JP2004176180A - Threaded fastener - Google Patents

Threaded fastener Download PDF

Info

Publication number
JP2004176180A
JP2004176180A JP2004010322A JP2004010322A JP2004176180A JP 2004176180 A JP2004176180 A JP 2004176180A JP 2004010322 A JP2004010322 A JP 2004010322A JP 2004010322 A JP2004010322 A JP 2004010322A JP 2004176180 A JP2004176180 A JP 2004176180A
Authority
JP
Japan
Prior art keywords
weight ratio
fine
magnesium alloy
matrix
superplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004010322A
Other languages
Japanese (ja)
Inventor
Masayoshi Kitagawa
眞好 喜多川
Yoshisada Michiura
吉貞 道浦
Keiichi Maekawa
恵一 前川
Mitsuaki Obara
充昭 小原
Kenji Azuma
健司 東
Takeshi Asaoka
武之 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KISHIWADA STAINLESS KK
Kurimoto Ltd
Original Assignee
KISHIWADA STAINLESS KK
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11085504A external-priority patent/JP2000283134A/en
Application filed by KISHIWADA STAINLESS KK, Kurimoto Ltd filed Critical KISHIWADA STAINLESS KK
Priority to JP2004010322A priority Critical patent/JP2004176180A/en
Publication of JP2004176180A publication Critical patent/JP2004176180A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide threaded fasteners which have light weight and excellent productivity and by which manufacturing steps can be decreased and manufacturing costs can be reduced. <P>SOLUTION: The threaded fasteners can be obtained by subjecting industrial pure magnesium or a magnesium alloy or a composite material using these as a matrix, each having a fine-grained superplastic structure of ≤100μm grain size, to heating to 250 to 400°C where a superplastic phenomenon occurs and carrying out forming by warm forging utilizing the superplastic phenomenon. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、軽量で、生産性に優れ、製造工程を削減して製造コストの低減が図れるねじ部品に関するものである。   The present invention relates to a screw component that is lightweight, has excellent productivity, and can reduce the number of manufacturing steps and reduce manufacturing costs.

近年、自動車、家電、OA機器など各種製品について軽量化の要求が高まってきている。このような製品の軽量化に適合する素材として、軽量で、かつ比強度にも優れているマグネシウム合金が注目されている。一方、製品の軽量化に伴って、その組み立てに使用されるボルト・ナットなどのねじ部品も軽量化が求められている。   In recent years, demands for weight reduction of various products such as automobiles, home appliances, and OA devices have been increasing. As a material suitable for reducing the weight of such a product, a magnesium alloy that is lightweight and has excellent specific strength has attracted attention. On the other hand, along with the reduction in the weight of products, the weight of screw parts such as bolts and nuts used for the assembly is also required to be reduced.

しかし、マグネシウム合金は、鋳造性、切削性に優れているが、化学的に活性であり、切削加工による切り粉等は燃えやすいため管理が大変であるといった問題がある。また、マグネシウムの結晶構造が最密立方構造(hcp構造)であるため、常温での塑性加工性が悪いという難点がある。   However, although magnesium alloys are excellent in castability and machinability, they are chemically active, and there is a problem that swarf and the like by cutting are easily burned and thus are difficult to manage. Further, since the crystal structure of magnesium is a close-packed cubic structure (hcp structure), there is a disadvantage that the plastic workability at room temperature is poor.

一方、展伸用マグネシウム合金として、合金記号AZ31,AZ61,AZ80あるいはZK60などがJIS規格により規定されているけれども、上記のような理由によって、ねじ部分にはマグネシウム合金が使用されていなかった。   On the other hand, although alloy symbols AZ31, AZ61, AZ80, ZK60 and the like are specified as wrought magnesium alloys according to JIS standards, magnesium alloys have not been used for the threaded portions for the above-described reasons.

そこで、本発明者等は、特定の温度条件下において超塑性現象を発現する微細粒超塑性組織を有する工業用純マグネシウム、マグネシウム合金に着目し、種々実験研究を重ねた結果、化学組成、結晶粒径を特定し、超塑性現象を発現する条件下での温間鍛造によりねじ部品の鍛造成形及び転造加工が可能であることを見出した。   Therefore, the present inventors have focused on industrial pure magnesium and magnesium alloys having a fine-grained superplastic structure that expresses superplasticity under specific temperature conditions, and as a result of repeating various experimental studies, the chemical composition, crystal, It has been found that the grain size is specified, and forging and rolling of a threaded component can be performed by warm forging under conditions that cause a superplastic phenomenon.

本発明は上記知見に基づいてなされたものであり、軽量で、生産性に優れ、製造工程を削減して製造コストの低減が図れるねじ部品を提供することを目的とする。   The present invention has been made based on the above findings, and it is an object of the present invention to provide a threaded component that is lightweight, has excellent productivity, can reduce the number of manufacturing steps, and can reduce the manufacturing cost.

上記目的を達成するために、本発明のねじ部品は、微細粒超塑性組織を有する工業用純マグネシウム、マグネシウム合金、又はこれらを母相(マトリックス)とする複合材料を温間鍛造により成形してなるものである。   In order to achieve the above object, a screw part of the present invention is formed by warm forging of industrial pure magnesium having a fine-grained superplastic structure, a magnesium alloy, or a composite material having these as a matrix (matrix). It becomes.

具体的には、結晶粒径が100μm以下の微細粒超塑性組織を有する工業用純マグネシウム、マグネシウム合金、又はこれらを母相(マトリックス)とする複合材料を、超塑性現象が発現する250℃〜400℃の昇温状態で塑性加工を施す温間鍛造により成形してなるものである。   Specifically, industrial pure magnesium or a magnesium alloy having a fine-grained superplastic structure with a crystal grain size of 100 μm or less, or a composite material using these as a matrix (matrix) is used at a temperature of 250 ° C. It is formed by warm forging in which plastic working is performed at a temperature rise of 400 ° C.

前記微細粒超塑性組織を有するマグネシウム合金は、Al重量比1.0〜12.0%、Zn重量比0.3〜2.5%、Mn重量比0.2〜0.3%、残部Mg及び不可避の不純物からなる超塑性材料、あるいはZn重量比2.0〜8.0%、Zr重量比0.1〜1.0%、残部Mg及び不可避の不純物からなる超塑性材料が望ましい。   The magnesium alloy having the fine-grain superplastic structure has an Al weight ratio of 1.0 to 12.0%, a Zn weight ratio of 0.3 to 2.5%, a Mn weight ratio of 0.2 to 0.3%, and a balance of Mg. And a superplastic material composed of unavoidable impurities, or a superplastic material composed of 2.0 to 8.0% by weight of Zn, 0.1 to 1.0% by weight of Zr, the balance being Mg and unavoidable impurities.

また、前記複合材料は、前記微細粒超塑性組織を有する工業用マグネシウム又はマグネシウム合金を母相(マトリックス)として、強度、耐磨耗性などを向上させるため複合化するものであって、形態としては繊維強化あるいは粒子分散強化などがあり、強化材としては炭素繊維、ガラス繊維、ウィスカー、酸化物、炭化物、窒化物などが好ましい。   Further, the composite material is a composite material for improving strength, abrasion resistance, etc., using an industrial magnesium or magnesium alloy having the fine-grained superplastic structure as a matrix (matrix). Includes fiber reinforcement or particle dispersion reinforcement, and as the reinforcing material, carbon fiber, glass fiber, whisker, oxide, carbide, nitride and the like are preferable.

以下に、本発明に用いるマグネシウム合金の化学組成を上記のように限定した理由について説明する。軽量だけの目的なら工業用純マグネシウムでもよいが、用途によってさらに強度などを必要とする場合には上記のマグネシウム合金、あるいはこれらを母相(マトリックス)とする上記の複合材料が好ましい。   Hereinafter, the reason why the chemical composition of the magnesium alloy used in the present invention is limited as described above will be described. Industrial pure magnesium may be used only for the purpose of light weight, but when strength is required depending on the application, the above magnesium alloy or the above composite material using these as a matrix (matrix) is preferable.

さらに、マグネシウム合金について述べると、合金組成は概ねMg+固溶元素+高融点元素からなっている。固溶元素としてはZn、Alなどがあり、材料の最終ミクロ組織の微細化に必要な下部組織(共晶セル)の微細化のため必要であり、固溶範囲内で多いほど好ましい。しかし、多くなると延性、靭性などを低下させるので上述の範囲が好ましい。次に、高融点元素としてはMn、Zrなどがあり、ピンニング粒子として高温での結晶粒の安定化のため必要であり、ピンニング粒子の大きさは通常1μm以下である。添加量は多いほど効果があるが多すぎるとピンニング粒子の粗大化を招き、常温での延性、靭性を低下させるので上述の範囲が好ましい。   Further, regarding the magnesium alloy, the alloy composition is generally composed of Mg + solid solution element + high melting point element. Examples of solid solution elements include Zn and Al, which are necessary for refining the lower structure (eutectic cell) necessary for refining the final microstructure of the material. However, when the content is increased, the ductility, toughness and the like are reduced, so the above range is preferable. Next, there are Mn and Zr as high melting point elements, which are necessary as pinning particles for stabilizing crystal grains at a high temperature, and the size of the pinning particles is usually 1 μm or less. The larger the amount, the better the effect. However, if the amount is too large, the pinning particles become coarse, and the ductility and toughness at room temperature are reduced.

また、ねじ素材である前記の工業用純マグネシウム、マグネシウム合金、又はこれらを母相(マトリックス)とする複合材料の前記微細粒超塑性組織の結晶粒径は微細なほど好ましいけれども、結晶粒径が100μm以下であれば、250℃〜400℃の昇温状態で超塑性現象を発現する。好ましくは80μm以下とする。   In addition, the crystal grain size of the fine-grain superplastic structure of the industrial pure magnesium or magnesium alloy as the screw material or the composite material using these as a mother phase (matrix) is preferably as small as possible. If it is 100 μm or less, a superplastic phenomenon is exhibited at a temperature rise of 250 ° C. to 400 ° C. Preferably, it is 80 μm or less.

マグネシウムは熱伝導率が高い(鉄の約2倍)ので、前記素材(線材又は棒材)を上記の温度範囲に加熱し、成形用パンチ・ダイスでボルト頭部などを鍛造成形すると、成形用パンチ・ダイスによって素材が冷却され、1段成形後に100℃以下まで下がるおそれがある。したがって、1段成形後、素材を再加熱し、2段目の鍛造成形をする必要がある。この場合、素材を250℃〜400℃の昇温状態に加熱すると共に、成形用ダイスを最終段の鍛造成形まで250℃以上の昇温状態に保持して温間鍛造を行なうと、連続鍛造成形が可能となる。この場合、前記成形用ダイスに対応するパンチも同様の温度域に加熱しておくことが好ましい。また、ねじ山の転造加工工程でも前記素材と同様の温度域に加熱することが好ましい。   Magnesium has a high thermal conductivity (about twice that of iron), so the material (wire or bar) is heated to the above temperature range, and the forging of the bolt head etc. with the forming die and punch is performed. The material is cooled by the punch and die, and may drop to 100 ° C. or less after one-stage molding. Therefore, after the first stage molding, it is necessary to reheat the material and perform the second stage forging. In this case, when the raw material is heated to a temperature rise of 250 ° C. to 400 ° C., and the forming die is kept at a temperature rise of 250 ° C. or more until the final stage of forging, a warm forging is performed. Becomes possible. In this case, the punch corresponding to the molding die is preferably heated to the same temperature range. Further, it is preferable that the material be heated to the same temperature range as that of the material in the thread rolling process.

以上説明したように、本発明によれば、軽量で、かつ比強度にも優れているマグネシウム製ねじ部品が容易に得られる。しかも、素材の鍛造成形性が良いので、製造工程の段数を削減して製造コストの低減が図れるだけではなく、成形用パンチ・ダイスの寿命が大幅に延びるというすぐれた効果がある。   As described above, according to the present invention, a magnesium screw part that is lightweight and has excellent specific strength can be easily obtained. In addition, since the forging property of the material is good, not only the number of steps in the manufacturing process can be reduced to reduce the manufacturing cost, but also there is an excellent effect that the life of the punches and dies for forming is greatly extended.

以下、本発明による好適な実施の形態について説明する。   Hereinafter, preferred embodiments according to the present invention will be described.

図1は、Al重量比3.1%、Zn重量比1.1%、Mn重量比0.21%、残部実質的にMgから成り、結晶粒径が10μm未満の微細粒超塑性組織を有するマグネシウム合金について、300℃〜350℃におけるひずみ速度と伸びの関係を示しており、図2は、300℃〜350℃におけるひずみ速度と応力の関係を示している。   FIG. 1 shows a fine-grain superplastic structure composed of 3.1% by weight of Al, 1.1% by weight of Zn, 0.21% by weight of Mn, the balance being substantially Mg, and having a crystal grain size of less than 10 μm. FIG. 2 shows the relationship between the strain rate and the elongation at 300 ° C. to 350 ° C. for the magnesium alloy, and FIG. 2 shows the relationship between the strain rate and the stress at 300 ° C. to 350 ° C.

図1のグラフから分かるように、ひずみ速度が大きくなるにつれて伸びは低下しているが、ひずみ速度10-2-1においても100〜200%を示しており、優れた加工性を示している。図2からは、温度の上昇と共に各ひずみ速度においても変形応力が低下し、加工性が向上していることが分かる。 As can be seen from the graph of FIG. 1, although the elongation decreases as the strain rate increases, the strain rate is also 100 to 200% even at a strain rate of 10 −2 s −1 , indicating excellent workability. . From FIG. 2, it can be seen that the deformation stress decreases at each strain rate as the temperature increases, and that the workability is improved.

また、図3はA1重量比2.9%、Zn重量比0.9%、Mn重量比0.20%、残部実質的にMgから成り、かつ結晶粒径が100μmのマグネシウム合金について、325℃〜400℃におけるひずみ速度と伸びの関係を示しており、図4は、325℃〜400℃におけるひずみ速度と応力の関係を示している。   FIG. 3 shows a case where a magnesium alloy having a weight ratio of A1 of 2.9%, a weight ratio of Zn of 0.9%, a weight ratio of Mn of 0.20%, substantially consisting of Mg, and having a crystal grain size of 100 μm is at 325 ° C. 4 shows the relationship between the strain rate and the elongation at に お け る 400 ° C., and FIG. 4 shows the relationship between the strain rate and the stress at 325 ° C. to 400 ° C.

図3のグラフから分かるように、ひずみ速度が大きくなるにつれて伸びは低下しているが、たとえば、ひずみ速度10-4-1において、350℃〜400℃で130〜170%を示しており、優れた加工性を示している。図4からは、温度の上昇と共に各ひずみ速度においても変形応力が低下し、加工性が向上していることが分かる。 As can be seen from the graph of FIG. 3, the elongation decreases as the strain rate increases. For example, at a strain rate of 10 −4 s −1 , the elongation is 130 to 170% at 350 ° C. to 400 ° C., It shows excellent workability. From FIG. 4, it can be seen that the deformation stress decreases at each strain rate with an increase in temperature, and the workability is improved.

以下、実施例に基づいて具体的に説明する。   Hereinafter, a specific description will be given based on examples.

実施例1.
ボルトの種類:六角穴付きボルト
形状:M8×30
化学組成:Al重量比3.1%、Zn重量比1.1%、Mn重量比0.21%、残部実質的にMgから成り、かつ、結晶粒径が10μmの微細粒超塑性組織を有する線径8φのマグネシウム合金を素材として、300℃〜350℃で3段成形にて温間鍛造を行なった。さらに、同様の温度域で転造によりねじ加工を行ない、製品とした。得られたボルトの重量はステンレス鋼ボルト(材質:XM7)の約1/4であった。通常ダイス、パンチの寿命は2〜3万程度であるが、2倍以上鍛造成形しても異常がなかった。
Embodiment 1 FIG.
Bolt type: Hexagon socket head bolt
Shape: M8 × 30
Chemical composition: Al weight ratio 3.1%, Zn weight ratio 1.1%, Mn weight ratio 0.21%, balance substantially consisting of Mg, and having a fine-grain superplastic structure with a crystal grain size of 10 μm Using a magnesium alloy having a wire diameter of 8φ as a material, warm forging was performed by three-stage forming at 300 ° C to 350 ° C. Further, thread processing was performed by rolling in the same temperature range to obtain a product. The weight of the obtained bolt was about 1/4 of the stainless steel bolt (material: XM7). Normally, the life of the dies and punches is about 20,000 to 30,000, but no abnormality was found even if the forging was performed twice or more.

実施例2.
ボルトの種類:十字穴付き小ねじ
形状:M10×20
化学組成:Zn重量比5.2%、Zr重量比0.5%、残部実質的にMgから成り、かつ、結晶粒径が100μmの微細粒超塑性組織を有する線径10φのマグネシウム合金を素材として、350℃〜400℃で3段成形にて温間鍛造を行なった。さらに、同様の温度域で転造によりねじ加工を行ない、製品とした。
Embodiment 2. FIG.
Bolt type: Cross-recessed head screw
Shape: M10 × 20
Chemical composition: Magnesium alloy of 5.2% in Zn weight ratio, 0.5% in Zr weight ratio, the balance substantially consisting of Mg, and having a fine grain superplastic structure with a crystal grain size of 100 μm and a wire diameter of 10φ is used as a material. As a result, warm forging was performed by three-stage molding at 350 ° C to 400 ° C. Further, thread processing was performed by rolling in the same temperature range to obtain a product.

実施例3.
ボルトの種類:T頭ボルト
形状:M20×100
化学組成:Al重量比6.5%、Zn重量比0.9%、Mn重量比0.25%、残部実質的にMgから成り、かつ、結晶粒径が50μmの微細粒超塑性組織を有する線径20φのマグネシウム合金を素材として、250℃〜300℃で4段成形にて温間鍛造を行なった。さらに、同様の温度域で転造によりねじ加工を行ない、製品とした。得られたボルトの重量はステンレス鋼ボルト(材質:SUS304)の約1/4であった。通常ダイス寿命は2〜3万程度であるが、2倍以上鍛造しても異常がなかった。
Embodiment 3 FIG.
Bolt type: T-head bolt
Shape: M20 × 100
Chemical composition: Al weight ratio 6.5%, Zn weight ratio 0.9%, Mn weight ratio 0.25%, balance substantially consisting of Mg, and having a fine-grain superplastic structure with a crystal grain size of 50 μm Using a magnesium alloy having a wire diameter of 20φ as a material, warm forging was performed at 250 ° C to 300 ° C by four-stage forming. Further, thread processing was performed by rolling in the same temperature range to obtain a product. The weight of the obtained bolt was about 1/4 of the stainless steel bolt (material: SUS304). Normally, the life of the dies is about 20,000 to 30,000, but no abnormality was found even when forging was performed twice or more.

実施例4.
結晶粒径が100μmの微細粒超塑性組織を有する工業用純マグネシウムから成る6φの線材を素材として、十字穴付き小ねじM6×10を350℃〜400℃で3段成形にて鍛造し、さらに同様の温度域で転造によりねじ加工を行ない、製品とした。
Embodiment 4. FIG.
Using a 6φ wire made of industrial pure magnesium having a fine-grain superplastic structure with a crystal grain size of 100 μm as a material, forged small cross-threaded screws M6 × 10 at 350 ° C to 400 ° C by three-step molding, Threading was performed by rolling in the same temperature range to obtain a product.

実施例5.
工業用純マグネシウムを母相(マトリックス)とし、強化材としてガラス繊維を30wt%含有する複合材料で結晶粒径が10μmの微細粒超塑性組織を有する6φのプリフォームワイヤを素材として、十字穴付き小ねじM6×10を250℃〜300℃で3段成形にて鍛造し、さらに同様の温度域で転造によりねじ加工を行ない、製品とした。
Embodiment 5 FIG.
A cross-shaped hole made of a 6φ preform wire having a fine-grained superplastic structure with a crystal grain size of 10 μm made of a composite material containing industrial pure magnesium as a matrix and 30 wt% of glass fiber as a reinforcing material. The small screw M6 × 10 was forged by three-stage molding at 250 ° C. to 300 ° C., and further, was threaded by rolling in the same temperature range to obtain a product.

実施例6.
ボルトの種類:六角穴付きボルト
形状:M8×50
化学組成:Zn重量比6.0%、Zr重量比0.7%、残部実質的にMgから成り、かつ、結晶粒径が50μmの微細粒超塑性組織を有する線径8φのマグネシウム合金を素材として、300℃〜350℃で3段成形にて温間鍛造を行なった。さらに、同様の温度域で転造によりねじ加工を行ない、製品とした。
Embodiment 6 FIG.
Bolt type: Hexagon socket head bolt
Shape: M8 × 50
Chemical composition: Magnesium alloy of 6.0% in Zn weight ratio, 0.7% in Zr weight ratio, the balance substantially consisting of Mg, and having a wire diameter of 8φ having a fine-grain superplastic structure with a crystal grain size of 50 μm. The hot forging was performed by three-stage molding at 300 ° C. to 350 ° C. Further, thread processing was performed by rolling in the same temperature range to obtain a product.

実施例7.
ボルトの種類:十字穴付き小ねじ
形状:M8×30
化学組成:Zn重量比5.0%、Zr重量比0.75%、残部実質的にMgから成り、かつ、結晶粒径が50μmの微細粒超塑性組織を有する線径8φのマグネシウム合金を素材として、300℃〜350℃で2段成形にて温間鍛造を行なった。さらに、同様の温度域で転造によりねじ加工を行ない、製品とした。
Embodiment 7 FIG.
Bolt type: Cross-recessed head screw
Shape: M8 × 30
Chemical composition: Magnesium alloy with a wire diameter of 8φ having a Zn weight ratio of 5.0%, a Zr weight ratio of 0.75%, and the balance substantially consisting of Mg, and having a fine-grain superplastic structure with a crystal grain size of 50 μm. The hot forging was performed by two-stage molding at 300 ° C. to 350 ° C. Further, thread processing was performed by rolling in the same temperature range to obtain a product.

実施例8.
ボルトの種類:十字穴付き小ねじ
形状:M10×30
化学組成:Al重量比9.0%、Zn重量比0.6%、Mn重量比0.30%、残部実質的にMgから成り、かつ、結晶粒径が30μmの微細粒超塑性組織を有する線径10φのマグネシウム合金を素材として、250℃〜300℃で2段成形にて温間鍛造を行なった。さらに、同様の温度域で転造によりねじ加工を行ない、製品とした。
Embodiment 8 FIG.
Bolt type: Cross-recessed head screw
Shape: M10 × 30
Chemical composition: Al weight ratio 9.0%, Zn weight ratio 0.6%, Mn weight ratio 0.30%, balance substantially consisting of Mg, and having a fine-grain superplastic structure with a crystal grain size of 30 μm Using a magnesium alloy having a wire diameter of 10φ as a material, warm forging was performed by two-stage molding at 250 ° C to 300 ° C. Further, thread processing was performed by rolling in the same temperature range to obtain a product.

上記の各実施例では、ボルトと小ねじについて説明したが、本発明はナットにも適用できるものである。   In each of the above embodiments, the description has been made of the bolt and the small screw, but the present invention is also applicable to a nut.

本発明に用いるマグネシウム合金のひずみ速度と伸びの関係を示すグラフである。4 is a graph showing the relationship between the strain rate and the elongation of the magnesium alloy used in the present invention. 本発明に用いるマグネシウム合金のひずみ速度と応力の関係を示すグラフである。4 is a graph showing the relationship between the strain rate and the stress of the magnesium alloy used in the present invention. 本発明に用いる別のマグネシウム合金のひずみ速度と伸びの関係を示すグラフである。5 is a graph showing the relationship between strain rate and elongation of another magnesium alloy used in the present invention. 同上マグネシウム合金のひずみ速度と応力の関係を示すグラフである。3 is a graph showing a relationship between a strain rate and a stress of the magnesium alloy.

Claims (5)

微細粒超塑性組織を有する工業用純マグネシウム、マグネシウム合金、又はこれらを母相(マトリックス)とする複合材料を温間鍛造により成形してなるねじ部品。 Threaded parts formed by warm forging of industrial pure magnesium or magnesium alloy having a fine-grain superplastic structure or a composite material using these as a matrix (matrix). 結晶粒径が100μm以下の微細粒超塑性組織を有する工業用純マグネシウム、マグネシウム合金、又はこれらを母相(マトリックス)とする複合材料を、超塑性現象が発現する250℃〜400℃の昇温状態で塑性加工を施す温間鍛造により成形してなるねじ部品。 Industrial pure magnesium, a magnesium alloy having a fine-grained superplastic structure with a crystal grain size of 100 μm or less, or a composite material using these as a matrix (matrix) is heated to a temperature of 250 ° C. to 400 ° C. where the superplastic phenomenon occurs. Screw parts formed by warm forging that performs plastic working in the state. 前記微細粒超塑性組織を有するマグネシウム合金が、Al重量比1.0〜12.0%、Zn重量比0.3〜2.5%、Mn重量比0.2〜0.3%、残部Mg及び不可避の不純物からなる請求項1又は2記載のねじ部品。 The magnesium alloy having the fine-grain superplastic structure has an Al weight ratio of 1.0 to 12.0%, a Zn weight ratio of 0.3 to 2.5%, a Mn weight ratio of 0.2 to 0.3%, and a balance of Mg. The screw component according to claim 1, comprising unavoidable impurities. 前記微細粒超塑性組織を有するマグネシウム合金が、Zn重量比2.0〜8.0%、Zr重量比0.1〜1.0%、残部Mg及び不可避の不純物からなる請求項1又は2記載のねじ部品。 The magnesium alloy having the fine-grain superplastic structure comprises a Zn weight ratio of 2.0 to 8.0%, a Zr weight ratio of 0.1 to 1.0%, a balance of Mg and unavoidable impurities. Screw parts. 前記複合材料が、前記微細粒超塑性組織を有する工業用純マグネシウム又はマグネシウム合金を母相(マトリックス)とし、強化材として炭素繊維、ガラス繊維、ウィスカー、酸化物、炭化物、窒化物を添加したものであることを特徴とする請求項1又は2記載のねじ部品。 The composite material is obtained by using industrial pure magnesium or a magnesium alloy having the fine-grain superplastic structure as a matrix, and adding carbon fibers, glass fibers, whiskers, oxides, carbides, and nitrides as reinforcing materials. The screw component according to claim 1, wherein:
JP2004010322A 1999-03-29 2004-01-19 Threaded fastener Pending JP2004176180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010322A JP2004176180A (en) 1999-03-29 2004-01-19 Threaded fastener

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11085504A JP2000283134A (en) 1999-03-29 1999-03-29 Screw part and manufacture thereof
JP2004010322A JP2004176180A (en) 1999-03-29 2004-01-19 Threaded fastener

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000033201A Division JP3597747B2 (en) 1999-03-29 2000-02-10 Manufacturing method of screw parts

Publications (1)

Publication Number Publication Date
JP2004176180A true JP2004176180A (en) 2004-06-24

Family

ID=32715282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010322A Pending JP2004176180A (en) 1999-03-29 2004-01-19 Threaded fastener

Country Status (1)

Country Link
JP (1) JP2004176180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058276A1 (en) * 2005-11-16 2007-05-24 National Institute For Materials Science Magnesium-based biodegradable metal material
WO2010093244A3 (en) * 2009-02-13 2010-12-16 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Process for manufacturing magnesium alloy based products
CN114574791A (en) * 2022-01-24 2022-06-03 苏州卓恰医疗科技有限公司 Magnesium alloy hollow screw and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058276A1 (en) * 2005-11-16 2007-05-24 National Institute For Materials Science Magnesium-based biodegradable metal material
US8034101B2 (en) 2005-11-16 2011-10-11 National Institute For Materials Science Magnesium-based biodegradable metallic material
WO2010093244A3 (en) * 2009-02-13 2010-12-16 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Process for manufacturing magnesium alloy based products
CN114574791A (en) * 2022-01-24 2022-06-03 苏州卓恰医疗科技有限公司 Magnesium alloy hollow screw and preparation method thereof

Similar Documents

Publication Publication Date Title
Meng et al. Recent progress and development in extrusion of rare earth free Mg alloys: a review
JP6026416B2 (en) High strength alpha / beta titanium alloy fasteners and fastener stock
CN113293273B (en) Processing method of 2xxx series aluminum alloy bar and wire for fastener
CN103180473A (en) Magnesium alloy filament, and bolt, nut, and washer
WO2006014124A1 (en) Titanium-based alloy
JP3597747B2 (en) Manufacturing method of screw parts
JP6784700B2 (en) Manufacturing method of titanium and titanium alloy articles
CN112899593A (en) High-strength high-plasticity light alloy material and preparation method and application thereof
US5296190A (en) Metallurgical products improved by deformation processing
JP2003277899A (en) Magnesium alloy member and its production method
CN111218597B (en) Low-cost high-heat-conductivity ultrahigh-plasticity magnesium alloy and preparation method thereof
JP2004176180A (en) Threaded fastener
Luo et al. Mechanical properties and microstructure of AZ31 magnesium alloy tubes
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JP2000283134A (en) Screw part and manufacture thereof
CN110669972B (en) High-strength corrosion-resistant magnesium alloy and preparation method thereof
CN114540675A (en) High-performance wrought aluminum alloy and manufacturing method thereof
JP3808757B2 (en) Manufacturing method of highly ductile Mg alloy material
DE10003970B4 (en) Process for producing magnesium alloys having a superplastic microstructure
US20030140992A1 (en) Method for providing magnesium alloys with superplastic properties
WO2024075389A1 (en) Material for aluminum alloy screw, and aluminum alloy screw and production method therefor
Oo et al. Annealing Effects after Various Thermo-Mechanical Treatments on Microstructure and Mechanical Properties of Wrought Magnesium Alloy ZK60
JP3111214B2 (en) Manufacturing method of high-strength double-phase structure alloy
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
Kim et al. Sung Hyuk Park

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010