authority
JP
Japan
Prior art keywords
sliding
resistant
ptfe
heat
sliding bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002340938A
Other languages
Japanese (ja)
Other versions
JP2004176749A (en
Inventor
庄一 小川
浩則 畑津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
Original Assignee
Chukoh Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd filed Critical Chukoh Chemical Industries Ltd
Priority to JP2002340938A priority Critical patent/JP4243475B2/en
Publication of JP2004176749A publication Critical patent/JP2004176749A/en
Application granted granted Critical
Publication of JP4243475B2 publication Critical patent/JP4243475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ビル、橋梁等の建造物の下面側に取り付けられて使用される耐震用滑り支承に関する。
【0002】
【従来の技術】
周知の如く、ビル、橋梁等の建造物においては、耐震性を考慮して建造物を支持する金属製の台座の裏面(地盤側)に接着剤を介してふっ素樹脂系摺動材が固定することが行われている。これは、地震等のときに摺動材(耐震用滑り支承)の存在により建造物を摺動させることにより、揺れの影響を直接建造物に伝わらないようにするためである。
【0003】
図6は、上記耐震用滑り支承の使用状態を示す。図中の符番1は、地盤2側に配置されたコンクリート等の基礎を示す。この基礎1の一部上には、ステンレス板(滑り板)3が配置されている。一方、符番4は、図示しない建造物の柱5にボルト6を介して固定されたフランジを示す。前記フランジ4とステンレス板3間には、内部に複数の鋼板7を埋め込んだゴム弾性体8、滑り支承9が両者間に接着剤10を介して配置されている。
【0004】
従来、上記滑り支承としては、例えば下記1)〜4)のものが知られている。
(1)PTFE単体からなる摺動材:パウダー状のPTFEを固めた摺動材。
(2)PTFE/充填材(5〜25wt%):PTFEに充填材を混入させた摺動材。但し、充填材としては、ガラス繊維、グラファイト、カーボン、炭素繊維、MoS、ブロンズ、耐熱性樹脂(PI、液晶ポリマー)が挙げられる。
【0005】
(3)PTFE/耐熱性クロス(5〜50wt%):耐熱性クロスにPTFEを塗布,含浸した後焼成した摺動材。但し、耐熱性クロスとしては、ガラス繊維、炭素繊維、アラミド繊維が挙げられる。
(4)PTFE/アラミドパルプ(10〜90wt%):アラミドパイプにPTFEを塗布,含浸した後、焼成した摺動材。
【0006】
また、従来、免震滑り支承としては、上部構造体と下部構造体との間の一対のスライドベアリングの少なくとも一方が、四フッ化エチレン樹脂を主成分とする芳香族ポリエステルを含有する組成物により形成された複数のボイドを有する多孔質構造の成形体でなるスライドベアリングであって、前記組成物中に芳香族ポリエステルが14〜35重量%の割合で含有され、かつ前記成形体の表面部分に流動可能な順滑剤が保持された潤滑剤保持層が形成されたものが知られている(特開2001−82543号公報)。
【0007】
【特許文献1】
特開2001−82543号公報(段落[0010]等)
【0008】
【発明が解決しようとする課題】
ところで、従来の摺動材においては、以下のような課題があった。
・上記(1),(2)の摺動材の場合、耐荷重性が低いという課題があった。
・上記(1),(3)の摺動材の場合、耐摩耗性が低いという課題があった。
・上記(4)の摺動材の場合、厚板成形が困難であるという課題があった。
・上述したいずれの摺動材の場合、Naエッチングでの表面処理面を介した接着剤による接着では界面強度が低い。
【0009】
・上記(3),(4)の摺動材の場合、熱融着工程において高加圧が必要なので摺動材の大型化が難しいと共に、熱歪みが発生する。
【0010】
本発明はこうした事情を考慮してなされたので、耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた,PTFE樹脂にアラミド繊維が混合された耐摩耗層とを具備した構成とすることにより、耐荷重性、耐摩耗性、厚板成形性に優れるとともに、台座側の接着層との界面強度が高く、かつ厚板成形の大型化が容易で、熱歪みのない耐震用滑り支承を提供することを目的とする。
【0011】
【課題を解決するための手段】
従来の摺動材に対して、耐荷重性の増大、大地震時の信頼性向上が要求されている。
1)耐荷重性の増大
つまり、建造物、免振装置の設計自由度の増大に伴って、荷重が3〜15MPaから30〜50MPaに増大している。
【0012】
2)大地震時の信頼性向上
この要因としては、耐荷重性の増大、接着信頼性の向上、耐摩耗性の向上、摩擦係数の低下が挙げられる。耐荷重性を増大するには、三次元振動への対応、偏荷重の耐性、熱間時(地震に起因する摩擦による発熱)の圧縮強度の向上、耐変形性の増大が挙げられ、これにより変形による剥離を防止できる。接着信頼性を向上するには、せん断強度を増大して剥離を防止することが挙げられる。耐摩耗性を向上するには、摩耗量を低下することが挙げられる。摩擦係数を低下するには自由設計の増大、発熱防止が挙げられる。
【0013】
本発明は、建造物と地盤側間に取り付けられて使用される耐震用滑り支承において、耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備し、前記耐摩耗層はPTFE樹脂にアラミド繊維が混合されたものであることを特徴とする耐震用滑り支承である。
【0014】
【発明の実施の形態】
以下、本発明の耐震用滑り支承について詳しく説明する。
【0015】
本発明において、前記摺動材本体としては、耐熱性繊維織布にPTFE樹脂を塗布、含浸した後、焼成したもの、あるいは耐熱性繊維織布とこの耐熱性繊維織布の両面に設けられたふっ素樹脂フィルムとから構成されたものが挙げられる。ここで、耐熱性繊維織布としては、例えばガラス繊維織布,カーボン繊維織布,アラミド繊維織布等が挙げられる。
【0016】
本発明において、前記耐摩耗層としては、PTFE樹脂にアラミド繊維(アラミドパルプ)を混合したものを用いる。アラミドパルプを高充填することによって、耐摩耗層の耐摩耗性が改善される。
【0017】
本発明において、前記接着層としては、例えばガラスクロスにエポキシ樹脂を塗布、含浸したものが挙げられる。これにより、熱間、耐変形時の強度に優れる。
【0018】
本発明において、前記摺動材本体と耐摩耗層、接着層間に熱溶融性ふっ素樹脂フィルムを介装することが好ましい。ここで、熱溶融性ふっ素樹脂としては、PFAフィルムが挙げられる。前記摺動材本体としてPTFEを用いた場合、PTFE製摺動材本体とPFAフィルムは、融点が近く互い融解することによって接着される。
【0019】
本発明によれば、摺動材本体の地盤側にPTFE樹脂にアラミド繊維が混合された構成の耐摩耗層を配置することにより、高加速度の摺動による発熱でも異常摩耗が進行することを回避できる。また、建造物側の台座との接着面に接着層を配置することにより、接着信頼性を向上できる。これにより、高荷重の免震用途において、摩耗、変形、剥離等の不具合を回避できる。
【0020】
【実施例】
(実施例1)
以下、本発明の実施例1に係る耐震用滑り支承について図1を参照して説明する。
図中の符番11は、厚み800μmの摺動材本体を示す。この摺動材本体11は、耐熱クロス(耐熱性繊維)織布12にPTFE13を塗布、含浸した後、焼成することにより得られる。前記衝動材本体11の地盤側には、PFAフィルム14を介して厚み300μmの耐摩耗層15が設けられている。ここで、耐摩耗層15は、アラミドパルプにPTFE樹脂を塗布、含浸した後、焼成することにより得られる(アラミドパルプはPTFEに対して40〜95wt%含有している)。台座側に位置する前記PFAフィルム13上には、厚み800μmの耐熱クロスの接着層16が形成されている。
【0021】
上記実施例1によれば、以下に述べる効果を有する。
1)前記摺動材本体11は、耐熱クロス織布12にPTFE13を塗布、含浸した後、焼成した構成であるので、圧縮強度が高く、耐変形性に優れる。また、厚板の成形性が良い。
【0022】
2)前記耐摩耗層15にはアラミドパルプが高充填されているので、耐震用滑り支承の耐摩耗性を従来と比べて向上することができる。
3)耐熱クロスの接着層16を使用するので、熱間、耐変形時の強度に優れている。
【0023】
また、上記実施例1に係る摺動材本体、耐摩耗層、及び比較例としてのPTFE単体、PTFE/充填材(PTFEに充填材を混入させたもの)における引張強さ、伸び、硬さ、摩擦量について夫々試験したところ、下記表1、表2、表3、表4に示す結果が得られた。
【0024】
【表1】

Figure 0004243475
【0025】
【表2】
Figure 0004243475
【0026】
【表3】
Figure 0004243475
【0027】
【表4】
Figure 0004243475
【0028】
図3は、本発明及び比較例に係る滑り支承の動摩擦係数の面圧依存性との関係を示す特性図である。但し、本発明の場合の耐摩耗層の組成はPTFE/アラミドパルプ=55wt%/45wt%、試験片の寸法は60mmφ×1.5mmtである。一方、比較例の場合の耐摩耗層の組成はPTFE/ガラスファイバー/二硫化モリブデン=80wt%/15wt%/5wt%、試験片の寸法は60mmφ×2mmtである。速度は20cm/sec、すべり板はSUS304(表面処理#400サンドペーパー)を用いた。
【0029】
図4は、図3に示した滑り支承の動摩擦の評価を行うための測定装置の略図を示す。図4中の符番31は試験片(滑り支承)、符番32はゴム、符番33はすべり板、符番34は台座を示す。図4では、すべり板33を矢印Xのように摺動させることにより滑り支承の評価を行う。
【0030】
上記表1〜表5及び図3により下記の点が言える。
1)表1より、PTFE/充填材とPTFE含浸ガラスクロス積層シートで比較を行った結果、PTFE含浸ガラスクロス積層シートの方が約10倍程度強度が強いことが判明した。また、伸びについても上記の素材同士を比較した場合、表2より、PTFE/充填材の250%の伸び率に対して、PTFE含浸ガラスクロス積層シートの伸び率は0.05%と極めて小さい値となることが判明した。
【0031】
これらのことより、滑り支承に使用する場合、変形及び耐クリープ等に優れていることがわかる。また、これは硬さについても、表3より本発明のPTFE含浸ガラスクロス積層シートは約3%程度、比較例(PTFE/充填材)より硬い結果が得られていることからも言える。
【0032】
2)摺動部の摩擦量について、表4よりPTFE/充填材とPTFE/アラミドパルプとを比較した場合、PTFE/充填材の3.7g/hに対してPTFE/アラミドパルプは0.01g/hと極めて少なく、PTFE/充填材の約1/370の摩耗量であることから、耐摩耗に極めて優れ、耐震用滑り支承に適していることがわかる。
【0033】
3)動摩擦係数については、本発明(PTFE/アラミドパルプ)は面圧50MPa下で0.06と極めて低いこと分かる。また、比較例(PTFE/充填材)では、面圧が20MPa下では0.085であり、本発明(PTFE/アラミドパルプ)の面圧20MPa下での0.1より低い値であるが、変形破壊等の問題より、一般的には使用できないのが現状である。
【0034】
更に、上記実施例1に係る滑り支承の摺動材本体、及びふっ素樹脂充填材入りPTFE圧縮シートについて、図5(A),(B)に示す方法で膨らみ量及び圧縮量について調べたところ、下記表5に示す結果が得られた。但し、図5(A)は圧縮試験の平面図、図5(B)は正面図を示す。なお、図5(A)において、1ch,2ch,3cn,4chは膨らみ量計測センサーを示し、5ch,5chは圧縮量計測センサーを示す。また、図5(B)において、サンプル21は下圧盤22と上圧盤23間に配置され、膨らみ量計測センサー24はサンプル21の周方向に4箇所配置される。一方圧縮量計測センサ25は、サンプル21の対向する位置に配置される。
【0035】
【表5】
Figure 0004243475
【0036】
なお、表5において、膨らみ量は1ch+3ch、2ch+4chの変位量であり、圧縮量は5ch及び6chの変位量の平均値である。表5より、本発明(PTFE含浸ガラスクロス積層シート)の膨らみ量(平均)は0.04mmであり、圧縮量(平均)も0.07mmと極めて小さいことが分かる。本発明の膨らみ量を比較例(PTFE/充填材)と比較した場合は1/14と小さく、圧縮量も7/120と変形が小さいことが分かる。従って、圧縮変形の結果より高荷重に適していることがわかる。
【0037】
(実施例2)
本実施例2は、実施例1における摺動材本体と異なる摺動材本体を有することを特徴とし、他の構成部材は実施例1と同様である。図2に示すように、摺動材本体11’は、耐熱性(耐熱性繊維)織布17の両主面にPTFEシート18を圧着により設けた構成となっている。
実施例2によれば、実施例1と同様な効果を有する。
【0038】
【発明の効果】
以上詳述したように本発明によれば、耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備し、前記耐摩耗層をPTFE樹脂にアラミド繊維が混合された構成とすることにより、耐荷重性、耐摩耗性、厚板成形性に優れるとともに、台座側の接着層との界面強度が高く、かつ厚板成形の大型化が容易で、熱歪みのない耐震用滑り支承を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る耐震用滑り支承の説明図。
【図2】図1の耐震用滑り支承の一構成である摺動材本体とは異なる摺動材本体の説明図。
【図3】本発明及び比較例に係る滑り支承の動摩擦係数の面圧依存性との関係を示す特性図。
【図4】滑り支承の評価をするための試験方法の説明図。
【図5】耐震用滑り支承の試験方法の説明図。
【図6】耐震用滑り支承の使用形態の説明図。
【符号の説明】
11,11’…摺動材本体、
12,17…耐熱性(耐熱性繊維)織布、
13…PTFE、
14…PFAフィルム、
15…耐摩耗層、
16…接着層、
18…PTFEシート、
21…下圧盤、
22…上圧盤、
23…サンプル、
24…膨らみ量計測センサー、
25…圧縮量計測センサー。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earthquake-resistant sliding bearing used by being attached to the lower surface side of a building such as a building or a bridge.
[0002]
[Prior art]
As is well known, in buildings such as buildings and bridges, a fluororesin sliding material is fixed to the back surface (ground side) of a metal pedestal that supports the building in consideration of earthquake resistance via an adhesive. Things have been done. This is to prevent the influence of shaking from being directly transmitted to the building by sliding the building due to the presence of a sliding material (seismic sliding bearing) during an earthquake or the like.
[0003]
FIG. 6 shows the use state of the earthquake-resistant sliding bearing. Reference numeral 1 in the figure indicates a foundation such as concrete disposed on the ground 2 side. A stainless plate (sliding plate) 3 is disposed on a part of the foundation 1. On the other hand, reference numeral 4 indicates a flange fixed to a pillar 5 of a building (not shown) via a bolt 6. Between the flange 4 and the stainless steel plate 3, a rubber elastic body 8 in which a plurality of steel plates 7 are embedded and a sliding bearing 9 are arranged with an adhesive 10 between them.
[0004]
Conventionally, for example, the following 1) to 4) are known as the sliding bearing.
(1) Sliding material made of PTFE alone: A sliding material obtained by solidifying powdery PTFE.
(2) PTFE / filler (5 to 25 wt%): A sliding material in which a filler is mixed in PTFE. However, examples of the filler include glass fiber, graphite, carbon, carbon fiber, MoS 2 , bronze, and heat resistant resin (PI, liquid crystal polymer).
[0005]
(3) PTFE / heat-resistant cloth (5 to 50 wt%): A sliding material obtained by applying PTFE to a heat-resistant cloth, impregnating it, and firing it. However, examples of the heat resistant cloth include glass fiber, carbon fiber, and aramid fiber.
(4) PTFE / aramid pulp (10 to 90 wt%): A sliding material fired after PTFE is applied and impregnated on an aramid pipe.
[0006]
Conventionally, as a seismic isolation sliding bearing, at least one of a pair of slide bearings between an upper structure and a lower structure is made of a composition containing an aromatic polyester mainly composed of tetrafluoroethylene resin. A slide bearing comprising a formed article having a porous structure having a plurality of voids, wherein the composition contains an aromatic polyester in a proportion of 14 to 35% by weight, and is formed on a surface portion of the formed article. There is known one in which a lubricant holding layer holding a flowable forward lubricant is formed (Japanese Patent Laid-Open No. 2001-82543).
[0007]
[Patent Document 1]
JP 2001-82543 A (paragraph [0010] etc.)
[0008]
[Problems to be solved by the invention]
By the way, the conventional sliding material has the following problems.
In the case of the sliding materials (1) and (2), there is a problem that load resistance is low.
In the case of the sliding materials (1) and (3), there is a problem that the wear resistance is low.
In the case of the sliding material (4), there is a problem that it is difficult to form a thick plate.
In the case of any of the above-mentioned sliding materials, the interface strength is low in the adhesion by the adhesive via the surface-treated surface in the Na etching.
[0009]
In the case of the sliding materials (3) and (4) above, it is difficult to increase the size of the sliding material and heat distortion occurs because high pressurization is required in the heat fusion process.
[0010]
Since the present invention has been made in consideration of such circumstances, a sliding material body made of a heat-resistant fiber woven fabric and a fluorine resin, an adhesive layer provided on the building side of the sliding material body, and the sliding material By having a structure equipped with a wear-resistant layer in which aramid fibers are mixed with PTFE resin provided on the ground side of the main body, it is excellent in load resistance, wear resistance, thick plate formability, and on the pedestal side. An object of the present invention is to provide a seismic sliding bearing which has high interface strength with an adhesive layer, can easily increase the size of thick plate molding, and has no thermal distortion.
[0011]
[Means for Solving the Problems]
Conventional sliding materials are required to have increased load resistance and improved reliability during a large earthquake.
1) Increase in load resistance, that is, the load increases from 3 to 15 MPa to 30 to 50 MPa with an increase in the degree of freedom in designing buildings and vibration isolation devices.
[0012]
2) Improvement of reliability during a large earthquake This factor includes an increase in load resistance, an improvement in adhesion reliability, an improvement in wear resistance, and a reduction in friction coefficient. In order to increase the load resistance, it is possible to respond to three-dimensional vibration, tolerate uneven loads, to improve the compressive strength during hot (heat generation due to friction caused by earthquakes), and to increase deformation resistance. Detachment due to deformation can be prevented. In order to improve the adhesion reliability, it is possible to increase the shear strength to prevent peeling. In order to improve the wear resistance, the amount of wear can be reduced. In order to reduce the coefficient of friction, free design increases and heat generation is prevented.
[0013]
The present invention provides a sliding bearing body made of a heat-resistant fiber woven fabric and a fluorine resin, and a sliding material body, which is attached between a building and the ground side, and is provided on the building side of the sliding material body. And a wear resistant layer provided on the ground side of the sliding material body , wherein the wear resistant layer is made of PTFE resin mixed with aramid fibers . It is a sliding bearing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the earthquake-resistant sliding bearing of the present invention will be described in detail.
[0015]
In the present invention, the sliding material body is provided on both surfaces of a heat-resistant fiber woven fabric and a heat-resistant fiber woven fabric obtained by applying PTFE resin to a heat-resistant fiber woven fabric, impregnating and then baking the PTFE resin. The thing comprised from the fluororesin film is mentioned. Here, examples of the heat resistant fiber woven fabric include a glass fiber woven fabric, a carbon fiber woven fabric, and an aramid fiber woven fabric.
[0016]
In the present invention, as the abrasion-resistant layer, a PTFE resin mixed with aramid fibers (aramid pulp) is used . The high resistance of the aramid pulp improves the wear resistance of the wear resistant layer.
[0017]
In the present invention, examples of the adhesive layer include a glass cloth in which an epoxy resin is applied and impregnated. Thereby, it is excellent in the strength at the time of hot and deformation resistance.
[0018]
In the present invention, it is preferable that a heat-meltable fluororesin film is interposed between the sliding material main body, the wear-resistant layer, and the adhesive layer. Here, a PFA film is mentioned as a heat-meltable fluororesin. When PTFE is used as the sliding material main body, the PTFE sliding material main body and the PFA film are bonded by melting close to each other.
[0019]
According to the present invention, by arranging a wear-resistant layer having a configuration in which aramid fibers are mixed with PTFE resin on the ground side of the sliding material main body, it is possible to prevent abnormal wear from progressing even when heat is generated due to high-acceleration sliding. it can. Moreover, adhesion reliability can be improved by arrange | positioning an adhesive layer on the adhesive surface with the base on the building side. As a result, problems such as wear, deformation, and separation can be avoided in high load seismic isolation applications.
[0020]
【Example】
(Example 1)
Hereinafter, the earthquake-proof sliding bearing according to the first embodiment of the present invention will be described with reference to FIG.
Reference numeral 11 in the figure indicates a sliding material body having a thickness of 800 μm. This sliding material body 11 is obtained by applying PTFE 13 to a heat-resistant cloth (heat-resistant fiber) woven fabric 12 and impregnating it, followed by firing. A wear-resistant layer 15 having a thickness of 300 μm is provided on the ground side of the impulse material body 11 via a PFA film 14. Here, the abrasion-resistant layer 15 is obtained by applying PTFE resin to aramid pulp, impregnating it, and then firing it (the aramid pulp contains 40 to 95 wt% with respect to PTFE). On the PFA film 13 located on the pedestal side, a heat-resistant cloth adhesive layer 16 having a thickness of 800 μm is formed.
[0021]
The first embodiment has the effects described below.
1) Since the sliding material main body 11 has a structure in which PTFE 13 is applied to and impregnated on the heat-resistant cloth woven fabric 12, and then fired, the compressive strength is high and the deformation resistance is excellent. Also, the formability of the thick plate is good.
[0022]
2) Since the wear-resistant layer 15 is highly filled with aramid pulp, the wear resistance of the earthquake-resistant sliding bearing can be improved as compared with the conventional one.
3) Since the heat-resistant cloth adhesive layer 16 is used, it has excellent strength during hot and deformation resistance.
[0023]
Moreover, the tensile strength, elongation, hardness in the sliding material main body according to Example 1 above, the wear-resistant layer, and PTFE simple substance as a comparative example, PTFE / filler (PTFE mixed with filler), When the amount of friction was tested, the results shown in Table 1, Table 2, Table 3, and Table 4 below were obtained.
[0024]
[Table 1]
Figure 0004243475
[0025]
[Table 2]
Figure 0004243475
[0026]
[Table 3]
Figure 0004243475
[0027]
[Table 4]
Figure 0004243475
[0028]
FIG. 3 is a characteristic diagram showing the relationship between the dynamic friction coefficient of the sliding bearing according to the present invention and the comparative example and the surface pressure dependency. However, the composition of the abrasion-resistant layer in the present invention is PTFE / aramid pulp = 55 wt% / 45 wt%, and the dimension of the test piece is 60 mmφ × 1.5 mmt. On the other hand, the composition of the abrasion-resistant layer in the case of the comparative example is PTFE / glass fiber / molybdenum disulfide = 80 wt% / 15 wt% / 5 wt%, and the dimension of the test piece is 60 mmφ × 2 mmt. The speed was 20 cm / sec, and SUS304 (surface treatment # 400 sandpaper) was used as the sliding plate.
[0029]
FIG. 4 shows a schematic diagram of a measuring device for evaluating the dynamic friction of the sliding bearing shown in FIG. In FIG. 4, reference numeral 31 indicates a test piece (sliding support), reference numeral 32 indicates rubber, reference numeral 33 indicates a sliding plate, and reference numeral 34 indicates a pedestal. In FIG. 4, the sliding support is evaluated by sliding the sliding plate 33 as shown by the arrow X.
[0030]
The following points can be said from Tables 1 to 5 and FIG.
1) From Table 1, as a result of comparison between the PTFE / filler and the PTFE-impregnated glass cloth laminated sheet, it was found that the PTFE-impregnated glass cloth laminated sheet was about 10 times stronger. Further, when the above materials are compared with each other, the elongation rate of the PTFE-impregnated glass cloth laminated sheet is extremely small as 0.05% with respect to the elongation rate of 250% of PTFE / filler. Turned out to be.
[0031]
From these, it can be seen that when used for sliding bearings, it is excellent in deformation and creep resistance. This can also be said from Table 3 that the PTFE-impregnated glass cloth laminated sheet of the present invention is about 3% harder than the comparative example (PTFE / filler).
[0032]
2) Regarding the amount of friction of the sliding part, when comparing PTFE / filler and PTFE / aramid pulp from Table 4, PTFE / aramid pulp is 0.01 g / h with respect to 3.7 g / h of PTFE / filler. Since the wear amount is very small as h and is approximately 1/370 of PTFE / filler, it is found that the wear resistance is extremely excellent and suitable for a sliding bearing for earthquake resistance.
[0033]
3) As for the dynamic friction coefficient, it can be seen that the present invention (PTFE / aramid pulp) is extremely low at 0.06 under a surface pressure of 50 MPa. In the comparative example (PTFE / filler), the surface pressure is 0.085 under 20 MPa, which is lower than 0.1 under the surface pressure of 20 MPa of the present invention (PTFE / aramid pulp). Currently, it cannot be used due to problems such as destruction.
[0034]
Furthermore, when the sliding material body of the sliding bearing according to Example 1 and the PTFE compressed sheet containing the fluorine resin filler were examined for the amount of swelling and the amount of compression by the method shown in FIGS. 5 (A) and (B), The results shown in Table 5 below were obtained. 5A is a plan view of the compression test, and FIG. 5B is a front view. In FIG. 5A, 1ch, 2ch, 3cn, and 4ch indicate bulge amount measuring sensors, and 5ch and 5ch indicate compression amount measuring sensors. 5B, the sample 21 is arranged between the lower platen 22 and the upper platen 23, and the swelling amount measuring sensors 24 are arranged at four locations in the circumferential direction of the sample 21. On the other hand, the compression amount measuring sensor 25 is disposed at a position where the sample 21 faces.
[0035]
[Table 5]
Figure 0004243475
[0036]
In Table 5, the bulge amount is the displacement amount of 1ch + 3ch, 2ch + 4ch, and the compression amount is the average value of the displacement amounts of 5ch and 6ch. From Table 5, it can be seen that the amount of swelling (average) of the present invention (PTFE-impregnated glass cloth laminated sheet) is 0.04 mm and the amount of compression (average) is also extremely small, 0.07 mm. When the bulge amount of the present invention is compared with the comparative example (PTFE / filler), it can be seen that the deformation is small, 1/14, and the compression amount is also 7/120. Therefore, it can be seen that it is suitable for high loads from the result of compression deformation.
[0037]
(Example 2)
The second embodiment is characterized by having a sliding material main body different from the sliding material main body in the first embodiment, and other constituent members are the same as those of the first embodiment. As shown in FIG. 2, the sliding material main body 11 ′ has a configuration in which PTFE sheets 18 are provided on both main surfaces of a heat resistant (heat resistant fiber) woven fabric 17 by pressure bonding.
The second embodiment has the same effect as the first embodiment.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, a sliding material body made of a heat-resistant fiber woven fabric and a fluorine resin, an adhesive layer provided on the building side of the sliding material body, and the sliding material body And a wear-resistant layer provided on the ground side, and the wear- resistant layer has a structure in which an aramid fiber is mixed with PTFE resin, thereby being excellent in load resistance, wear resistance, and thick plate formability. In addition, it is possible to provide an earthquake-resistant sliding bearing that has high interface strength with the adhesive layer on the pedestal side, is easy to increase the size of thick plate molding, and has no thermal distortion.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a seismic sliding bearing according to Embodiment 1 of the present invention.
2 is an explanatory view of a sliding material main body different from the sliding material main body which is one configuration of the earthquake-resistant sliding bearing of FIG. 1. FIG.
FIG. 3 is a characteristic diagram showing the relationship between the dynamic friction coefficient of the sliding bearing according to the present invention and a comparative example and the surface pressure dependency.
FIG. 4 is an explanatory diagram of a test method for evaluating sliding bearings.
FIG. 5 is an explanatory diagram of a test method for a seismic sliding bearing.
FIG. 6 is an explanatory view of a usage pattern of a seismic sliding bearing.
[Explanation of symbols]
11, 11 '... sliding material body,
12, 17 ... heat resistant (heat resistant fiber) woven fabric,
13 ... PTFE,
14 ... PFA film,
15 ... wear-resistant layer,
16 ... adhesive layer,
18 ... PTFE sheet,
21 ... Lower platen,
22 ... Upper platen,
23 ... Sample,
24 ... Swelling amount measuring sensor,
25 ... Compression amount measuring sensor.

Claims (5)

建造物と地盤側間に取り付けられて使用される耐震用滑り支承において、
耐熱性繊維織布及びふっ素樹脂からなる摺動材本体と、この摺動材本体の建造物側に設けられた接着層と、前記摺動材本体の地盤側に設けられた耐摩耗層とを具備し、前記耐摩耗層はPTFE樹脂にアラミド繊維が混合されたものであることを特徴とする耐震用滑り支承。
In the seismic sliding bearing used between the building and the ground side,
A sliding material main body made of a heat-resistant fiber woven fabric and a fluorine resin, an adhesive layer provided on the building side of the sliding material main body, and an abrasion-resistant layer provided on the ground side of the sliding material main body. A sliding bearing for earthquake resistance, wherein the wear-resistant layer is made of PTFE resin mixed with aramid fibers .
前記摺動材本体は、耐熱性繊維織布にPTFE樹脂を塗布、含浸した後、焼成されたものであることを特徴とする請求項1記載の耐震用滑り支承。  2. The sliding bearing for earthquake resistance according to claim 1, wherein the sliding material main body is obtained by applying and impregnating a heat resistant fiber woven fabric with PTFE resin and then firing. 前記摺動材本体は、耐熱性繊維織布とこの耐熱性繊維織布の両面に設けられたふっ素樹脂フィルムとから構成されたものであることを特徴とする請求項1記載の耐震用滑り支承。  2. The sliding bearing for earthquake resistance according to claim 1, wherein the sliding material body is composed of a heat resistant fiber woven fabric and a fluorine resin film provided on both surfaces of the heat resistant fiber woven fabric. . 前記摺動材本体と耐摩耗層、接着層間に夫々熱溶融性ふっ素樹脂フィルムが介装されていることを特徴とする請求項1乃至請求項3いずれか1項記載の耐震用滑り支承。The earthquake-resistant sliding bearing according to any one of claims 1 to 3, wherein a heat-meltable fluororesin film is interposed between the sliding material main body, the wear-resistant layer, and the adhesive layer . 前記熱溶性ふっ素樹脂フィルムはPFAフィルムであることを特徴とする請求項4記載の耐震用滑り支承。The earthquake-resistant sliding bearing according to claim 4, wherein the heat-soluble fluororesin film is a PFA film .
JP2002340938A 2002-11-25 2002-11-25 Seismic sliding bearing Expired - Lifetime JP4243475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340938A JP4243475B2 (en) 2002-11-25 2002-11-25 Seismic sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340938A JP4243475B2 (en) 2002-11-25 2002-11-25 Seismic sliding bearing

Publications (2)

Publication Number Publication Date
JP2004176749A JP2004176749A (en) 2004-06-24
JP4243475B2 true JP4243475B2 (en) 2009-03-25

Family

ID=32703439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340938A Expired - Lifetime JP4243475B2 (en) 2002-11-25 2002-11-25 Seismic sliding bearing

Country Status (1)

Country Link
JP (1) JP4243475B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845039B2 (en) * 2007-03-07 2011-12-28 三井造船株式会社 RC slab minority main girder bridge
JP2013217427A (en) * 2012-04-06 2013-10-24 Tokkyokiki Corp Base isolation device
JP6452246B2 (en) * 2015-06-23 2019-01-16 西日本高速道路株式会社 Monitoring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155651A (en) * 1992-11-24 1994-06-03 Sumitomo Metal Ind Ltd Fiber reinforced thermosetting resin composite laminated sheet
CN100354129C (en) * 1998-08-18 2007-12-12 大金工业株式会社 Method for mfg polytetrafluororethylene laminating body
JP4262341B2 (en) * 1998-12-02 2009-05-13 株式会社竹中工務店 Slip isolation device and isolation structure
JP4319724B2 (en) * 1999-02-12 2009-08-26 オイレス工業株式会社 Sliding structure and sliding support device combining lubricating paint and two sliding members
JP2001012542A (en) * 1999-06-24 2001-01-16 Daido Metal Co Ltd Supporting device for base isolation
JP2001034093A (en) * 1999-07-23 2001-02-09 Nitto Denko Corp Image fixing device
JP2001090836A (en) * 1999-09-24 2001-04-03 Nippon Pillar Packing Co Ltd Fluororesin sliding member

Also Published As

Publication number Publication date
JP2004176749A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
Alagusundaramoorthy et al. Flexural behavior of R/C beams strengthened with carbon fiber reinforced polymer sheets or fabric
Daniel et al. Fabrication, testing and analysis of composite sandwich beams
Norris et al. Shear and flexural strengthening of R/C beams with carbon fiber sheets
Kim et al. Characteristics of carbon fiber phenolic composite for journal bearing materials
JPS5918500B2 (en) Device that protects structures from the action of strong dynamic horizontal stresses
TWI506211B (en) Slippage structure, bearing apparatus, and seismically isolated structure
Al-Anany et al. Fiber reinforced elastomeric isolators for the seismic isolation of bridges
WO2008004475A1 (en) Earthquake isolation device
Al-Anany et al. Experimental assessment of utilizing fiber reinforced elastomeric isolators as bearings for bridge applications
Kang et al. Hole and lead plug effect on fiber reinforced elastomeric isolator for seismic isolation
Dvorak et al. Adhesive tongue-and-groove joints for thick composite laminates
Osei-Antwi et al. FRP-balsa composite sandwich bridge deck with complex core assembly
JP4243475B2 (en) Seismic sliding bearing
Al-Anany et al. Vertical and lateral behavior of unbonded fiber-reinforced elastomeric isolators
US9429205B2 (en) Elastomeric isolator
US3484882A (en) Structural bearing pad assembly
Bakhshi et al. Study on dynamic and mechanical characteristics of carbon fiber-and polyamide fiber-reinforced seismic isolators
Robinson et al. Light-weight fiber-reinforced polymer composite deck panels for extreme applications
Grédiac et al. Experimental evidence of parasitic effects in the shear test on sandwich beams
JP2536924B2 (en) Seismic isolation support
Ferri et al. A comparative study on the impact resistance of composite laminates and sandwich panels
Yu et al. Flexural performance of RC beams strengthened with prestressed CFRP sheets
Lee et al. Structural behavior evaluation of T-joints of the composite bogie frame under bending
Muth et al. Failure behaviour of metal inserts embedded in CFRP subsequent to thermal, mechanical and cyclic pre-damage
Mahdi et al. The mechanical performance of repaired stiffened panels. Part II. Finite element modelling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4243475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term