JP2004176125A - Die material superior in mold releasing property in electrification sintering, and compacted member using it - Google Patents

Die material superior in mold releasing property in electrification sintering, and compacted member using it Download PDF

Info

Publication number
JP2004176125A
JP2004176125A JP2002343472A JP2002343472A JP2004176125A JP 2004176125 A JP2004176125 A JP 2004176125A JP 2002343472 A JP2002343472 A JP 2002343472A JP 2002343472 A JP2002343472 A JP 2002343472A JP 2004176125 A JP2004176125 A JP 2004176125A
Authority
JP
Japan
Prior art keywords
mold
molded body
zirconium oxide
sintering
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343472A
Other languages
Japanese (ja)
Other versions
JP4238310B2 (en
Inventor
Keizo Kobayashi
慶三 小林
Koyo Ozaki
公洋 尾崎
Toshiyuki Nishio
敏幸 西尾
Akihiro Matsumoto
章宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002343472A priority Critical patent/JP4238310B2/en
Publication of JP2004176125A publication Critical patent/JP2004176125A/en
Application granted granted Critical
Publication of JP4238310B2 publication Critical patent/JP4238310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compacted member with high precision by improving a die releasing property in electrification sintering, and to provide the compacted member. <P>SOLUTION: This method for producing a compact using an electroconductive ceramic containing zirconium oxide in a contacting part with the compact, in electrification sintering, and a material having different electrical characteristics from those of the ceramic between the ceramic and an electrode, to prevent destruction of a die caused by a thermal shock and copy a surface fine form of the die onto the compact with high precision by a high applied pressure. The compact can be easily separated from the die without using a mold releasing material, but by using a phenomenon that oxygen in zirconium oxide is migrated by the electrification and is released from the die. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、通電焼結において高精度の成形部材を作製することを可能とする離型性に優れた型材料及びそれを用いて作製した成形部材に関するものであり、更に詳しくは、酸化ジルコニウムを含有する導電性セラミックス材料を型材料に使用し、型内部から型の表面への酸化ジルコニウムの酸素の移動を起こすことで、通電焼結時の型離れ性を向上させた高精度の形状付与を可能とする型材料、それを用いた成形部材の作製方法、及び成形部材に関するものである。
本発明に係る通電焼結により作製された成形体は、従来の通電焼結体より加工精度が高く、型との離型性に優れるため、本発明の方法は、例えば、ニアネットシェイプ成形を要求される金属間化合物などの難加工性材料、仕上げ加工の難しい高硬度の材料、及び微小な部材などの成形方法として有用である。
【0002】
【従来の技術】
従来、通電焼結における型材料としては、導電性があり、高温における強度が優れ、加工性に富むという理由から、黒鉛が一般的に利用されてきた。また、大きな圧力を利用して通電焼結を行う場合には、低温の成形では超硬合金製の型材料が利用され、また、高温の成形ではSiCなどの導電性のセラミックスを用いた高強度のセラミックス(通称、黒セラ) 製の型材料が利用されてきた。
【0003】
通電焼結の場合、電極部分は水冷されており、通電時には、成形用の型と電極の間には大きな温度差が発生する。例えば、チタン粉末の通電焼結では800℃以上の加熱が必要であり、電極と成形型の間には500℃以上の温度差が生じることになる。そのため、型材料には、熱衝撃(温度差によって発生する応力)に対して割れにくい材料を選定する必要があり、利用できる型材料には、自ずと制約があった。そのために、これまでは、通電焼結用の型材料として、例えば、黒鉛、及び超硬合金などが利用されていた(例えば、特許文献1−2、非特許文献1−2参照)。
【0004】
しかしながら、黒鉛の型は、金属と反応しやすく、高精度の成形体を作製することは難しいという問題があった。また、超硬合金の型は、600℃以上の温度では変形(座屈)する可能性があり、高精度の成形体を得ることは難しいという問題があった。そこで、これまでに、放電焼結における金型の先行技術がいくつか提案されている(例えば、特許文献3−7参照)が、通電焼結においては、例えば、非導電性の酸化物セラミックス、及び熱衝撃性の悪い緻密化したセラミックスについては、成形用の型材料としての利用は、あまり検討されてこなかったのが実情である。
【0005】
【特許文献1】
特開2001−220247号公報
【特許文献2】
特開平9―53103号公報
【特許文献3】
特開2000−239709号公報
【特許文献4】
特開平7−330446号公報
【特許文献5】
特開2001−220247号公報
【特許文献6】
特開2001−226703号公報
【特許文献7】
特開2001−253779号公報
【非特許文献1】
鴇田正雄 粉体工学会誌、30(1993)、790
【非特許文献2】
柳沢平、畑山東明、松木一弘:まてりあ(金属学会会報)、33(1994)、1489
【非特許文献3】
小林慶三:科学と工業、74(5)、221(2000)
【0006】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決するために鋭意研究した結果、通電焼結において、導電性のあるセラミックスに酸化ジルコニウムを含有させることによって、電気の流れに対応した酸化ジルコニウム中の酸素の移動現象があることを発見すると共に、この酸素が型から抜け出す際に成形体との間に間隙を生成することを見出し、本発明を完成するに至った。
すなわち、本発明は、通電焼結において、型材料の導電性セラミックス中に酸化ジルコニウムを含有させることによって、電気の流れに応じた酸化ジルコニウム中の酸素の移動を起こすことで、成形体と型との離型性を向上させた高精度の形状付与を可能とする型材料、それを用いた成形体の作製方法、及び成形部材を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)被成形材料を通電をしながら焼結して成形体を作製する際に使用する離型性に優れた型材料であって、成形体と接する部分に酸化ジルコニウムを含有する導電性セラミックスを用いたことを特徴とする高離型性型材料。
(2)直流電流によって焼結を行う際に使用する型材料である、前記(1)記載の型材料。
(3)前記(1)又は(2)記載の型材料を使用して成形部材を作製する方法であって、被成形材料を通電をしながら焼結して成形体を作製する際に、型材料として、成形体と接する部分に酸化ジルコニウムを含有する導電性セラミックスを用い、電極間に通電することにより酸化ジルコニウムの酸素を型内部から型の表面に移動させて型と成形体の間にガスを発生させ、型から発生する上記ガスの圧力を利用することで成形体を離型させることを特徴とする成形部材の作製方法。
(4)上記導電性セラミックスと電極の間に該セラミックスとは電気抵抗の異なる材料を用いる、前記(3)記載の方法。
(5)直流電流によって焼結を行う、前記(3)記載の方法。
(6)成形体と接する一部に酸化ジルコニウムを含有する導電性セラミックスを用いる、前記(3)記載の方法。
(7)被成形材料と他の物質を型に入れ、被成形材料を成形体とすると共に、型から発生するガスの圧力を利用して成形体を他の物質の上に接合して複合化する、前記(3)記載の方法。
(8)前記(3)から(7)のいずれかに記載の方法により作製した成形部材であって、型の表面微細形状が高精度に転写されたことを特徴とする成形部材。
【0008】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明は、導電性セラミックスに酸化ジルコニウムを含有させて、通電時の電気の流れにしたがう酸化ジルコニウムの酸素の移動を利用し、成形体と型との密着性を防止して、成形体と型との離型性を向上させ、それにより、高精度の成形体を作製することを特徴とするものである。
本発明に用いる導電性セラミックスとしては、一般に市販されている導電性セラミックス(一般的に黒セラと呼ばれるセラミックス)を利用することができる。これらとして、好適には、例えば、炭化ケイ素、炭化チタン、炭化タングステンなどが例示される。導電性粒子には、例えば、炭化物、窒化物、硼化物などが利用でき、また、金属粒子や金属繊維を用いることもできる。また、本発明で用いる成形体の材料としては、例えば、金属やセラミックスなどの難焼結材料が例示されるが、更に具体的には、チタンアルミナイド、チタンシリサイド、クロムシリサイド、サーメット合金などが例示される。しかし、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。
【0009】
本発明では、これらの導電性セラミックスに酸化ジルコニウムを混合して、少なくとも成形体と接する部分に酸化ジルコニウムを含有させることが必要である。この場合、型材料全体に酸化ジルコニウムを分散させるか、あるいは成形体と接する部分の一部又は全部に酸化ジルコニウムを分散させる。その分散方法は、特に限定されないが、例えば、導電性セラミックス粉末を混合する際に酸化ジルコニウム粉末を添加する方法、導電性セラミックス型の表面に酸化ジルコニウムを含有する導電性セラミックスを接合する方法等が例示される。成形体に接する部分に酸化ジルコニウムが混合されていれば、型の離れ性を著しく改善する顕著な効果を得ることができる。
【0010】
通電焼結には、直流あるいは交流の電流を利用することができる。本発明では、電気の流れによって酸化ジルコニウムの酸素が動くため、直流の方が効果が大きい。しかし、いずれの電流においても、型表面から酸化ジルコニウムに含まれる酸素が遊離するため、それにより、成形体との間にギャップが生じて成形体を容易に型から取り外すことができる。また、成形体の加熱については、型自体が有する電気抵抗によって成形体を抵抗加熱できるため、電流の種類によらず加熱することができる。
【0011】
電極は、水冷されているため、温度が低くなっているが、成形体と接する部分には導電性のセラミックスを用い、該導電性セラミックスと電極の間に、電気抵抗、耐熱衝撃性、熱伝導率などの物性の異なる物質を挿入することによって、焼結体の冷却速度などを制御して結晶粒を制御することができる。これらの物性の異なる物質としては、好適には、例えば、サーメット合金、鋳鉄、炭素粒子分散複合金属などが使用されるが、これまでに、通電焼結の型に利用されている黒鉛や超硬合金なども利用することができる。物性の異なる物質を型と電極の間に挿入しても電気が流れれば、本発明の効果は変わらない。また、本発明では、成形体と接する一部に酸化ジルコニウムを含有する導電性セラミックスを用いることができるが、これにより、大きな温度差が生じても通電経路を壊すことなく、成形体を作製することができる。
【0012】
通電焼結では、一般に、加圧しながら通電による加熱で成形を行うが、これまでの導電性セラミックス型では、型から成形体を取り外す際に割れや剥離が生じ、加工精度や寸法には限界があった。しかし、酸化ジルコニウムの通電による酸素移動を利用することで、型と成形体との離れ性がよくなり、加工精度を飛躍的に高くすることができる。導電性セラミックスは、酸化ジルコニウムを含有しても硬度に優れるため、型の表面形状を高精度に成形体の表面に転写することができ、このため、微細形状の加工を施すことが可能となる。
【0013】
通電焼結に用いる雰囲気は、特に指定しないが、成形体が金属材料や金属基の複合材料の場合には、真空雰囲気を利用し、また、成形体がセラミックスの場合には、真空、酸素、窒素などの雰囲気を利用することができる。また、通電焼結時に加圧を行っても問題はなく、加圧は、成形体の表面精度を向上させるには有効な手段である。
【0014】
導電性セラミックスは、広く利用されており、その強度を改善する試みとして、酸化ジルコニウムを添加する方法が実用化されているが、本発明では、酸化ジルコニウムを酸素の移動源としてとらえており、酸化ジルコニウムは、型の強化には寄与していない。そのため、酸化ジルコニウムは、本来、白色であるが、本発明では、酸素の移動によって、酸化ジルコニウムが灰色又は黒色へ変化している。
【0015】
通電にしたがって、型内部から型の表面に移動した酸素は、成形体との間にガスとして放出される。そのため、型と成形体の間にはわずかなギャップが発生し、成形体を容易に型から取り出すことができる。成形体と型とのギャップは、生成するガスの量に左右されるが、数ミクロン以下であると考えられる。型から発生するガスは成形体を押すため、この機構を利用して、成形体を他の物質の上に接合することができる。これらの例として、例えば、ステンレス材の表面にチタンを接合する方法、チタン表面にTiC−Ni(サーメット合金)を接合する方法などが例示されるが、これらに制限されるものではない。また、接合時にも型からの分離は容易であり、これらの接合体を型から簡単に取り出すことができる。
【0016】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
チタン粉末(高純度化学製)5gを、外径30mm、内径15mm、高さ30mmの黒鉛製ダイに入れ、15mmφ×5mmの、TiC粉末、SiC粉末、及びNi粉末に20質量%の酸化ジルコニウムを添加した導電性セラミックス焼結体を、上下のパンチとして、成形体と接触する部分に使用し、電極との間には15mmφ×20mmの黒鉛を用いて通電焼結を行った。通電にはパルス状の直流電流を用い、黒鉛製ダイの温度が800℃になるようにして焼結を行った。焼結時には、30MPaの加圧を行い、焼結雰囲気は20Pa程度の真空とした。
【0017】
導電性セラミックスをパンチに用いたことにより、黒鉛型のみの成形に比べて80%以下の出力で目的の温度まで加熱することができた。また、目的の温度に到達する時間も、同じ電流値では70%以下の時間となった。
導電性セラミックス製のパンチの表面には、鏡面研磨を施したが、得られた成形体の表面には、わずかに酸化に伴う変色が認められた。成形体は、容易にパンチから取り外すことができ、その表面は、鏡面研磨程度の面粗さになった。また、導電性セラミックスは、割れが発生せず、繰り返して使用することができた。また、成形体は、理論密度の98%以上の密度を有していた。
【0018】
実施例2
Ti−36質量%Al粉末(メカニカルアロイング合成粉末)5gを、外径30mm、内径10mm、高さ30mmの黒鉛製ダイに入れ、10mmφ×15mmの黒鉛製パンチの、成形体と接する部分の表面に、炭化チタンと酸化ジルコニウムをエチルアルコールでスラリー化して塗布したものを用いて、通電焼結を行った。塗布膜は1.5mm程度であった。通電にはパルス状の直流電流を用い、黒鉛製ダイの温度が800℃になるように制御して焼結を行った。焼結時には、40MPaの加圧を行った。焼結雰囲気は20Pa程度の真空とした。
【0019】
成形体の表面には、酸化ジルコニウムと炭化チタンを塗布した面と接していた部分では、やや変色が認められたが、パンチと成形体の分離は容易であった。塗布膜は、はじめ灰色であったが、焼結後は黒色に変化していた。成形体は、理論密度の95%以上の密度を有していた。
【0020】
実施例3
外径30mm、内径15mm、高さ30mmの黒鉛製ダイに、15mm×1mmのステンレス板をいれた後、チタン粉末( 高純度化学製)5gを入れ、正極側に、15mmφ×2mmの黒色の酸化ジルコニウム焼結体を設置した。電極との間には15mmφ×20mmの黒鉛を用い、これをパンチとして、通電焼結を行った。黒色の酸化ジルコニウムは、市販されている酸化イットリウムで部分安定化した酸化ジルコニウムの粉末を、10Pa程度の真空中で黒鉛型・パンチを用いた通電焼結によって作製することができ、その成形体は、図1のX線回折パターンを示している。この黒色の酸化ジルコニウムは、室温においてもわずかに導電性があり、通電焼結を行うことができる。通電には直流電流を用い、黒鉛製ダイの温度が800℃になるようにして焼結を行った。焼結時には、40MPaの加圧を行った。また、焼結の雰囲気は、20Pa程度の真空とした。
【0021】
得られた成形体は、ステンレス表面にチタンが接合したものであった。ステンレスは、上記成形温度では溶解しないため、負極側の黒鉛パンチとは容易に分離することができた。また、正極側は、酸化ジルコニウムから酸素が遊離するため、チタンと黒鉛あるいは酸化ジルコニウムとの溶着は認められなかった。正極側の酸化ジルコニウム内部における酸素の含有量を測定したところ、図2のような分布となっており、電気の流れにしたがった酸素の移動が確認できた。チタンは、容易に型から取り出すことができ、その成形体の密度は95%以上になった。
【0022】
【発明の効果】
以上詳述したように、本発明は、通電焼結する際に使用する型材料、それを用いた成形部材の作製方法、及び成形部材に係るものであり、本発明により、1)通電焼結における型に、酸化ジルコニウムを含有する導電性材料を用いることによって、金属やセラミックスなどの難焼結材料を容易に固化成形することができる、2)特に、通電時に、酸化ジルコニウムから酸素が遊離して電気の流れにしたがって移動する現象を利用することによって、型に離型材を塗布することなく容易に型から成形体を分離、回収することができる、3)得られた成形体の表面は、わずかに酸化されるが、その結果として、表面の硬度を向上させることができる、4)離型材を用いないため、高精度の成形体を作製することができる、5)本発明で利用する酸化ジルコニウムを含有する導電性セラミックス型は、現在、通電焼結で一般的に用いられている黒鉛型より、電気抵抗が高く、小さなエネルギーで大きな加熱を短時間で実施することができ、省エネルギーのプロセスとして、今後の工業的な利用を拡大することができる、6)マイクロマシンなどの高精度で微細な部材を作製する際には、本発明の技術は、型との分離を容易にするための方法として有用である、という格別の効果が奏される。
【図面の簡単な説明】
【図1】黒色酸化ジルコニウムのX線回折パターンを示す。
【図2】酸化ジルコニウム中の酸素量を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mold material excellent in releasability that enables to produce a high-precision molded member in electric current sintering, and a molded member produced using the same.More specifically, the present invention relates to zirconium oxide. Using the conductive ceramic material contained in the mold material, the transfer of oxygen of zirconium oxide from the inside of the mold to the surface of the mold causes high-precision shape formation with improved mold releasability during electrical sintering. The present invention relates to a mold material that can be used, a method for manufacturing a molded member using the same, and a molded member.
Since the compact produced by the electric sintering according to the present invention has a higher processing accuracy than the conventional electric sinter, and has excellent releasability from a mold, the method of the present invention employs, for example, near net shape molding. It is useful as a method for molding difficult-to-process materials such as intermetallic compounds, high-hardness materials that are difficult to finish, and minute members.
[0002]
[Prior art]
BACKGROUND ART Conventionally, graphite has been generally used as a mold material in electric current sintering because it has conductivity, has excellent strength at high temperatures, and has excellent workability. In addition, when conducting electric sintering using a large pressure, a mold material made of cemented carbide is used for low-temperature molding, and high-strength using conductive ceramics such as SiC for high-temperature molding. (Made of black ceramic) has been used.
[0003]
In the case of electric sintering, the electrode portion is water-cooled, and a large temperature difference occurs between the electrode and the molding die during energization. For example, current sintering of titanium powder requires heating at 800 ° C. or more, and a temperature difference of 500 ° C. or more occurs between the electrode and the mold. Therefore, it is necessary to select a material that is not easily cracked by a thermal shock (stress generated by a temperature difference) as the mold material, and there is naturally a limitation on available mold materials. For this purpose, for example, graphite, cemented carbide, and the like have been used as mold materials for electric current sintering (for example, see Patent Documents 1-2 and Non-Patent Documents 1-2).
[0004]
However, the graphite mold has a problem that it easily reacts with the metal, and it is difficult to produce a highly accurate molded body. In addition, there is a possibility that the cemented carbide mold may be deformed (buckled) at a temperature of 600 ° C. or higher, and it is difficult to obtain a highly accurate molded body. Therefore, some prior arts of a mold in spark sintering have been proposed (for example, see Patent Documents 3 to 7). However, in electric current sintering, for example, non-conductive oxide ceramics, In fact, the use of densified ceramics having poor thermal shock properties as mold materials for molding has not been studied much.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-220247 [Patent Document 2]
JP-A-9-53103 [Patent Document 3]
JP 2000-239709 A [Patent Document 4]
JP-A-7-330446 [Patent Document 5]
JP 2001-220247 A [Patent Document 6]
JP 2001-226703 A [Patent Document 7]
JP 2001-253779 A [Non-Patent Document 1]
Masao Tokita Journal of the Society of Powder Technology, 30 (1993), 790
[Non-patent document 2]
H. Yanagisawa, H. Akiyama, and K. Matsuki: Materia (Journal of the Japan Institute of Metals), 33 (1994), 1489.
[Non-Patent Document 3]
Keizo Kobayashi: Science and Industry, 74 (5), 221 (2000)
[0006]
[Problems to be solved by the invention]
Under these circumstances, the present inventors have conducted intensive studies in view of the above-mentioned prior art in order to drastically solve the various problems in the above-mentioned prior art. The inclusion of zirconium oxide in the zirconium oxide and the discovery that there is a transfer phenomenon of oxygen in the zirconium oxide corresponding to the flow of electricity, and the formation of a gap between the molded body and the oxygen when it escapes from the mold. And completed the present invention.
That is, in the present invention, in the current-carrying sintering, by causing zirconium oxide to be contained in the conductive ceramic of the mold material, the movement of oxygen in the zirconium oxide in accordance with the flow of electricity is caused, so that the molded body and the mold are formed. It is an object of the present invention to provide a mold material capable of giving a high-precision shape with improved mold releasability, a method for producing a molded body using the same, and a molded member.
[0007]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems includes the following technical means.
(1) A mold material excellent in releasability used when producing a molded body by sintering a molding material while energizing, and a conductive ceramic containing zirconium oxide in a portion in contact with the molded body High mold release type material characterized by using.
(2) The mold material according to the above (1), which is a mold material used when sintering by direct current.
(3) A method for producing a molded member using the mold material according to the above (1) or (2), wherein the molded material is sintered while being energized to produce a molded body. As a material, a conductive ceramic containing zirconium oxide is used in the part in contact with the molded body, and electricity is passed between the electrodes to move oxygen of zirconium oxide from the inside of the mold to the surface of the mold, and a gas flows between the mold and the molded body. , And releasing the molded body by utilizing the pressure of the gas generated from the mold.
(4) The method according to (3), wherein a material having a different electric resistance from the ceramic is used between the conductive ceramic and the electrode.
(5) The method according to (3), wherein the sintering is performed by a direct current.
(6) The method according to the above (3), wherein a conductive ceramic containing zirconium oxide in a part in contact with the molded body is used.
(7) A material to be molded and another substance are put into a mold, and the material to be molded is formed into a molded body, and the molded body is joined to another substance by using the pressure of gas generated from the mold to form a composite. The method according to (3) above.
(8) A molded member produced by the method according to any one of (3) to (7), wherein a fine surface shape of a mold is transferred with high accuracy.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
The present invention provides a conductive ceramic containing zirconium oxide, utilizing the transfer of oxygen of zirconium oxide in accordance with the flow of electricity during energization, preventing adhesion between the molded body and the mold, and forming the molded body and the mold. And a mold with high precision.
As the conductive ceramics used in the present invention, commercially available conductive ceramics (ceramics generally called black ceramics) can be used. Preferable examples thereof include, for example, silicon carbide, titanium carbide, and tungsten carbide. As the conductive particles, for example, carbide, nitride, boride, and the like can be used, and metal particles and metal fibers can also be used. Examples of the material of the molded body used in the present invention include, for example, hardly sinterable materials such as metals and ceramics, and more specifically, titanium aluminide, titanium silicide, chromium silicide, and cermet alloy. Is done. However, the present invention is not limited to these, and the same can be used as long as it has the same effect.
[0009]
In the present invention, it is necessary to mix zirconium oxide with these conductive ceramics and to include zirconium oxide at least in a portion in contact with the compact. In this case, zirconium oxide is dispersed in the entire mold material, or zirconium oxide is dispersed in part or all of the portion in contact with the molded body. The dispersion method is not particularly limited, for example, a method of adding zirconium oxide powder when mixing the conductive ceramic powder, a method of joining a conductive ceramic containing zirconium oxide to the surface of the conductive ceramic mold, and the like. Is exemplified. If zirconium oxide is mixed in the portion in contact with the compact, a remarkable effect of remarkably improving the mold releasability can be obtained.
[0010]
DC or AC current can be used for the electric sintering. In the present invention, direct current is more effective because oxygen of zirconium oxide is moved by the flow of electricity. However, the oxygen contained in the zirconium oxide is released from the surface of the mold at any of the currents, so that a gap is formed between the molded body and the molded body, so that the molded body can be easily removed from the mold. Further, regarding the heating of the molded body, the molded body can be resistance-heated by the electric resistance of the mold itself.
[0011]
The temperature of the electrode is low because it is water-cooled.However, conductive ceramics are used for the part in contact with the molded body, and electrical resistance, thermal shock resistance, and heat conduction are applied between the conductive ceramic and the electrode. By inserting substances having different physical properties such as the rate, the crystal grain can be controlled by controlling the cooling rate of the sintered body. As these substances having different physical properties, for example, cermet alloy, cast iron, carbon particle-dispersed composite metal and the like are preferably used. Alloys and the like can also be used. Even if a substance having different physical properties is inserted between the mold and the electrode, the effect of the present invention does not change as long as electricity flows. Further, in the present invention, a conductive ceramic containing zirconium oxide can be used in a part in contact with the molded body, but this allows the molded body to be produced without breaking the current path even if a large temperature difference occurs. be able to.
[0012]
In electric sintering, molding is generally performed by heating while applying pressure while applying pressure.However, with conventional conductive ceramic molds, cracking or peeling occurs when the molded body is removed from the mold, and processing accuracy and dimensions are limited. there were. However, by utilizing the oxygen transfer due to energization of zirconium oxide, the separation between the mold and the molded body is improved, and the processing accuracy can be dramatically increased. Since conductive ceramics have excellent hardness even if they contain zirconium oxide, the surface shape of the mold can be transferred to the surface of the molded body with high accuracy, and therefore, it is possible to perform processing of fine shapes. .
[0013]
The atmosphere used for the electrical sintering is not particularly specified, but when the molded body is a metal material or a metal-based composite material, a vacuum atmosphere is used, and when the molded body is a ceramic, vacuum, oxygen, An atmosphere such as nitrogen can be used. There is no problem even if pressure is applied during electric sintering, and pressurization is an effective means for improving the surface accuracy of the compact.
[0014]
Conductive ceramics are widely used, and a method of adding zirconium oxide has been put to practical use in an attempt to improve the strength, but in the present invention, zirconium oxide is regarded as a transfer source of oxygen and oxidized. Zirconium does not contribute to mold strengthening. Therefore, zirconium oxide is originally white, but in the present invention, zirconium oxide changes to gray or black due to the movement of oxygen.
[0015]
Oxygen that has moved from the inside of the mold to the surface of the mold according to energization is released as a gas between the mold and the molded body. Therefore, a slight gap occurs between the mold and the molded body, and the molded body can be easily taken out of the mold. The gap between the compact and the mold depends on the amount of gas generated, but is considered to be several microns or less. Since the gas generated from the mold pushes the molded body, this mechanism can be used to join the molded body onto another substance. Examples of these include, but are not limited to, a method of bonding titanium to the surface of a stainless steel material, a method of bonding TiC-Ni (cermet alloy) to the surface of titanium, and the like. Also, at the time of joining, separation from the mold is easy, and these joined bodies can be easily removed from the mold.
[0016]
【Example】
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
Example 1
5 g of titanium powder (manufactured by Kojundo Chemical) is placed in a graphite die having an outer diameter of 30 mm, an inner diameter of 15 mm, and a height of 30 mm, and zirconium oxide of 20% by mass is added to a 15 mmφ × 5 mm TiC powder, a SiC powder, and a Ni powder. The added conductive ceramic sintered body was used as upper and lower punches in a portion that comes in contact with the molded body, and between the electrodes was electrically sintered using graphite of 15 mmφ × 20 mm. Sintering was performed by using a pulsed direct current for energization so that the temperature of the graphite die was 800 ° C. During sintering, a pressure of 30 MPa was applied, and the sintering atmosphere was set to a vacuum of about 20 Pa.
[0017]
By using the conductive ceramics for the punch, it was possible to heat to the target temperature with an output of 80% or less as compared with the molding of the graphite mold alone. Also, the time required to reach the target temperature was 70% or less at the same current value.
The surface of the conductive ceramic punch was mirror-polished, but the surface of the obtained molded product was slightly discolored due to oxidation. The molded body could be easily removed from the punch, and the surface had a surface roughness of the degree of mirror polishing. In addition, the conductive ceramic did not crack and could be used repeatedly. The molded article had a density of 98% or more of the theoretical density.
[0018]
Example 2
5 g of Ti-36% by mass Al powder (mechanical alloying synthetic powder) is placed in a graphite die having an outer diameter of 30 mm, an inner diameter of 10 mm, and a height of 30 mm, and the surface of a 10 mmφ × 15 mm graphite punch in contact with the molded body. Then, electric current sintering was performed using titanium carbide and zirconium oxide slurried with ethyl alcohol and applied. The coating film was about 1.5 mm. Sintering was performed by using a pulsed direct current for energization and controlling the temperature of the graphite die to 800 ° C. During sintering, a pressure of 40 MPa was applied. The sintering atmosphere was a vacuum of about 20 Pa.
[0019]
Discoloration was slightly observed on the surface of the molded body in contact with the surface coated with zirconium oxide and titanium carbide, but the punch was easily separated from the molded body. The coating film was initially gray, but turned black after sintering. The compact had a density of 95% or more of the theoretical density.
[0020]
Example 3
A 15 mm x 1 mm stainless steel plate is placed in a graphite die with an outer diameter of 30 mm, an inner diameter of 15 mm, and a height of 30 mm, and 5 g of titanium powder (manufactured by Kojundo Chemical) is placed. A zirconium sintered body was installed. 15 mmφ × 20 mm graphite was used between the electrodes, and this was used as a punch to perform electric sintering. Black zirconium oxide can be produced by commercially available zirconium oxide powder partially stabilized with yttrium oxide by current sintering using a graphite type punch in a vacuum of about 10 Pa. 2 shows the X-ray diffraction pattern of FIG. This black zirconium oxide is slightly conductive even at room temperature, and can be electrically sintered. Sintering was performed by using a direct current for energization so that the temperature of the graphite die was 800 ° C. During sintering, a pressure of 40 MPa was applied. The sintering atmosphere was a vacuum of about 20 Pa.
[0021]
The obtained molded body had titanium bonded to the stainless steel surface. Since stainless steel did not melt at the above molding temperature, it could be easily separated from the graphite punch on the negative electrode side. On the positive electrode side, since oxygen was released from zirconium oxide, no welding of titanium and graphite or zirconium oxide was observed. When the oxygen content in the inside of the zirconium oxide on the positive electrode side was measured, the distribution was as shown in FIG. 2, and the movement of oxygen along the flow of electricity was confirmed. Titanium was easily removed from the mold, and the density of the compact became 95% or more.
[0022]
【The invention's effect】
As described in detail above, the present invention relates to a mold material used for conducting electric sintering, a method for producing a molded member using the same, and a molded member. By using a conductive material containing zirconium oxide for the mold in the above, hardly sinterable materials such as metals and ceramics can be easily solidified and molded. 2) In particular, oxygen is released from zirconium oxide when electricity is supplied. By using the phenomenon of moving according to the flow of electricity, the molded body can be easily separated and collected from the mold without applying a mold release material to the mold. 3) The surface of the obtained molded body is Although it is slightly oxidized, as a result, the hardness of the surface can be improved. 4) Since a release material is not used, a high-precision molded body can be produced. 5) The acid used in the present invention. The conductive ceramics type containing zirconium has higher electric resistance than the graphite type generally used in current-phase sintering, and can carry out large heating in a short time with small energy. 6) When fabricating high-precision and fine members such as micromachines, the technology of the present invention is a method for facilitating separation from a mold. This is a special effect that is useful.
[Brief description of the drawings]
FIG. 1 shows an X-ray diffraction pattern of black zirconium oxide.
FIG. 2 shows the amount of oxygen in zirconium oxide.

Claims (8)

被成形材料を通電をしながら焼結して成形体を作製する際に使用する離型性に優れた型材料であって、成形体と接する部分に酸化ジルコニウムを含有する導電性セラミックスを用いたことを特徴とする高離型性型材料。A mold material with excellent mold release properties used when producing a molded body by sintering the molding material while energizing, and using conductive ceramics containing zirconium oxide in the part in contact with the molded body A high mold release material characterized by the following. 直流電流によって焼結を行う際に使用する型材料である、請求項1記載の型材料。The mold material according to claim 1, which is a mold material used when performing sintering by direct current. 請求項1又は2記載の型材料を使用して成形部材を作製する方法であって、被成形材料を通電をしながら焼結して成形体を作製する際に、型材料として、成形体と接する部分に酸化ジルコニウムを含有する導電性セラミックスを用い、電極間に通電することにより酸化ジルコニウムの酸素を型内部から型の表面に移動させて型と成形体の間にガスを発生させ、型から発生する上記ガスの圧力を利用することで成形体を離型させることを特徴とする成形部材の作製方法。A method for producing a molded member using the mold material according to claim 1 or 2, wherein the molded material is sintered while being energized to produce a molded body. A conductive ceramic containing zirconium oxide is used in the contacting part, and oxygen is transferred from the inside of the mold to the surface of the mold by applying a current between the electrodes to generate gas between the mold and the molded body, and the gas is generated from the mold. A method for producing a molded member, comprising releasing a molded body by utilizing the pressure of the generated gas. 上記導電性セラミックスと電極の間に該セラミックスとは電気抵抗の異なる材料を用いる、請求項3記載の方法。4. The method according to claim 3, wherein a material having a different electric resistance from the ceramic is used between the conductive ceramic and the electrode. 直流電流によって焼結を行う、請求項3記載の方法。4. The method according to claim 3, wherein the sintering is performed by a direct current. 成形体と接する一部に酸化ジルコニウムを含有する導電性セラミックスを用いる、請求項3記載の方法。The method according to claim 3, wherein a conductive ceramic containing zirconium oxide is used in a part in contact with the molded body. 被成形材料と他の物質を型に入れ、被成形材料を成形体とすると共に、型から発生するガスの圧力を利用して成形体を他の物質の上に接合して複合化する、請求項3記載の方法。The molding material and another substance are put into a mold, and the molding material is formed into a molded body, and the molded body is joined to another substance by using the pressure of gas generated from the mold to form a composite. Item 3. The method according to Item 3. 請求項3から7のいずれかに記載の方法により作製した成形部材であって、型の表面微細形状が高精度に転写されたことを特徴とする成形部材。A molded member produced by the method according to any one of claims 3 to 7, wherein a surface fine shape of a mold is transferred with high accuracy.
JP2002343472A 2002-11-27 2002-11-27 High mold for mold release excellent in mold release property in electric current sintering and method for producing molded member using the same Expired - Lifetime JP4238310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343472A JP4238310B2 (en) 2002-11-27 2002-11-27 High mold for mold release excellent in mold release property in electric current sintering and method for producing molded member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343472A JP4238310B2 (en) 2002-11-27 2002-11-27 High mold for mold release excellent in mold release property in electric current sintering and method for producing molded member using the same

Publications (2)

Publication Number Publication Date
JP2004176125A true JP2004176125A (en) 2004-06-24
JP4238310B2 JP4238310B2 (en) 2009-03-18

Family

ID=32705237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343472A Expired - Lifetime JP4238310B2 (en) 2002-11-27 2002-11-27 High mold for mold release excellent in mold release property in electric current sintering and method for producing molded member using the same

Country Status (1)

Country Link
JP (1) JP4238310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253201A (en) * 2006-03-24 2007-10-04 National Institute Of Advanced Industrial & Technology Horizontal low load joining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253201A (en) * 2006-03-24 2007-10-04 National Institute Of Advanced Industrial & Technology Horizontal low load joining device

Also Published As

Publication number Publication date
JP4238310B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
US6371746B1 (en) Method of electronic sintering method and mold for use in the method
WO2005073418A1 (en) Tungsten based sintered compact and method for production thereof
JP4137886B2 (en) Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
CN112207281B (en) Layered gradient copper-based composite material and preparation method thereof
Mukasyan et al. Combustion joining of refractory materials
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
JP4238310B2 (en) High mold for mold release excellent in mold release property in electric current sintering and method for producing molded member using the same
JP2008138258A (en) Method for producing hard material using aluminum liquid, and molded body thereof
JP2015014036A (en) Electrode for resistance welding
JP5275292B2 (en) Method for producing high-density solidified molded body
JP4968636B2 (en) Method for producing high-density solidified article with controlled continuous phase and dispersed phase
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
Chanthapan et al. Industrial Scale Field Assisted Sintering an Emerging Disruptive Manufacturing Technology: Applications.
Yang et al. Fabrication and properties of SiCp/Al composites by pulsed electric current sintering
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
JP5760197B2 (en) Hard material with embedded heating element and its manufacturing method
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH0949005A (en) Production of functionally gradient material
JP2002047581A (en) Mo MATERIAL PROVIDED WITH WELDING PREVENTIVE LAYER AND ITS PRODUCTION METHOD
JP2007217723A (en) Method for manufacturing pressure-sintered target material
JP3396800B2 (en) Composite sintered alloy for non-ferrous metal melt and method for producing the same
JP3188754B2 (en) Method for producing defect-free liquid phase sintered alloy
JP2003055729A (en) Sintered alloy material with excellent corrosion resistance and wear resistance, its manufacturing method, and member for machine structure using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4238310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term