JP2004176294A - Horizontal force distributed anchor device for bridge - Google Patents

Horizontal force distributed anchor device for bridge Download PDF

Info

Publication number
JP2004176294A
JP2004176294A JP2002340977A JP2002340977A JP2004176294A JP 2004176294 A JP2004176294 A JP 2004176294A JP 2002340977 A JP2002340977 A JP 2002340977A JP 2002340977 A JP2002340977 A JP 2002340977A JP 2004176294 A JP2004176294 A JP 2004176294A
Authority
JP
Japan
Prior art keywords
anchor
bridge
horizontal force
anchor device
distribution type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002340977A
Other languages
Japanese (ja)
Inventor
Kouji Fukui
高爾 福井
Takashi Yamane
隆志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCI KK
Kyokuto Corp
Original Assignee
TCI KK
Kyokuto Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCI KK, Kyokuto Corp filed Critical TCI KK
Priority to JP2002340977A priority Critical patent/JP2004176294A/en
Publication of JP2004176294A publication Critical patent/JP2004176294A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal force distributed anchor device for a bridge, which allows smooth expansion/contraction of a bridge upper structure in a bridge axial direction, and exerts sufficient cushioning function. <P>SOLUTION: The horizontal force distributed anchor device is formed of an anchor 11 fixed to a lower structure 10 (an abutment 1 and a pier 2), and a cushioning body 20 arranged around the anchor 11 and fixed to the bridge upper structure 3. The longitudinal cushioning body 20 has an elliptic anchor through hole 21 in a bridge axial direction in which the anchor 11 is penetrated, and the anchor through hole 21 and the anchor 11 define a gap therebetween in the bridge axial direction, whereby the bridge upper structure 3 is freely expandable/contractible in the bridge axial direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁における橋梁上部工が水平力で橋台・橋脚等の下部構造体から落下しないように支持する水平力分散型アンカー装置に関する。
【0002】
【従来の技術】
橋梁上部工を橋台・橋脚等の下部構造体に支持し、水平力で落下しないようにする水平力分散型アンカー装置が特許文献1に開示されている。
この水平力分散型アンカー装置は、下部構造体に固着されるアンカーと、このアンカーの回りに取付けられ橋梁上部工に固定される緩衝体を備えている。
【0003】
【特許文献1】
実公平3−35807号公報
【0004】
前述の水平力分散型アンカー装置によれば、橋梁上部工に水平力が作用した時に緩衝体が圧縮弾性変形し、その橋梁上部工の水平方向の移動を緩衝制止する。
すなわち、橋梁上部工に水平方向の移動が生じたとき、緩衝体の許容し得る弾性変位の間は緩衝機能を発揮し、許容し得る弾性変位の限度を越えるとストッパー機能を発揮するもので、この水平力分散型アンカー装置を複数用いて橋梁上部工を下部構造体に支持することにより、橋梁上部工に作用する水平力が各アンカー装置のアンカーに作用し、その水平力を各アンカーで下部構造体に分散して支持することができる。
【0005】
【発明が解決しようとする課題】
橋梁においては、その橋梁上部工が載荷や温度変化、クリープ等によって橋軸方向に大きく伸縮するが、前述した従来の橋梁の水平力分散型アンカー装置を用いた場合は、その緩衝体を圧縮弾性変形して伸縮するので、橋梁上部工の円滑な橋軸方向の伸縮が阻害されてしまう。
【0006】
なお、緩衝体のばね定数を小さくして橋梁上部工が比較的円滑に橋軸方向に伸縮できるようにすることが考えられるが、緩衝体のばね定数が小さいと前述の緩衝機能が低下する。
【0007】
本発明は、前述の課題に鑑みなされたものであって、その目的は、橋梁上部工が橋軸方向に円滑に伸縮できると共に、十分な緩衝機能を発揮するようにした橋梁の水平力分散型アンカー装置を提供することである。
【0008】
【課題を解決するための手段】
第1の発明は、下部構造体10に固着されるアンカー11と、このアンカー11の回りに設けられ橋梁上部工3に固着される緩衝部材20を備え、
前記緩衝部材20は橋軸方向に長円形状のアンカー貫通孔21を有する弾性体で、このアンカー貫通孔21とアンカー11との間に橋軸方向の隙間を有することを特徴とする橋梁の水平力分散型アンカー装置である。
【0009】
第2の発明は、第1の発明においてアンカー11の緩衝部材20の上面20bから突出した部分にヘッド13を設け、このヘッド13と緩衝部材20の上面20bが干渉するようにした橋梁の水平力分散型アンカー装置である。
【0010】
第3の発明は、第1又は第2の発明において外側筒体26と内側筒体27との間に弾性体28を設けたほぼリング形状の緩衝体22を、複数積層して連結することで緩衝部材20とした橋梁の水平力分散型アンカー装置である。
【0011】
第4の発明は、第3の発明において弾性体28は複数の空間部29を有する橋梁の水平力分散型アンカー装置である。
【0012】
【作 用】
第1の発明によれば、緩衝部材20はアンカー11に対してアンカー貫通孔21とアンカー11との間の隙間分だけ橋軸方向に自由に移動する。その隙間分以上緩衝部材20が移動するとアンカー11と接し、緩衝部材20が圧縮弾性変形する。
したがって、橋梁上部工3は橋軸方向に円滑に伸縮できる。
【0013】
また、地震などで大きな水平力が橋梁上部工3に作用し、橋梁上部工3が前述の隙間分以上水平方向に移動した時に緩衝部材20が圧縮弾性変形して橋梁上部工3の水平方向の移動を緩衝制止するから、緩衝部材20のばね定数を大きくして十分な緩衝機能を発揮することができる。しかも、複数のアンカー装置を用いることで水平力を下部構造体10で分散して支持できる。
【0014】
第2の発明によれば、緩衝部材20の上面20bがアンカー11のヘッド13に干渉し、緩衝部材20がアンカー11から抜け出すことを防止できるし、橋梁上部工3に作用する上向き荷重を緩衝部材20のせん断変形で吸収緩和できる。
【0015】
第3の発明によれば、積層して連結する緩衝体22の数を変えることで緩衝部材20の高さを調整できる。
【0016】
第4の発明によれば、空間部29の大きさ、形状、数を変えてばね定数を任意に変更できる。
したがって、設計上設定する橋梁上部工3が水平方向に移動する水平力の荷重の大きさが異なる場合に、同一硬度の弾性体28を用いることが可能であり、コスト安である。
【0017】
【発明の実施の形態】
図1と図2に示すように、一対の橋台1と複数の橋脚2とに亘って橋梁上部工3をすべり沓4を介して載置し、この橋梁上部工3の長手方向両端部3aと橋台1の突起1aとの間に伸縮ジョイント5をそれぞれ設けて橋梁を構成している。
前記各橋台1と橋梁上部工3及び各橋脚2と橋梁上部工3とに亘って本発明に係る水平力分散型アンカー装置6がそれぞれ取付けてある。
なお、橋梁上部工3は一対の橋台1のみ、一対の橋台1と1つの橋脚2に亘って載置される場合もある。つまり、橋梁上部工1は下部構造体10に載置される。
【0018】
前記伸縮ジョイント5は橋軸方向(X方向)の変位が大きく、橋軸直角方向(Y方向)の変位が小さい構造で、橋梁上部工3の橋軸方向の大きな伸縮を吸収し、橋梁上部工3の橋軸直角方向の変位を制限している。
前記すべり沓4は橋梁上部工3が橋台1、橋脚2に対して円滑に伸縮できるようにするものである。このすべり沓4としては弾性材から成るもの、鉄材から成る等が用いられる。
そして、弾性材から成るすべり沓4を用いれば鉛直方向の運動エネルギーを吸収することができるから、免震支持装置となる。
【0019】
前記水平力分散型アンカー装置6は図3に示すように、橋台1、橋脚2、つまり下部構造体10に固定されたアンカー11と、このアンカー11の回りに設けられ前記橋梁上部工3に固着される緩衝部材20を備えている。例えば、緩衝部材20は橋梁上部工3の現場打ちコンクリート部分12で固着される。
前記アンカー11の下端部分が下部構造体10に固着され、このアンカー11の上部にヘッド13が設けてある。このヘッド13はアンカー11よりも大径である。
【0020】
前記緩衝部材20はアンカー貫通孔21を有する弾性体で、このアンカー貫通孔21は下面20aと上面20bとに亘って貫通している。
前記アンカー貫通孔21は図4に示すように橋軸方向(矢印X方向)に長い長円形状で、前記アンカー貫通孔21とアンカー11との間に橋軸方向に大きな隙間Sを有する。
【0021】
このようであるから、橋梁上部工3は下部構造物10に対して前述の隙間S分だけ橋軸方向に自由に移動でき、橋梁上部工3は前述の隙間S分だけ橋軸方向に円滑に伸縮することができる。
そして、地震などにより大きな水平力が橋梁上部工3に作用し橋梁上部工3が橋軸方向に前述の隙間S分以上移動した時に、緩衝部材20がアンカー11に接し、その緩衝部材20を弾性圧縮変形して水平方向の移動を緩衝制止するから、緩衝部材20のばね定数を大きくして十分な緩衝機能を発揮することができる。
【0022】
また、複数の水平力分散型アンカー装置6で橋梁上部工3を下部構造体10に支持しているので、水平力を各水平力分散型アンカー装置6の各アンカー11を介して下部構造体10に分散して支持できる。
【0023】
また、アンカー11のヘッド13は緩衝部材20の上面20bよりも上方に位置しているから、橋梁上部工3に地震などにより上向き荷重が作用した時に緩衝部材20の上面20bがヘッド13に干渉し、緩衝部材20がアンカー11から抜け出すことを防止すると共に、緩衝部材20のせん断変形によって上向き荷重を吸収緩和できる。
【0024】
前記緩衝部材20の具体形状を説明する。
複数の緩衝体22を積層し、連結杆23で固着してあると共に、最上部の緩衝体22にキャップ24を設けてヘッド収納室25を有するほぼ筒形状である。
前記緩衝体22は金属製の外側筒体26と金属製の内側筒体27との間に環状の弾性体28を設けたほぼリング形状で、内側筒体27の内周面がアンカー貫通孔21である。
前記弾性体28は複数の空間部29を有する。
この空間部29は弾性体28の上面と下面にそれぞれ開口している。
前記連結杆23は各緩衝体22の外側筒体26の外周面に沿って複数設けられ、この各連結杆23と各外側筒体26が溶接等で固着される。
前記連結杆23はキャップ24まで連続する長尺材で、この連結杆23とキャップ24が溶接等で固定される。
【0025】
このようであるから、重ね合わせて連結する緩衝体20の数を変えるとで緩衝部材20の上下方向の寸法(高さ)を調整できる。
また連結杆23が外側筒体26よりも外方に突出すると共に、キャップ24でヘッド収納室25を形成しているから、橋梁の施工現場において、緩衝部材20を現場打ちコンクリートで固着しようとした際に、その連結材23にコンクリートが絡みつき、しっかりと取付けできる。
【0026】
前記、弾性体28は空間部29のために弾性圧縮変形し易い。つまり、弾性体28のばね定数は弾性体自身のばね定数よりも小さくなる。
また、空間部29を大きくしたり、数を多くしたり、周方向のスリット形状とすればばね定数はより小さくなる。反対に空間部29を小さくしたり、数を少なくしたり、径方向のスリット形状とすればばね定数は大きくなる。
つまり、空間部29の大きさ、形状、数を変えることでばね定数を任意に変更できる。
したがって、設計上設定する橋梁上部工3が平行方向に移動する時の水平力の大きさ(地震力の大きさ)が異なる場合に、同一硬度の弾性体28を用いることが可能であり、ばね定数の異なる弾性体を用いる場合に比べてコスト安である。
【0027】
前記複数の緩衝体22を一体に連続して緩衝部材20としても良い。
【0028】
【発明の効果】
請求項1に係る発明によれば、緩衝部材20はアンカー11に対してアンカー貫通孔21とアンカー11との間の隙間分だけ橋軸方向に自由に移動する。その隙間分以上緩衝部材20が移動するとアンカー11と接し緩衝部材20が圧縮弾性変形する。
したがって、橋梁上部工3は橋軸方向に円滑に伸縮できる。
【0029】
また、地震などで大きな水平力が橋梁上部工3に作用し、橋梁上部工3が前述の隙間分以上水平方向に移動した時に緩衝部材20が圧縮弾性変形して橋梁上部工3の水平方向の移動を緩衝制止するから、緩衝部材20のばね定数を大きくして十分な緩衝機能を発揮することができる。しかも、複数のアンカー装置を用いることで水平力を下部構造体10で分散して支持できる。
【0030】
請求項2に係る発明によれば緩衝部材20の上面20bがアンカー11のヘッド13に干渉し、緩衝部材20がアンカー11から抜け出すことを防止できるし、橋梁上部工3に作用する上向き荷重を緩衝部材20のせん断変形で吸収緩和できる。
【0031】
請求項3に係る発明によれば、積層して連結する緩衝体22の数を変えることで緩衝部材20の高さを調整できる。
【0032】
請求項4に係る発明によれば、空間部29の大きさ、形状、数を変えてばね定数を任意に変更できる。
したがって、設計上設定する橋梁上部工3が水平方向に移動する時水平力の大きさが異なる場合に、同一硬度の弾性体28を用いることが可能であり、コスト安である。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す橋梁の側面図である。
【図2】図1の平面図である。
【図3】水平力分散型アンカー装置の断面図である。
【図4】図3のA−A断面図である。
【符号の説明】
1…橋台、2…橋脚、3…橋梁上部工、5…伸縮ジョイント、6…水平力分散型アンカー装置、10…下部構造体、11…アンカー、13…ヘッド、20…緩衝部材、21…アンカー貫通孔、22…緩衝体、26…外側筒体、27…内側筒体、28…弾性体、29…空間部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a horizontal force distribution type anchor device for supporting a bridge superstructure in a bridge so as not to fall from a lower structure such as an abutment or a pier by a horizontal force.
[0002]
[Prior art]
Patent Document 1 discloses a horizontal force distribution type anchor device in which a bridge superstructure is supported by a lower structure such as an abutment and a pier to prevent the bridge from falling by a horizontal force.
This horizontal force distribution type anchor device includes an anchor fixed to a lower structure, and a buffer attached around the anchor and fixed to a bridge superstructure.
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 3-35807
According to the above-described horizontal force distribution type anchor device, when a horizontal force acts on the bridge superstructure, the buffer body is compressed and elastically deformed, and the horizontal movement of the bridge superstructure is buffered and stopped.
In other words, when horizontal movement occurs in the bridge superstructure, the buffer function is exhibited during the allowable elastic displacement of the shock absorber, and the stopper function is exhibited when the limit of the allowable elastic displacement is exceeded. By supporting the bridge superstructure on the lower structure using a plurality of horizontal force distribution type anchor devices, the horizontal force acting on the bridge superstructure works on the anchors of each anchor device, and the horizontal force is applied to the anchors of each anchor device. It can be dispersed and supported on the structure.
[0005]
[Problems to be solved by the invention]
In a bridge, the superstructure of the bridge expands and contracts greatly in the bridge axis direction due to loading, temperature change, creep, etc.When using the conventional bridge horizontal force distribution type anchor device described above, the cushion Since it deforms and expands and contracts, the smooth expansion and contraction of the bridge superstructure in the bridge axis direction is hindered.
[0006]
It is conceivable that the spring constant of the shock absorber is reduced so that the bridge superstructure can relatively smoothly expand and contract in the bridge axis direction. However, if the spring constant of the shock absorber is small, the above-mentioned shock absorbing function is reduced.
[0007]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a bridge superstructure capable of smoothly expanding and contracting in a bridge axis direction, and having a horizontal force distribution type of a bridge that exhibits a sufficient cushioning function. An anchor device is provided.
[0008]
[Means for Solving the Problems]
The first invention includes an anchor 11 fixed to the lower structure 10 and a cushioning member 20 provided around the anchor 11 and fixed to the bridge superstructure 3.
The buffer member 20 is an elastic body having an elliptical anchor through hole 21 in the bridge axis direction, and has a gap in the bridge axis direction between the anchor through hole 21 and the anchor 11. It is a force distribution type anchor device.
[0009]
According to a second aspect of the present invention, in the first aspect, a head 13 is provided at a portion of the anchor 11 projecting from the upper surface 20b of the buffer member 20, and the horizontal force of the bridge is such that the head 13 and the upper surface 20b of the buffer member 20 interfere with each other. It is a distributed anchor device.
[0010]
According to a third aspect of the present invention, a plurality of substantially ring-shaped shock absorbers 22 each having an elastic body 28 provided between an outer cylinder 26 and an inner cylinder 27 in the first or second invention are stacked and connected. This is a horizontal force distribution-type anchor device for a bridge as a buffer member 20.
[0011]
A fourth invention is a horizontal force distribution type anchor device for a bridge in which the elastic body 28 has a plurality of spaces 29 in the third invention.
[0012]
[Operation]
According to the first invention, the cushioning member 20 freely moves in the bridge axis direction with respect to the anchor 11 by the gap between the anchor through hole 21 and the anchor 11. When the cushioning member 20 moves more than the gap, the cushioning member 20 comes into contact with the anchor 11, and the cushioning member 20 undergoes compression elastic deformation.
Therefore, the bridge superstructure 3 can smoothly expand and contract in the bridge axis direction.
[0013]
In addition, a large horizontal force acts on the bridge superstructure 3 due to an earthquake or the like, and when the bridge superstructure 3 moves in the horizontal direction more than the gap described above, the cushioning member 20 is compressed and elastically deformed, and the horizontal direction of the bridge superstructure 3 is changed. Since the movement is damped, the spring constant of the damping member 20 can be increased to exhibit a sufficient damping function. Moreover, the horizontal force can be dispersed and supported by the lower structure 10 by using a plurality of anchor devices.
[0014]
According to the second invention, the upper surface 20b of the cushioning member 20 interferes with the head 13 of the anchor 11, so that the cushioning member 20 can be prevented from coming off from the anchor 11, and the upward load acting on the bridge superstructure 3 can be reduced. Absorption and relaxation can be achieved by 20 shear deformations.
[0015]
According to the third aspect, the height of the buffer member 20 can be adjusted by changing the number of the buffer bodies 22 that are stacked and connected.
[0016]
According to the fourth aspect, the spring constant can be arbitrarily changed by changing the size, shape, and number of the space portions 29.
Therefore, when the magnitude of the load of the horizontal force in which the bridge superstructure 3 set in the design moves in the horizontal direction differs, the elastic bodies 28 having the same hardness can be used, and the cost is low.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIGS. 1 and 2, a bridge superstructure 3 is placed via a slip shoe 4 over a pair of abutments 1 and a plurality of piers 2. A telescopic joint 5 is provided between the protrusion 1a of the abutment 1 to form a bridge.
A horizontal force distribution type anchor device 6 according to the present invention is attached to each of the abutments 1 and the superstructure 3 and the piers 2 and the superstructure 3.
In some cases, the bridge superstructure 3 is mounted on only the pair of abutments 1 and over the pair of abutments 1 and one pier 2. That is, the bridge superstructure 1 is placed on the lower structure 10.
[0018]
The expansion joint 5 has a structure in which displacement in the bridge axis direction (X direction) is large and displacement in the direction perpendicular to the bridge axis (Y direction) is small, and absorbs large expansion and contraction of the bridge superstructure 3 in the bridge axis direction. 3 limits the displacement in the direction perpendicular to the bridge axis.
The sliding shoe 4 allows the bridge superstructure 3 to smoothly expand and contract with respect to the abutment 1 and the pier 2. The sliding shoe 4 is made of an elastic material, an iron material, or the like.
If the sliding shoe 4 made of an elastic material is used, the kinetic energy in the vertical direction can be absorbed.
[0019]
As shown in FIG. 3, the horizontal force distribution type anchor device 6 includes an abutment 1, a pier 2, an anchor 11 fixed to a lower structure 10, and fixed around the anchor 11 to the bridge superstructure 3. A cushioning member 20 is provided. For example, the cushioning member 20 is fixed at the cast-in-place concrete portion 12 of the bridge superstructure 3.
A lower end portion of the anchor 11 is fixed to the lower structure 10, and a head 13 is provided above the anchor 11. The head 13 has a larger diameter than the anchor 11.
[0020]
The cushioning member 20 is an elastic body having an anchor through-hole 21. The anchor through-hole 21 extends through the lower surface 20a and the upper surface 20b.
As shown in FIG. 4, the anchor through-hole 21 has an elongated oval shape in the bridge axis direction (the direction of the arrow X), and has a large gap S between the anchor through-hole 21 and the anchor 11 in the bridge axis direction.
[0021]
Because of this, the bridge superstructure 3 can freely move in the bridge axis direction with respect to the lower structure 10 by the gap S described above, and the bridge superstructure 3 smoothly moves in the bridge axis direction by the gap S described above. Can expand and contract.
When a large horizontal force acts on the bridge superstructure 3 due to an earthquake or the like and the bridge superstructure 3 moves in the direction of the bridge axis by the gap S or more, the cushioning member 20 comes into contact with the anchor 11 and the cushioning member 20 elastically moves. Since the horizontal movement is damped by compression deformation, the spring constant of the damping member 20 can be increased to exhibit a sufficient damping function.
[0022]
Further, since the bridge superstructure 3 is supported on the lower structure 10 by the plurality of horizontal force distribution type anchor devices 6, the horizontal force is applied to the lower structure 10 via each anchor 11 of each horizontal force distribution type anchor device 6. Can be dispersed and supported.
[0023]
In addition, since the head 13 of the anchor 11 is located above the upper surface 20b of the buffer member 20, when an upward load is applied to the bridge superstructure 3 due to an earthquake or the like, the upper surface 20b of the buffer member 20 interferes with the head 13. In addition, it is possible to prevent the cushioning member 20 from coming off the anchor 11 and to absorb and reduce the upward load by the shearing deformation of the cushioning member 20.
[0024]
The specific shape of the buffer member 20 will be described.
A plurality of shock absorbers 22 are stacked and fixed by a connecting rod 23, and a cap 24 is provided on the uppermost shock absorber 22 to form a substantially cylindrical shape having a head storage chamber 25.
The buffer 22 has a substantially ring shape in which an annular elastic body 28 is provided between a metal outer cylinder 26 and a metal inner cylinder 27, and the inner peripheral surface of the inner cylinder 27 is an anchor through hole 21. It is.
The elastic body 28 has a plurality of spaces 29.
The space 29 is opened on the upper surface and the lower surface of the elastic body 28, respectively.
A plurality of the connecting rods 23 are provided along the outer peripheral surface of the outer cylindrical body 26 of each buffer 22, and the connecting rods 23 and the outer cylindrical bodies 26 are fixed by welding or the like.
The connecting rod 23 is a long material continuous to the cap 24, and the connecting rod 23 and the cap 24 are fixed by welding or the like.
[0025]
Because of this, the size (height) of the buffer member 20 in the up-down direction can be adjusted by changing the number of the buffer members 20 to be overlapped and connected.
In addition, since the connecting rod 23 protrudes outward from the outer cylindrical body 26 and the head storage chamber 25 is formed by the cap 24, the cushioning member 20 is fixed by cast-in-place concrete at the bridge construction site. At this time, concrete is entangled with the connecting member 23 and can be securely attached.
[0026]
The elastic body 28 is easily elastically deformed due to the space 29. That is, the spring constant of the elastic body 28 is smaller than the spring constant of the elastic body itself.
In addition, if the space 29 is enlarged, the number is increased, or a slit is formed in the circumferential direction, the spring constant becomes smaller. Conversely, if the space 29 is made smaller, the number thereof is made smaller, or a slit is formed in the radial direction, the spring constant becomes larger.
That is, the spring constant can be arbitrarily changed by changing the size, shape, and number of the space 29.
Therefore, when the magnitude of the horizontal force (magnitude of seismic force) when the bridge superstructure 3 set in design moves in the parallel direction is different, it is possible to use the elastic body 28 of the same hardness, The cost is lower than when using elastic bodies having different constants.
[0027]
The plurality of buffer bodies 22 may be integrally and continuously formed as the buffer member 20.
[0028]
【The invention's effect】
According to the first aspect of the present invention, the cushioning member 20 freely moves in the bridge axis direction with respect to the anchor 11 by a gap between the anchor through hole 21 and the anchor 11. When the cushioning member 20 moves more than the gap, the cushioning member 20 comes into contact with the anchor 11 and is compressed and elastically deformed.
Therefore, the bridge superstructure 3 can smoothly expand and contract in the bridge axis direction.
[0029]
In addition, a large horizontal force acts on the bridge superstructure 3 due to an earthquake or the like, and when the bridge superstructure 3 moves in the horizontal direction more than the gap described above, the cushioning member 20 is compressed and elastically deformed, and the horizontal direction of the bridge superstructure 3 is changed. Since the movement is damped, the spring constant of the damping member 20 can be increased to exhibit a sufficient damping function. Moreover, the horizontal force can be dispersed and supported by the lower structure 10 by using a plurality of anchor devices.
[0030]
According to the invention according to claim 2, the upper surface 20b of the buffer member 20 interferes with the head 13 of the anchor 11, so that the buffer member 20 can be prevented from coming off from the anchor 11, and the upward load acting on the bridge superstructure 3 is buffered. Absorption can be reduced by the shear deformation of the member 20.
[0031]
According to the third aspect of the invention, the height of the buffer member 20 can be adjusted by changing the number of the buffer bodies 22 that are stacked and connected.
[0032]
According to the invention of claim 4, the spring constant can be arbitrarily changed by changing the size, shape, and number of the space portion 29.
Therefore, when the bridge superstructure 3 set in design moves in the horizontal direction and the magnitude of the horizontal force is different, it is possible to use the elastic bodies 28 having the same hardness, and the cost is low.
[Brief description of the drawings]
FIG. 1 is a side view of a bridge showing an embodiment of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is a cross-sectional view of a horizontal force distribution type anchor device.
FIG. 4 is a sectional view taken along line AA of FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Abutment, 2 ... Pier, 3 ... Bridge superstructure, 5 ... Telescopic joint, 6 ... Horizontal force distribution type anchor device, 10 ... Lower structure, 11 ... Anchor, 13 ... Head, 20 ... Buffer member, 21 ... Anchor Through-hole, 22 ... buffer, 26 ... outer cylinder, 27 ... inner cylinder, 28 ... elastic, 29 ... space.

Claims (4)

下部構造体10に固着されるアンカー11と、このアンカー11の回りに設けられ橋梁上部工3に固着される緩衝部材20を備え、
前記緩衝部材20は橋軸方向に長円形状のアンカー貫通孔21を有する弾性体で、このアンカー貫通孔21とアンカー11との間に橋軸方向の隙間を有することを特徴とする橋梁の水平力分散型アンカー装置。
An anchor 11 fixed to the lower structure 10 and a cushioning member 20 provided around the anchor 11 and fixed to the bridge superstructure 3 are provided.
The buffer member 20 is an elastic body having an elliptical anchor through hole 21 in the bridge axis direction, and has a gap in the bridge axis direction between the anchor through hole 21 and the anchor 11. Force distribution type anchor device.
アンカー11の緩衝部材20の上面20bから突出した部分にヘッド13を設け、このヘッド13と緩衝部材20の上面20bが干渉するようにした請求項1記載の橋梁の水平力分散型アンカー装置。The horizontal force distribution type anchor device for a bridge according to claim 1, wherein a head (13) is provided at a portion of the anchor (11) protruding from the upper surface (20b) of the buffer member (20), and the head (13) and the upper surface (20b) of the buffer member (20) interfere with each other. 外側筒体26と内側筒体27との間に弾性体28を設けたほぼリング形状の緩衝体22を、複数積層して連結することで緩衝部材20とした請求項1又は2記載の橋梁の水平力分散型アンカー装置。The bridge member according to claim 1 or 2, wherein a plurality of substantially ring-shaped shock absorbers (22) each having an elastic body (28) provided between the outer cylinder (26) and the inner cylinder (27) are stacked and connected. Horizontal force distribution type anchor device. 弾性体28は複数の空間部29を有する請求項3記載の橋梁の水平力分散型アンカー装置。The horizontal force distribution type anchor device for a bridge according to claim 3, wherein the elastic body (28) has a plurality of spaces (29).
JP2002340977A 2002-11-25 2002-11-25 Horizontal force distributed anchor device for bridge Pending JP2004176294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340977A JP2004176294A (en) 2002-11-25 2002-11-25 Horizontal force distributed anchor device for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340977A JP2004176294A (en) 2002-11-25 2002-11-25 Horizontal force distributed anchor device for bridge

Publications (1)

Publication Number Publication Date
JP2004176294A true JP2004176294A (en) 2004-06-24

Family

ID=32703468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340977A Pending JP2004176294A (en) 2002-11-25 2002-11-25 Horizontal force distributed anchor device for bridge

Country Status (1)

Country Link
JP (1) JP2004176294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316535A (en) * 2005-05-13 2006-11-24 Kawaguchi Metal Industries Co Ltd Bridge composite bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316535A (en) * 2005-05-13 2006-11-24 Kawaguchi Metal Industries Co Ltd Bridge composite bearing
JP4549230B2 (en) * 2005-05-13 2010-09-22 株式会社川金コアテック Composite bearing for bridge

Similar Documents

Publication Publication Date Title
KR101001491B1 (en) Shock mooring tension damper
KR100692956B1 (en) Bearing for supporting a structure and elastic device for the bearing
NZ201015A (en) Building support:cyclic shear energy absorber
JP5886721B2 (en) Damping damper for structures
JP6344836B2 (en) A damper used for the earthquake-resistant structure of a bridge and a method for restoring the earthquake-resistant structure.
JP2015055293A (en) Vibration control device
JP2016108931A (en) Bridge structure
JP2002180418A (en) Base isolation structure system in bridge
JP3735593B2 (en) Seismic isolation device for buildings
JP4468212B2 (en) Fall bridge prevention device
JP2010189999A (en) Base-isolation structure and building having the same
KR100965236B1 (en) Truss bridge for absorbing vibration
JP5874336B2 (en) Vibration control device
JP2004176294A (en) Horizontal force distributed anchor device for bridge
JP3992410B2 (en) Seismic isolation device for roof frame
JP2000110887A (en) Base isolation device
JP2001295499A (en) Base isolation mechanism for structure
JP3038343B2 (en) Damping device and mounting method
US10948042B2 (en) Shock and vibration isolator/absorber/suspension/mount utilizing as a resilient element a closed loop resilient element
JP5214371B2 (en) Structure
JPH11293685A (en) Base isolation structure of construction
JP7295835B2 (en) Bridge fall prevention device
KR100549373B1 (en) Bearing for diminishing a vibration of a perpendicular direction in a structure
JP4448956B2 (en) Shock absorber and falling bridge prevention device incorporating the same
JP2000291737A (en) Base isolation supporter device for structural body