JP2015014036A - Electrode for resistance welding - Google Patents

Electrode for resistance welding Download PDF

Info

Publication number
JP2015014036A
JP2015014036A JP2013142198A JP2013142198A JP2015014036A JP 2015014036 A JP2015014036 A JP 2015014036A JP 2013142198 A JP2013142198 A JP 2013142198A JP 2013142198 A JP2013142198 A JP 2013142198A JP 2015014036 A JP2015014036 A JP 2015014036A
Authority
JP
Japan
Prior art keywords
electrode
welding
resistance welding
resistance
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013142198A
Other languages
Japanese (ja)
Other versions
JP2015014036A5 (en
JP6242616B2 (en
Inventor
茂樹 毛利
Shigeki Mori
茂樹 毛利
三島 彰
Akira Mishima
彰 三島
修司 上野
Shuji Ueno
修司 上野
信悟 向江
Shingo Koe
信悟 向江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2013142198A priority Critical patent/JP6242616B2/en
Publication of JP2015014036A publication Critical patent/JP2015014036A/en
Publication of JP2015014036A5 publication Critical patent/JP2015014036A5/ja
Application granted granted Critical
Publication of JP6242616B2 publication Critical patent/JP6242616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for resistance welding which allows welding with the heat generated by itself through electrification even when a to-be-welded material is a hardly weldable material and provides an electrode for resistance welding less reactive with the to-be-welded material.SOLUTION: An electrode for resistance welding uses one or more of metal carbides, nitrides and borides of metals of Groups 4a to 6a, etc. in surfaces of the electrode coming in contact with to-be-welded materials. The materials have relatively high electric resistivity, have a high resistance calorific value when used as an electrode and make hard-to-weld materials easily weldable. Even when the to-be-welded metal is a material easy to deposit on an electrode, e.g. aluminum or magnesium, the electrode causes less deposition owing to low reactivity.

Description

本発明は、一対の電極間に挟まれた2以上の部材に通電することにより、2以上の部材の材料自体や界面の高い電気抵抗を利用して溶接を行なう「抵抗溶接」に用いる抵抗溶接用電極に関する。 The present invention is a resistance welding used for "resistance welding" in which welding is performed by using the electrical resistance of the material itself or the interface of two or more members by energizing two or more members sandwiched between a pair of electrodes. The present invention relates to an electrode.

抵抗溶接用の電極(以下、単に「電極」とも表現する)としては、現在までに様々な材質が提案されている。   Various materials have been proposed to date as electrodes for resistance welding (hereinafter also simply referred to as “electrodes”).

抵抗溶接用電極として最も用いられる機会が多いのは、クロム銅、アルミナ分散銅、ベリリウム銅などの銅合金である。銅合金は、電気抵抗率が極めて低く、また熱伝導率が高く温度の上昇および下降が速いために生産性が高くでき、例えば鉄材やステンレス材などの接合される2以上の被溶接材(以下「ワーク」とも表現する)との反応が大きくはなく、抵抗溶接用電極として広く用いられている。   Copper alloys such as chromium copper, alumina-dispersed copper, and beryllium copper are most frequently used as resistance welding electrodes. Copper alloys have extremely low electrical resistivity, high thermal conductivity, and high temperature rise and fall, so that productivity can be increased. For example, two or more welded materials (hereinafter referred to as iron materials, stainless steel materials, etc.) to be joined (hereinafter referred to as copper materials) (It is also expressed as “work”) and the reaction is not large, and it is widely used as an electrode for resistance welding.

しかしながら、被溶接材が鉄材やステンレス材ではなく、アルミニウム、マグネシウム、チタン、亜鉛や真鍮などを抵抗溶接すると、ワークと電極との反応が顕著になり、使用可能回数が極めて少なくなる。この際、ワークと電極との反応性生物によって電気抵抗率が変化して、接合品質にムラが生じる問題が生じる。アルミニウムのように、大気中の酸素を取り込んで表面に酸化膜を容易に作るような金属は、ワーク同士が溶着しにくいという問題点もある。   However, when the material to be welded is not iron or stainless steel but aluminum, magnesium, titanium, zinc, brass, or the like is resistance-welded, the reaction between the workpiece and the electrode becomes remarkable, and the number of usable times is extremely reduced. At this time, the electrical resistivity changes due to the reactive organism between the workpiece and the electrode, resulting in a problem of unevenness in bonding quality. A metal that takes in oxygen in the atmosphere and easily forms an oxide film on the surface, such as aluminum, has a problem that the workpieces are difficult to weld.

また、アルミニウム、マグネシウム、亜鉛などは、鉄材と比べて低融点なために、短時間で大電流を流して溶接する必要がある。電極はどのような材質でも、使用していくうちに表面にクラックが入るが、さらに被溶接材がアルミニウムなどの場合には、被溶接材と電極との反応が激しく、溶接後に電極とワークとが一体化して、電極がワークを持ち上げる「ピックアップ」と呼ばれる現象も発生する。この現象は、電極の表面状態が荒くなるほど起き易く、使用中に発生し始めるために、製造ラインでは連続稼動の大きな弊害となり望ましくない。   Moreover, since aluminum, magnesium, zinc and the like have a lower melting point than iron materials, it is necessary to weld them with a large current flowing in a short time. Any material of the electrode will crack on the surface as it is used, but when the material to be welded is aluminum, the reaction between the material to be welded and the electrode is severe, and the electrode and workpiece A phenomenon called “pickup” in which the electrodes are integrated and the electrode lifts the workpiece also occurs. This phenomenon is more likely to occur as the surface state of the electrode becomes rougher, and starts to occur during use.

これらの問題を解決するために、現在まで様々な提案がなされている。   In order to solve these problems, various proposals have been made so far.

銅材と並んで抵抗溶接用電極材料として用いられるのがW(タングステン)およびタングステンを基とする材料である。   Along with the copper material, a material based on W (tungsten) and tungsten is used as an electrode material for resistance welding.

タングステンは電気抵抗率が低い上に融点が高く、硬さや他の機械的物性地も有しているために、抵抗溶接用電極としての特性に優れており、多くの種類が用いられている。
Tungsten has a low melting point, a high melting point, hardness and other mechanical properties, and therefore has excellent properties as a resistance welding electrode, and many types are used.

特許文献1には、Cu又はCu合金からなる抵抗溶接用電極の溶接面に、Wを基材とする芯材を埋設した電極で、W中に2a族元素,4a族 元素,5a族元素,6a族元素,希土類元素の酸化物,窒化物,炭化物,ホウ化物から選ばれる融点が2400℃以上の微粒子が、0.5〜10体積%分散したスポット溶接用電極が開示されている。この構成とすることにより、大電流下で加圧を伴う条件でスポット溶接するような場合にあっても、めっき金属との溶着,合金化を抑え、亀裂の発生を防止することが可能であると記載されている。   Patent Document 1 discloses an electrode in which a core material based on W is embedded in the welding surface of an electrode for resistance welding made of Cu or Cu alloy. In W, a group 2a element, a group 4a element, a group 5a element, An electrode for spot welding in which 0.5 to 10% by volume of fine particles having a melting point of 2400 ° C. or more selected from Group 6a elements, rare earth element oxides, nitrides, carbides and borides is disclosed. By adopting this configuration, even when spot welding is performed under conditions involving pressurization under a large current, it is possible to suppress welding and alloying with the plated metal and to prevent the occurrence of cracks. It is described.

特許文献2には、横断面平均粒子径が50μm以上で結晶粒子が1.5以上のアスペクトを有するWまたはMo中に2a族、4a族、5a族、6a族元素などの酸化物、窒化物、炭化物およびホウ化物の微粒子が0.5〜10質量%分散したヒュージング溶接用電極が開示されている。この構成により、耐久性が高められたヒュージング電極が得られると記載されている。   Patent Document 2 discloses oxides and nitrides of elements such as 2a group, 4a group, 5a group, and 6a group in W or Mo having an aspect with an average particle diameter of 50 μm or more and crystal grains of 1.5 or more. An electrode for fusing welding in which 0.5 to 10 mass% of carbide and boride fine particles are dispersed is disclosed. It is described that this configuration provides a fusing electrode with improved durability.

特許文献3には、銅などの基材上にCo、Ni、W、Zrなどの母材金属中に酸化物、窒化物、炭化物などの粒子が分散した、代表的に1〜300μmの厚さを持つ被覆層を有する抵抗溶接用電極が開示されている。抵抗溶接用電極母材とワークの溶着が改善され、特に亜鉛メッキ鋼板のスポット溶接に適していると記載されている。   Patent Document 3 discloses a thickness of typically 1 to 300 μm in which particles such as oxide, nitride, and carbide are dispersed in a base metal such as Co, Ni, W, and Zr on a base material such as copper. A resistance welding electrode having a coating layer having the following is disclosed. It is described that the welding of the electrode base material for resistance welding and the workpiece is improved and is particularly suitable for spot welding of a galvanized steel sheet.

特許文献4には、基材部を銅系材料、先端部をセラミック粉末、側周面をZrB、TiB、WC、Moとし、合せて焼成することで一体化するスポット溶接電極が開示されている。この電極の使用により、亜鉛メッキ鋼板の溶接も鉄材と同様に、耐久性高く行なうことができると記載されている。 Patent Document 4 discloses a spot welding electrode in which a base material portion is made of a copper-based material, a tip portion is made of ceramic powder, and a side peripheral surface is made of ZrB 2 , TiB 2 , WC, and Mo, and they are integrated and fired. ing. It is described that, by using this electrode, welding of a galvanized steel sheet can be performed with high durability as with iron materials.

特許文献5には銅の抵抗溶接用電極上に中間層としてNi、Co、Cr、Moなどからなる層、更にその上にWなどの金属に酸化物、炭化物、窒化物などの粒子を分散した表面層を有する電極が開示されている。この電極構造とすることにより、溶着が抑えられ、電極は変形しにくく、価格も抑えられるとの記載がある。実施例には亜鉛メッキ鉄板をワークとした例が示されている。   Patent Document 5 discloses a layer made of Ni, Co, Cr, Mo or the like as an intermediate layer on a copper resistance welding electrode, and further particles of oxide, carbide, nitride or the like dispersed in a metal such as W on the electrode. An electrode having a surface layer is disclosed. There is a description that by using this electrode structure, welding is suppressed, the electrode is hardly deformed, and the price is also suppressed. In the embodiment, an example in which a galvanized iron plate is used as a workpiece is shown.

特許文献6には、銅または銅合金の基材上にTi、Zr、Hfなどの中間層、中間層状に周期律表4a、5a、6a族金属の炭化物、窒化物などからなる表面層を被覆した抵抗溶接用電極が開示されている。
In Patent Document 6, an intermediate layer of Ti, Zr, Hf or the like is coated on a copper or copper alloy substrate, and a surface layer made of a carbide, nitride, or the like of a periodic table 4a, 5a, or 6a group metal is formed in an intermediate layer. An electrode for resistance welding is disclosed.

銅材やタングステンを基材とした抵抗溶接用電極は以上のように多く提案されているが、以下に示す問題点を未だ有している。
(1)被覆層を設けていない抵抗溶接用電極は、ワークがアルミニウムや亜鉛などの反応しやすい材料を含む場合は、耐溶着性が十分ではない。そのために十分な寿命が得られておらず、ピックアップ現象の問題も解決されていない。また、電極の交換頻度が高く、溶接装置の稼働率が十分でない
(2)被覆層を設けた抵抗溶接用電極は、被覆層の亀裂や溶着が進展した時点で寿命となり、再研磨などの手法で再生ができない。よって、電極としては高価なものとなる
(3)銅はもちろんタングステンも電気抵抗率が非常に低い。銅の電気抵抗率は1.7×10−6(Ω・cm)、タングステンは同5.3×10−6(Ω・cm)程度である。この程度の電気抵抗率であれば、電極部分は殆ど発熱することなく、ワークの接合部分で殆どの発熱が生じる。その際、電極温度も上がるが、これはワークの熱が電極に伝わるためである。この際に、ワークの電気抵抗が低ければ 電極〜ワーク〜電極 間で発熱が十分起こらずに、溶接が十分にできない。できたとしても、一般的な条件より遙かに大きな電圧が必要となる。そのために、装置の交換を必要とされることもあり、容易に現在の使用中の装置への導入は容易ではない。
Many resistance welding electrodes based on copper or tungsten have been proposed as described above, but still have the following problems.
(1) The resistance welding electrode not provided with a coating layer does not have sufficient welding resistance when the workpiece contains a reactive material such as aluminum or zinc. Therefore, a sufficient life is not obtained and the problem of the pickup phenomenon is not solved. Also, the electrode replacement frequency is high and the operating rate of the welding apparatus is not sufficient. (2) A resistance welding electrode provided with a coating layer reaches the end of its life when cracking or welding of the coating layer progresses, and a method such as re-polishing Cannot play with. Therefore, it becomes expensive as an electrode. (3) Tungsten as well as copper have very low electrical resistivity. The electrical resistivity of copper is 1.7 × 10 −6 (Ω · cm), and tungsten is about 5.3 × 10 −6 (Ω · cm). With such an electrical resistivity, the electrode portion hardly generates heat, and most of the heat is generated at the workpiece joining portion. At this time, the electrode temperature also rises because the heat of the work is transferred to the electrode. At this time, if the electrical resistance of the workpiece is low, heat is not sufficiently generated between the electrode and the workpiece and the electrode, and welding cannot be performed sufficiently. Even if it is possible, a voltage much higher than general conditions is required. For this reason, it may be necessary to replace the apparatus, and it is not easy to introduce it into the apparatus currently in use.

また、抵抗溶接の種類としては、円形状の比較的狭い範囲のみを溶接するスポット溶接、重ね合わせたワークを連続的な線状に溶接するシーム溶接、あらかじめ被溶接材の一部に突起を形成してその部分に通電させ溶接を行なうプロジェクション溶接、突合せ抵抗溶接、ヒュージング溶接とも呼ばれる熱カシメ溶接などが挙げられる。これらの溶接方法は相違があるが、いずれの方法で行なう場合でも「適当な電気抵抗」「被溶接材との低い反応性」が求められる。
In addition, the types of resistance welding are spot welding that welds only a relatively narrow area of a circular shape, seam welding that welds stacked workpieces in a continuous line, and projections are formed in advance on part of the workpiece. Examples thereof include projection welding in which the portion is energized and welding is performed, butt resistance welding, thermal caulking welding also called fusing welding, and the like. Although these welding methods are different, "appropriate electrical resistance" and "low reactivity with the material to be welded" are required in any method.

特開2006−102775号公報JP 2006-102775 A 特開2008−073712号公報JP 2008-073712 A 特開平02−117780号公報Japanese Patent Laid-Open No. 02-117780 特開昭64−078683号公報Japanese Patent Application Laid-Open No. 64-078683 特開昭60−231597号公報JP-A-60-231597 特開昭62−089583号公報JP 62-089583 A

本発明は、以下に記載の課題を解決する。
(1)例えばワークがアルミニウムのような、従来の電極と溶着や反応しやすい場合でも、溶着や反応しにくい電極を得る
(2)再研磨などの手段により、電極寿命を被覆電極と比較して大幅に伸ばす
(3)電極自体を発熱させることにより、溶接に必要な温度を得ること
(4)従来のCuなどの電極を使用する場合と比較して、電極の耐摩耗性を向上し、電極寿命を延ばす。また、それに伴い溶接装置の稼働率を高める
The present invention solves the following problems.
(1) For example, even when the workpiece is easily welded or reacted with a conventional electrode such as aluminum, an electrode that is difficult to weld or react is obtained. (2) By means such as re-polishing, the electrode life is compared with the coated electrode. (3) The temperature necessary for welding is obtained by heating the electrode itself (4) Compared to the case of using a conventional electrode such as Cu, the wear resistance of the electrode is improved. Extend life. In addition, the operating rate of the welding equipment is increased accordingly.

従来の抵抗溶接用電極として用いられている金属材料よりも、通電による発熱が大きく(すなわち電気抵抗率が高く)、ワークとなる金属成分と反応しにくい材料を抵抗溶接用電極として用いることで解決する。   Solved by using as a resistance welding electrode a material that generates more heat when energized (ie, has a higher electrical resistivity) and is less likely to react with the metal component of the workpiece than conventional metal materials used as resistance welding electrodes To do.

この条件に合う材料として、本発明では周期律表の4a、5a、6a族金属(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W)の炭化物、窒化物、ホウ化物およびいずれかの固溶体のうち1種または2種以上からなるセラミックスを選択した。   As materials that meet this condition, in the present invention, carbides, nitrides, borides, and any of group 4a, 5a, and 6a metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) of the periodic table are used. Among these solid solutions, ceramics composed of one or more kinds were selected.

これらは電気抵抗率がタングステンに比べて高く、通電時に抵抗溶接用電極自体が発熱して、その熱をワークに伝導することによってワークを抵抗溶接に必要な温度まで加熱することが可能となる。   These have higher electrical resistivity than tungsten, and the resistance welding electrode itself generates heat when energized, and the heat can be conducted to the workpiece to heat the workpiece to a temperature required for resistance welding.

前記材料の電気抵抗率は単体で5×10−6〜1×10−3(Ω・cm)の範囲に入る。また、2種以上を混合する場合でも、混合物の値がこの範囲に入る。 The electrical resistivity of the material is in the range of 5 × 10 −6 to 1 × 10 −3 (Ω · cm) as a single unit. Even when two or more kinds are mixed, the value of the mixture falls within this range.

前記材料はセラミック質であり、金属成分、特に抵抗溶接のワークとされることが多いFe、Al、Ti、Ni、Cu、Zn、Mgと反応性が低い。反応性が低いので、溶接の際のワークとの溶着が起こりにくく、前述のピックアップのような生産性を落とす現象も発生しにくい。
The material is ceramic and has low reactivity with metal components, particularly Fe, Al, Ti, Ni, Cu, Zn, and Mg, which are often used as resistance welding workpieces. Since the reactivity is low, welding with the workpiece during welding is unlikely to occur, and the phenomenon of lowering the productivity as in the aforementioned pickup is unlikely to occur.

ワークとの反応のほかに気をつけるべき反応は、空気中に多く含まれる酸素、窒素、水等との反応である。前記材料は、これらの成分との反応が小さい。そのために、熱を帯びた状態でも変質が少なく、安定した電気抵抗および発熱量が得られる   In addition to the reaction with the workpiece, the reaction to be careful is the reaction with oxygen, nitrogen, water, etc. contained in the air. The material has a small reaction with these components. For this reason, there is little alteration even in a heated state, and stable electrical resistance and heat generation can be obtained.

また、例えば特許文献3に示された技術のように、金属製の電極上に耐溶着性の高い薄膜を形成する方法と異なり、研削等による再研磨が可能である。そのために、電極1ケあたりのコストが下がる。   Further, unlike the method of forming a thin film having high welding resistance on a metal electrode as in the technique disclosed in Patent Document 3, for example, re-polishing by grinding or the like is possible. This reduces the cost per electrode.

さらに、前記材料は硬さが高く、耐摩耗性が高い。そのために、ワークとの接触による摩耗量が少なく、電極寿命を延ばすことができる。   Furthermore, the material has high hardness and high wear resistance. Therefore, the amount of wear due to contact with the workpiece is small, and the life of the electrode can be extended.

周期律表の4a、5a、6a族金属(Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W)の炭化物、窒化物、ホウ化物およびいずれかの固溶体については、種類が多いためにその一例を下に挙げるが、いずれも金属との反応性が低く、電気抵抗率が前記範囲に入る点は共通している。   There are many types of carbides, nitrides, borides, and any solid solutions of Group 4a, 5a, 6a metals (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) in the periodic table. An example is given below, but both have low reactivity with metals and the electrical resistivity falls within the above range.

単体金属の窒化物 TiN、ZrN、HfN、NbN、TaN、CrN、CrN、MoN、MoN、WN、WN、Wなど
単体金属の炭化物 TiC、ZrC、HfC、VC、TaC,Cr、MoC、WC、WCなど
単体金属のホウ化物 TiB、ZrB、HfB、Cr、CrB、NbB、Nb、NbB、WB、WB、W、MoB、Mo、MoB、MoB、Moなど
複合窒化物 (Ti・Ta)N、(Ti・Mo)N、(Ti・W)Nなど
単体の炭窒化物 TiCN、ZrCNなど
複合炭窒化物 (Ti・Mo)CN、(Ti・W)CNなど

これらの窒化物、炭窒化物やホウ化物等は1種でもよいし、複数でもよい。固溶体でもよいし、混合物でも構わない。
以下説明のために、以上の金属窒化物、金属炭窒化物、金属ホウ化物などをまとめて「金属化合成分」と表現する。
Single metal nitrides TiN, ZrN, HfN, NbN, TaN, Cr 2 N, CrN, Mo 2 N, MoN, W 2 N, WN 2 , W 2 N 3 and other single metal carbides TiC, ZrC, HfC, VC Borides of simple metals such as TaC, Cr 3 C 2 , MoC, WC, W 2 C TiB 2 , ZrB 2 , HfB 2 , Cr 3 B 2 , CrB, NbB, Nb 3 B 4 , NbB 2 , W 2 B , WB, W 2 B 5 , Mo 2 B, Mo 3 B 2 , MoB, MoB 2 , Mo 2 B 5 and other composite nitrides (Ti · Ta) N, (Ti · Mo) N, (Ti · W) N Single carbonitrides, etc. Composite carbonitrides such as TiCN and ZrCN (Ti · Mo) CN, (Ti · W) CN, etc.

These nitrides, carbonitrides, borides and the like may be one kind or plural. It may be a solid solution or a mixture.
For the following explanation, the above metal nitride, metal carbonitride, metal boride and the like are collectively expressed as “metallized synthetic component”.

この金属化合成分を電極材として用いることにより、ワーク成分と溶着しにくく、安定した発熱を長期間にわたって得られる抵抗溶接用電極が得られる。金属化合成分は一様に硬さがタングステンよりも高いために、タングステン単体の抵抗溶接用電極と比較して硬さおよび耐摩耗性が高まる。
金属化合成分は、前述の通りワークや雰囲気中の酸素と反応しにくい。しかしながら、高温化で比表面積が著しく大きければ、それらと反応するようになる。そのために、電極中の開気孔は望ましくない。開気孔から進入した金属や酸素が内部で反応して、電極を消耗させるためである。開気孔は相対密度が90%、より望ましくは95%程度(言い換えれば気孔率が10%、5%以下)あればほぼ存在しなくなる。よって、電極の相対密度は90%以上がよく、95%以上がより好ましい。
By using this metallized synthetic component as an electrode material, it is possible to obtain an electrode for resistance welding which is difficult to weld to a work component and can obtain stable heat generation over a long period of time. Since the metallized composite is uniformly higher in hardness than tungsten, the hardness and wear resistance are enhanced as compared with a resistance welding electrode made of tungsten alone.
As described above, the metallized synthetic component hardly reacts with oxygen in the workpiece or atmosphere. However, if the specific surface area is extremely large at higher temperatures, it will react with them. For this reason, open pores in the electrode are undesirable. This is because the metal and oxygen that have entered through the open pores react inside to consume the electrode. The open pores are almost absent if the relative density is 90%, more desirably about 95% (in other words, the porosity is 10%, 5% or less). Therefore, the relative density of the electrode is preferably 90% or more, and more preferably 95% or more.

一方、金属化合成分は、銅はもちろん金属であるタングステンなどと比較して、破壊靱性値が低い。KCで表した破壊靱性値は3〜6程度であり、使用中の衝撃などにより割れ、欠けが十分防げない場合もある。そのために、金属化合成分で電極材とする場合は、応力の集中をなくし、エッジなどのコーナー部を極力設けない電極形状が好ましい。このためには、平面の一部を溶接面として使用したり、曲面取りの大きさを大きくした形状としたり、溶接面以外は金属の中に埋設する構造としたりするのが望ましい。
On the other hand, the metallized synthetic component has a lower fracture toughness value than tungsten, which is a metal as well as copper. The fracture toughness value represented by K 1 C is about 3 to 6, and cracking and chipping may not be sufficiently prevented due to impact during use. Therefore, when the electrode material is made of the metallized synthetic component, an electrode shape that eliminates stress concentration and does not provide corners such as edges as much as possible is preferable. For this purpose, it is desirable to use a part of the plane as a welding surface, a shape with a large curved surface, or a structure that is embedded in the metal other than the welding surface.

電極の組成としては、金属化合成分は少なくとも90体積%を必要とする。言い換えれば、10体積%未満であれば第2の成分を含んでいてもよい。第2の成分は金属化合成分に対して焼結助剤などの働きを有する成分、例えばアルミナ、スピネル、マグネシア、イットリアなどを含むことが好ましい。この第2成分が10体積%を超えると、電極が脆くなったり、電気伝導率が大きく変化したり、あるいは脱落した成分がワーク面に付着したりするおそれがある。   The composition of the electrode requires at least 90% by volume of the metallized composition. In other words, the second component may be included as long as it is less than 10% by volume. The second component preferably contains a component having a function as a sintering aid for the metallized synthetic component, such as alumina, spinel, magnesia, yttria and the like. If the second component exceeds 10% by volume, the electrode may become brittle, the electrical conductivity may change greatly, or the dropped component may adhere to the workpiece surface.

また、第2成分として電極の5体積%未満のタングステンまたはモリブデンを選択することにより、破壊靱性と熱伝導率を向上させることもできる。前記の焼結助剤などと合せて添加してもよい。
Moreover, fracture toughness and thermal conductivity can be improved by selecting less than 5% by volume of tungsten or molybdenum as the second component. You may add together with the said sintering auxiliary agent.

本発明の抵抗溶接用電極は少なくとも溶接面が前記組成を有する焼結体である。たとえば、特許文献3の様に窒化物セラミックスのような薄膜をつける方法は有効であるが、薄膜が剥離する危険性が高い上に、一定回数の溶接後に使用不可となればその電極は廃棄する他無く、コスト的に不利である。一方、本願発明の電極の少なくとも溶接面は焼結体であるために、焼結体の大きさを大きくすることで使用後にごく表面層のみを削り取る作業(再研磨)を行って再利用することができる。そのために、一度製造した電極はサイズが極端に小さくなるか、再研磨により焼結体部分が無くなるまで使用することができ、コスト削減に寄与する。   The resistance welding electrode of the present invention is a sintered body having at least a weld surface with the above composition. For example, a method of applying a thin film such as nitride ceramic as in Patent Document 3 is effective, but the risk of the thin film peeling is high, and if the electrode becomes unusable after a certain number of weldings, the electrode is discarded. There is nothing but a disadvantage in cost. On the other hand, since at least the welding surface of the electrode of the present invention is a sintered body, it is necessary to recycle by reclaiming only the surface layer after use by enlarging the size of the sintered body. Can do. Therefore, the electrode once manufactured can be used until the size becomes extremely small or the sintered body portion is eliminated by re-polishing, which contributes to cost reduction.

抵抗溶接用電極は前記材質の材料の焼結体を溶接面およびその付近にのみ用いて他の部分はシャンク部と組合せることも可能であるし、焼結体でシャンク部まで形成する構造でもよい。なお、後述のシャンク部を用いる場合は、溶接面を含む前記材質の部分は「チップ部」と表現する。図2にはこれらの模式図を示す。図2(2)には電極の溶接面を含むチップ部にのみ前記材料からなるチップ部1を用いた模式図を、図2(1)にはシャンク部を含む抵抗溶接用電極全体を前記材料にて形成した例を示す。   The electrode for resistance welding can use a sintered body of the above-mentioned material only on the welding surface and its vicinity, and other parts can be combined with the shank part. Good. In addition, when using the shank part mentioned later, the part of the said material containing a welding surface is expressed as a "tip part." FIG. 2 shows these schematic diagrams. FIG. 2 (2) is a schematic diagram using the tip portion 1 made of the above material only on the tip portion including the welding surface of the electrode, and FIG. 2 (1) shows the entire resistance welding electrode including the shank portion as the material. The example formed by is shown.

シャンク部2は様々な材料が使用可能であるが、銅(純銅および添加物を加えた銅)、アルミニウム、鉄系材料などを用いることが好ましい。これらの材質は電気抵抗率が低く、通電によってシャンク部で発熱が殆ど起こらない。また、金属であり溶接時などに欠損が起こりにくい。大気中の酸素や水と反応しないか、反応してもごく表層部のみにとどまる。所望のシャンク形状を得るための鋳造、機械加工などが容易であり、素材も安価である。
Although various materials can be used for the shank part 2, it is preferable to use copper (pure copper and copper with additives), aluminum, an iron-based material, or the like. These materials have low electrical resistivity, and hardly generate heat in the shank portion when energized. In addition, it is a metal and is not easily damaged during welding. Does not react with oxygen or water in the atmosphere, or stays only on the surface layer. Casting and machining for obtaining a desired shank shape are easy, and the material is also inexpensive.

チップ部とシャンク部とを接合する場合は、埋設固着や真空ロウ付けなどの手段を行なうことができる。   In the case of joining the tip part and the shank part, means such as embedded fixing and vacuum brazing can be performed.

埋設固着とは、チップ部と低融点の金属(シャンク材料を指す)と接した状態で昇温し、溶融した低融点の金属がチップ部表面の一部または全部と接触した状態とし、そのまま降温してチップ部と固化した低融点金属を一体化する方法である。固化した低融点金属の部分に必要な加工を加え、所望の形状とした部分がシャンク部となる。埋設固着ではなく鋳ぐるみ、鋳包みなどと呼ばれることもある。   Embedded fixation means that the temperature rises in a state where the chip part is in contact with a low melting point metal (referred to a shank material), and the molten low melting point metal is in contact with part or all of the chip part surface, and the temperature is lowered as it is. In this way, the chip portion and the solidified low melting point metal are integrated. Necessary processing is added to the solidified low melting point metal portion, and a portion having a desired shape becomes a shank portion. It is sometimes referred to as cast-in, cast-in, etc., rather than being buried.

真空ロウ付けは、真空雰囲気とした炉中にて、ロウ材を用いてチップ部とシャンク部を接合する方法である。ロウ材としては活性ロウ材と呼ばれるAgCuSnTiなどのロウ材を用いて行なうのがよい。   Vacuum brazing is a method in which a chip portion and a shank portion are joined using a brazing material in a vacuum atmosphere furnace. The brazing material is preferably a brazing material such as AgCuSnTi called an active brazing material.

また、図2(3)に示すように、電極の長さ方向に凹凸をつけ、凹部にシャンク部材料2を進入させることにより、チップ部1が抜けない構造とすることも有効である。このような構造であれば、チップ部1とシャンク部2の電極の接合が完全でなくとも、チップ部1が抜け落ちるような不具合が生じない。この構造の製造に適しているのは後述の埋設固着法である。

本発明の抵抗溶接用電極は、様々な抵抗溶接の形態に用いることができる。例として、円形状の比較的狭い範囲のみを溶接するスポット溶接、重ねた板を線状に連続的に溶接するシーム溶接、あらかじめ被溶接材の一部に突起を形成してその部分に通電させ溶接を行なうプロジェクション溶接、突合せ抵抗溶接、ヒュージング溶接とも呼ばれる熱カシメ溶接などが挙げられる。これらに限らず、「一対の電極と、その電極間に挟まれた2以上の被溶接材とに電流を掛け、温度を上げて、被溶接材同士を接合する」どのような溶接方法にも用いることが可能である。
Further, as shown in FIG. 2 (3), it is also effective to provide a structure in which the tip portion 1 is not removed by making irregularities in the length direction of the electrodes and allowing the shank portion material 2 to enter the concave portions. With such a structure, even if the joining of the electrodes of the tip portion 1 and the shank portion 2 is not complete, there is no problem that the tip portion 1 falls off. Suitable for the production of this structure is the buried fixing method described below.

The resistance welding electrode of the present invention can be used in various forms of resistance welding. For example, spot welding that welds only a relatively narrow area of a circular shape, seam welding that continuously welds stacked plates linearly, and forms a protrusion on a part of the welded material in advance and energizes that part. Examples thereof include projection welding for performing welding, butt resistance welding, and heat caulking welding also called fusing welding. Not limited to these, any welding method "apply current to a pair of electrodes and two or more workpieces sandwiched between the electrodes, raise the temperature, and join the workpieces" It is possible to use.

本発明の抵抗溶接用電極は、ワーク(被溶接物)との反応が極めて小さい。そのために本発明の抵抗溶接用電極を使用すると以下の効果がある。
(1)反応生成物の電極への付着による電気抵抗の変化が極めて少ない。よって、電流の印加による安定的な抵抗発熱を得られる。ワークの不良発生率が抑えられ、電流値や電極の調整も少なく済む
(2)反応生成物による溶接面の減耗が極めて少ないために、繰り返し溶接しても電極の形状変化が少ない。よって、従来の電極より長寿命を得られる
(3)ワークとの接触、加圧による機械的な摩耗が抑制できる。よって、従来の電極よりも長寿命が得られる
(4)抵抗発熱を大きくでき、ワークの溶接時に形成される「ナゲット」が従来の電極よりも大きく形成しやすくなる
本発明の電極は、少なくとも溶接面に焼結体を使用している、そのために
(5)溶接面およびその周辺のわずかな量の再研磨により、電極を繰り返し使用することが可能であり、コスト面で有利である
The electrode for resistance welding according to the present invention has a very small reaction with the workpiece (workpiece). Therefore, the use of the resistance welding electrode of the present invention has the following effects.
(1) There is very little change in electrical resistance due to adhesion of reaction products to the electrodes. Therefore, stable resistance heat generation by application of current can be obtained. The defect rate of the workpiece is suppressed, and the adjustment of the current value and the electrode is small. (2) Since the wear of the welding surface due to the reaction product is extremely small, the shape change of the electrode is small even after repeated welding. Therefore, a longer life than the conventional electrode can be obtained. (3) Mechanical wear due to contact with the workpiece and pressurization can be suppressed. Therefore, a longer life can be obtained than the conventional electrode. (4) The resistance heat generation can be increased, and the “nugget” formed at the time of welding the workpiece is easier to form than the conventional electrode. Since the sintered body is used for the surface, (5) it is possible to use the electrode repeatedly by re-polishing a small amount of the welding surface and its periphery, which is advantageous in terms of cost.

スポット溶接に本発明の抵抗溶接電極を用いる形態の要部の模式図Schematic of the main part of the form using the resistance welding electrode of the present invention for spot welding 本発明の抵抗溶接用電極の形態の一例 (1)電極全体を金属化合成分で構成 (2)チップ部のみを金属化合成分で構成 (3)チップ部とシャンク部が解離しにくい形状の模式図Example of form of electrode for resistance welding of the present invention (1) The entire electrode is composed of a metallized synthetic component (2) Only the tip portion is composed of a metallized synthetic component (3) The shape of the tip portion and the shank portion is difficult to dissociate Pattern diagram 突合せ溶接に本発明のクランプ電極を用いる形態の要部の模式図Schematic of the main part of the form using the clamp electrode of the present invention for butt welding

抵抗溶接用電極の少なくとも電極本体が被溶接材に当接する面を金属化合成分焼結体とし、種々の抵抗溶接方法にて従来使用されている銅材の抵抗溶接用電極、W材の抵抗溶接用電極と合せて抵抗溶接試験を行い、電極寿命を調査した。
その結果、ワークとの溶着性が改善されてワークの外観品質が高く、ワークの接合強度を高い抵抗溶接用電極が得られた。また、抵抗溶接用電極の長寿命化に有効であることを確認した。
The surface of at least the electrode main body of the resistance welding electrode that abuts the material to be welded is a metallized synthetic sintered body, and the resistance welding electrode of the copper material and the resistance of the W material conventionally used in various resistance welding methods A resistance welding test was conducted together with the welding electrode to investigate the electrode life.
As a result, an electrode for resistance welding having improved weldability with the work, high work appearance quality, and high work joint strength was obtained. It was also confirmed that it was effective in extending the life of resistance welding electrodes.

本発明の抵抗溶接用電極は以下の方法にて得られる。   The resistance welding electrode of the present invention is obtained by the following method.

まず、粉末状の金属化合成分を乾式または湿式で混合する。粉末の粒子径は特に問わないが、入手しやすい0.2〜10μm程度の粉末を用いるのが好ましい。配合量は金属化合成分を90〜100体積%、これに焼結助剤等を加える場合は10体積以下とする。   First, a powdered metallized synthetic component is mixed dry or wet. The particle diameter of the powder is not particularly limited, but it is preferable to use an easily available powder of about 0.2 to 10 μm. The blending amount is 90 to 100% by volume of the metallized synthetic component, and 10 vol.

混合には、ボールミル、アトライタ、らいかい機、スターミルなど公知の装置にて行なえばよい。こうして混合粉末が得られる。   The mixing may be performed by a known device such as a ball mill, an attritor, a raking machine, or a star mill. A mixed powder is thus obtained.

次に、混合粉末をプレス成形する。プレス成形は金型プレス機、CIP(冷間静水圧)装置、乾式ラバープレス機など公知のプレス装置を使い、50〜500MPaの圧力にて混合粉末をプレス成形する。必要であれば、その後に旋盤やフライス盤、マシニングセンタなどで成形体の中間加工を行なう。こうして成形体を得る。   Next, the mixed powder is press-molded. The press molding is performed by using a known press apparatus such as a die press machine, a CIP (cold isostatic pressure) apparatus, or a dry rubber press machine, and press-molding the mixed powder at a pressure of 50 to 500 MPa. If necessary, intermediate processing of the molded body is then performed with a lathe, milling machine, machining center or the like. Thus, a molded body is obtained.

得られた成形体を焼結する。金属化合成分はいずれも難焼結材であり、焼結には高い温度が必要となる。成分比率や金属化合成分の種類にもよるが、焼結温度は1500〜2200℃が適当である。第2成分として適当な焼結助剤を添加している場合は、下限が1300℃程度に下がる場合もある。また、焼結時の雰囲気は真空雰囲気、不活性ガス雰囲気、窒素ガス雰囲気、水素ガス雰囲気などの非酸化雰囲気とする必要がある。これは、金属化合成分はいずれも焼結温度で酸素を含む雰囲気であれば、表面から酸化して化学変化を起こし、異なる酸化物などを生成するからである。焼結後、冷却して焼結体を得る。
The obtained molded body is sintered. All of the metallized synthetic components are difficult to sinter, and high temperatures are required for sintering. Although depending on the component ratio and the type of metallization synthesis, the sintering temperature is suitably 1500 to 2200 ° C. When a suitable sintering aid is added as the second component, the lower limit may be lowered to about 1300 ° C. Further, the atmosphere during sintering needs to be a non-oxidizing atmosphere such as a vacuum atmosphere, an inert gas atmosphere, a nitrogen gas atmosphere, and a hydrogen gas atmosphere. This is because if the metallized synthetic component is an atmosphere containing oxygen at the sintering temperature, it is oxidized from the surface to cause a chemical change, and different oxides are generated. After sintering, it is cooled to obtain a sintered body.

以上にプレス後に焼結する工程の例を示したが、混合粉末をカーボン型内に詰め、温度を1300〜2100℃まで上げた状態で1〜30MPaの圧力にて加圧して焼結体を得るホットプレス法でも焼結体を得ることができる。
Although the example of the process of sintering after pressing was shown above, the mixed powder is packed in a carbon mold and pressed at a pressure of 1 to 30 MPa with the temperature raised to 1300 to 2100 ° C. to obtain a sintered body. A sintered body can also be obtained by hot pressing.

また、カプセルHIP(熱間静水圧プレス)法によっても製造可能である。カプセルHIPを行なう場合は、チタンなどのカプセルに金属化合物の粉末を詰め、蓋をしてカプセル内を脱気したうえで、50〜200MPa、1400〜1700℃程度の温度でHIP焼結することにより得られる。
It can also be produced by a capsule HIP (hot isostatic pressing) method. When capsule HIP is performed, a metal compound powder is packed in a capsule such as titanium, the lid is degassed, and HIP sintering is performed at a temperature of about 50 to 200 MPa and about 1400 to 1700 ° C. can get.

得られた焼結体に必要であれば機械加工、電気加工を施して所望の形状とする。電極全体を以上に説明した材料で形成する場合はこれで完成となる。
If necessary, the obtained sintered body is machined and electroprocessed to obtain a desired shape. If the entire electrode is formed of the material described above, it is completed.

一方、前記材料で電極のチップ部を製造する場合は、この後にシャンク部との接合が必要となる。   On the other hand, when manufacturing the tip part of an electrode with the said material, joining with a shank part is needed after this.

シャンク部は前述のように主に金属材料で形成するが、チップ部との一体化には大きく分けて2つの手段がある。   The shank portion is mainly formed of a metal material as described above, but there are two main means for integration with the tip portion.

一つはチップ部とシャンク部をそれぞれ製造した後に、両者を接合する方法である。この方法として代表的なのはロウ付けによる接合である。ロウ材は活性ロウ材を使用するために、低酸素分圧下で行う炉中ロウ付けが適している。活性ロウ材を使用することで、Wの含有量が少ない焼結体であっても、シャンク部と接合することが可能である。
One is a method of joining the chip part and the shank part after manufacturing them. A typical method is joining by brazing. Since brazing material uses an active brazing material, brazing in a furnace performed under a low oxygen partial pressure is suitable. By using an active brazing material, even a sintered body with a low W content can be joined to the shank portion.

もう一つは、埋設固着(または鋳ぐるみ、鋳づつみと呼ばれることもある)による一体化である。埋設固着とは、チップ部と低融点の金属(シャンク材料を指す)とを加熱し、溶融した低融点の金属がチップ部表面の一部または全部と接触した状態とし、そのまま降温してチップ部と固化した低融点金属を一体化する方法である。固化した低融点金属の部分に必要な加工を加え、所望の形状とした部分がシャンク部となる。
The other is integration by embedded fixing (or sometimes called casting or casting). Embedded fixing means heating the chip part and a low melting point metal (referred to a shank material) so that the molten low melting point metal is in contact with part or all of the chip part surface, and the temperature is lowered as it is. And a solidified low melting point metal. Necessary processing is added to the solidified low melting point metal portion, and a portion having a desired shape becomes a shank portion.

いずれかの方法にてチップ部とシャンク部とを一体化した後、仕上げ加工をして完成する。   After the chip portion and the shank portion are integrated by any method, finishing is completed.

金属化合成分は破壊靱性値が低く、金属からなる電極と比較して、亀裂の入りやすい条件では欠けや割れが進展しやすい。そのために、溶接面は平面とする、曲率の大きな曲面取りを施す、溶接面以外の部分をシャンク中に埋めた形状とする、段差やエッジ部分を設けないなど、欠けや割れが生じないような形状の工夫を行なうことが好ましい。   The metallized composite has a low fracture toughness value, and cracks and cracks are likely to develop under conditions where cracks are likely to occur, as compared with electrodes made of metal. Therefore, the weld surface is flat, the surface is curved with a large curvature, the shape other than the weld surface is embedded in the shank, and there are no steps or edges, so that no chipping or cracking occurs. It is preferable to devise the shape.

得られた抵抗溶接用電極を実際に使用した結果を、以下の実施例にて詳細に評価する。
The results of actually using the obtained resistance welding electrode will be evaluated in detail in the following examples.

(実施例1)スポット溶接用電極に使用した実施例
板厚0.3mmの3枚のマグネシウム板をワーク4として、3枚を一体にする溶接試験を行った。電極20は、溶接面3の直径が8mm、全体直径が20mmのDR形(ドームラジアス形)で、溶接面直径6mmの部分に曲率半径40mmの円弧と他の部分に曲率半径8mmの円弧を付与した。製法は下記の試料1に記載した、チップ部1とシャンク部2からなる電極である。
Example 1 Example Used for Spot Welding Electrode Three magnesium plates having a thickness of 0.3 mm were used as workpiece 4 and a welding test was conducted in which the three pieces were integrated. The electrode 20 is a DR type (dome radius type) with a weld surface 3 having a diameter of 8 mm and an overall diameter of 20 mm. An arc having a radius of curvature of 40 mm is applied to a portion having a weld surface diameter of 6 mm and an arc having a radius of curvature of 8 mm is provided to the other portion. did. The manufacturing method is an electrode composed of a tip part 1 and a shank part 2 described in Sample 1 below.

試料1
チップ1の材質:TiN 100体積%(成形プレス圧150MPa、焼結温度2000℃、焼結雰囲気 Arガス)
シャンク2の材質:純銅(C1020)
チップ1とシャンク2の接合方法:950℃、Ar雰囲気にて埋設固着
Sample 1
Material of chip 1: 100% by volume of TiN (forming press pressure 150 MPa, sintering temperature 2000 ° C., sintering atmosphere Ar gas)
Material of shank 2: Pure copper (C1020)
Chip 1 and shank 2 bonding method: 950 ° C., embedded in Ar atmosphere

電極の要部の模式図を図1に示す。上下1対の電極20にて被溶接材であるマグネシウム板4を溶接する。
試料1の電極にて、表1に示す条件で連続打点の溶接を行った。そして、形成されたナゲット径を測定し、ナゲット径が3mmを下回るものを溶接不良として、電極寿命を求めた。また、ワークの溶接表面の面あれを観察した。
溶接を始めて1万ショットを過ぎた時点でマグネシウム板4の溶接部に段差が生じ始めたために、試験を終了した。調査した全てのワーク4のナゲット径は3mmを超えていた。チップ部1を観察したところ、チップ1の一部に欠けが生じていた。なお、観察は500ショットおきに行なった。
The schematic diagram of the principal part of an electrode is shown in FIG. The magnesium plate 4 which is a material to be welded is welded by a pair of upper and lower electrodes 20.
With the electrode of Sample 1, continuous spot welding was performed under the conditions shown in Table 1. And the formed nugget diameter was measured and the electrode life was calculated | required by making a nugget diameter less than 3 mm into a welding defect. In addition, the surface roughness of the weld surface of the workpiece was observed.
The test was terminated because steps started to occur in the welded portion of the magnesium plate 4 at the time when 10,000 shots were started after welding. The nugget diameter of all the workpieces 4 examined exceeded 3 mm. When the chip part 1 was observed, a part of the chip 1 was chipped. The observation was performed every 500 shots.

次に、表1に示すように、チップの材質を様々変更した電極についても同様の試験を行った。   Next, as shown in Table 1, the same test was performed on electrodes with variously changed chip materials.

それぞれのチップ材質と試料1と同様の試験を行った結果を合せて同表に示す。   The results of tests similar to those for each chip material and sample 1 are shown in the same table.

また、比較として従来電極であるクロム銅を用いた試料を*比較試料No.101、タングステンで作製したチップ材を用いたものを*比較試料No.102とする。
For comparison, a sample using chromium copper, which is a conventional electrode, is shown as * Comparative Sample No. 101, using a chip material made of tungsten * Comparative sample No. 102.

Figure 2015014036
表1中で「*」のつく試料は、本発明の範囲外の比較試料である
Figure 2015014036
Samples marked with “*” in Table 1 are comparative samples outside the scope of the present invention.

試験の結果より以下のことが分かった。
公知の抵抗溶接用電極であるクロム銅*比較試料No.101は120ショットの時点で早くもワークとの溶着が発生し、再研磨が必要となった。
The following was found from the test results.
Chrome copper * comparative sample No. which is a known resistance welding electrode. No. 101 was welded to the workpiece as early as 120 shots, and re-polishing was necessary.

同じく公知の抵抗溶接用電極であるタングステン*比較試料No.102は、電極全体に黄色の酸化物粉末が付着し、溶接面を含む露出部分全体に電極形状に変化(損耗)が見られた。再研磨により使用可能であるが、損耗により電気抵抗が変わるために、通電条件を調整する作業は煩雑となった。   Tungsten * comparative sample No. which is also a known resistance welding electrode. In No. 102, yellow oxide powder adhered to the entire electrode, and a change (wear) in the electrode shape was observed over the entire exposed portion including the weld surface. Although it can be used by re-polishing, the electrical resistance changes due to wear, and therefore the work of adjusting the energization conditions becomes complicated.

本発明の範囲である試料No.1〜18は従来のクロム銅電極、タングステン電極と比較すると、いずれも大幅に寿命を伸ばすことができた。いずれの電極でもタングステン電極の7倍以上の5000ショット以上の寿命であり、試料No.1を含めもっとも寿命が長いものは10000ショット程度の寿命であった。
いずれの電極も、寿命は電極に大きな亀裂による割れ、または欠けが生じることにより達していた。また、電極にはマグネシウムとの溶着は殆ど生じていなかった。
Sample No. which is within the scope of the present invention. As for 1-18, compared with the conventional chromium copper electrode and the tungsten electrode, all were able to extend the lifetime significantly. Each electrode has a life of 5000 shots or more, which is 7 times or more that of a tungsten electrode. The longest life including 1 was about 10,000 shots.
In all the electrodes, the lifetime was reached by causing cracks or chipping due to large cracks in the electrodes. Further, the electrode was hardly welded with magnesium.

試料16は金属化合成分(95体積%TiN)に焼結助剤としてのAlを5体積%加えた実施例である。この電極も焼結助剤を添加していない試料と同程度の寿命を有していた。焼結助剤に使用するAlや他の助剤成分を添加することにより、電極製造時の焼結温度を下げることができ、製造に適していた。但し、10体積%を超える量添加すれば、電気抵抗に影響がでるために望ましくない。 Sample 16 is an example in which 5% by volume of Al 2 O 3 as a sintering aid was added to the metallized synthesis (95% by volume TiN). This electrode also had a life comparable to that of the sample to which no sintering aid was added. By adding Al 2 O 3 and other auxiliary components used for the sintering aid, the sintering temperature at the time of electrode production can be lowered, which is suitable for production. However, if it is added in an amount exceeding 10% by volume, the electrical resistance is affected, which is not desirable.

試料17は金属化合成分に焼結助剤としてのMgOと、タングステンを添加した組成を有する。タングステンの添加により使用中の電極表面に若干の酸化物の付着が見られたが、添加量が多くないためにそのまま使用を継続できた。また、寿命時の欠けの程度は他の放電加工用電極よりも小さい規模であった。   Sample 17 has a composition in which MgO as a sintering aid and tungsten are added to the metallized synthetic component. Although a slight amount of oxide was observed on the surface of the electrode during use due to the addition of tungsten, the use was continued as it was because the addition amount was not large. Further, the degree of chipping at the time of life was smaller than that of other electric discharge machining electrodes.

試料18は金属化合成分に2体積%のタングステンを添加した組成を有する。タングステンの添加により、使用中の電極表面に若干の酸化物の付着が見られたが、添加量が多くないためにそのまま使用を継続できた。また、寿命時の欠けの程度は他の放電加工用電極よりも小さい規模であった。

Sample 18 has a composition in which 2% by volume of tungsten is added to the metallized composition. Due to the addition of tungsten, a slight amount of oxide was observed on the surface of the electrode in use. However, since the addition amount was not large, the use could be continued as it was. Further, the degree of chipping at the time of life was smaller than that of other electric discharge machining electrodes.

(実施例2)突合わせ溶接にして用いた実施例
直径が10mmである2本の棒状のアルミニウム材6の端面同士を突き合わせ、端面同士7を溶接する「突合せ溶接」にクランプ電極30として使用した例を示す。装置の要部の模式図を図3に示す。クランプ電極30は、アルミニウム材6の溶接する端面7からおよそ10mm離れた箇所を略円周上にクランプする。2本のアルミニウム材6をそれぞれ電極30にてクランプし、両電極間に電流を流すことにより、もっとも発熱の大きい突合せ面7両側のアルミニウム材6を抵抗溶接する。
溶接条件は表2に示したとおりである。
Example 2 Example Used for Butt Welding The end surfaces of two rod-shaped aluminum members 6 having a diameter of 10 mm were butted together and used as a clamp electrode 30 for “butt welding” in which the end surfaces 7 were welded together. An example is shown. A schematic diagram of the main part of the apparatus is shown in FIG. The clamp electrode 30 clamps a location approximately 10 mm away from the end face 7 to which the aluminum material 6 is welded on a substantially circumference. The two aluminum materials 6 are clamped by the electrodes 30 respectively, and a current is passed between both electrodes, whereby the aluminum materials 6 on both sides of the butting surface 7 having the largest heat generation are resistance welded.
The welding conditions are as shown in Table 2.

クランプ電極30は内径が約10mm、肉厚が10mm、幅が20mmのリング状に一部切り欠きを有する構造とし、アルミニウム材に巻きつくように装着し、ねじ止めにて隙間無く固定した。
クランプ電極30の材質は以下のものを用い、これを試料No.51とした。
The clamp electrode 30 has a ring-like structure having an inner diameter of about 10 mm, a wall thickness of 10 mm, and a width of 20 mm. The clamp electrode 30 is mounted so as to wrap around an aluminum material, and is fixed without screws with a gap.
The material of the clamp electrode 30 is as follows. 51.

試料No.51
電極材質:98体積%VC+2体積%Y(5atmアルゴンガス加圧焼結 焼結温度1900℃)
Sample No. 51
Electrode material: 98 volume% VC + 2 volume% Y 2 O 3 (5 atm argon gas pressure sintering sintering temperature 1900 ° C.)

Figure 2015014036
Figure 2015014036

試料51のクランプ電極にて、突合せ溶接を行なった。電極寿命は溶接したアルミニウム材を引張試験機にかけ、溶接面に沿って破断したものを不良と判断した。また、クランプ電極についても観察し、大きな欠け、電極の割れやワークとの溶着が大きくなった場合はそこで寿命とした。   Butt welding was performed with the clamp electrode of the sample 51. The electrode life was determined by applying a welded aluminum material to a tensile tester and breaking the welded material along the weld surface. In addition, the clamp electrode was also observed, and when there was a large chip, electrode cracking or welding with the workpiece, the life was determined there.

試料51のクランプ電極を用いてこの試験を行ったところ、5000ショット終了時まで、問題なく使用ができた。5000ショット時点でクランプ電極にはアルミニウム材をクランプしている部分に欠けが生じて、使用不可能となった。欠けが生じるまでの前記引張り試験では、アルミニウム材は溶接面以外から破断していた。   When this test was performed using the clamp electrode of the sample 51, it could be used without any problem until the end of 5000 shots. At the time of 5000 shots, the clamp electrode was chipped at the portion where the aluminum material was clamped and became unusable. In the tensile test until chipping occurred, the aluminum material was broken from other than the welded surface.

次に、クランプ電極の材料を、試料1のVC+Yより表3に示す材料に変更して同様の試験を行った。その結果を表3に示す。 Next, the same test was performed by changing the material of the clamp electrode from the VC + Y 2 O 3 of Sample 1 to the material shown in Table 3. The results are shown in Table 3.

Figure 2015014036
表3中で「*」のつく試料は、本発明の範囲外の比較試料である
Figure 2015014036
Samples marked with “*” in Table 3 are comparative samples outside the scope of the present invention.

表3の結果より次のことが分かった。
まず、本発明の金属化合成分を用いた試料No.51〜69の電極は、いずれを用いた場合でも従来のクロム銅やタングステンの電極と比較して寿命が著しく長かった。
From the results in Table 3, the following was found.
First, the sample No. using the metallized synthetic component of the present invention was used. In any of the electrodes 51 to 69, the lifetime was remarkably longer than those of conventional chromium copper or tungsten electrodes.

また、試料No.51、52、53、55、57、61、62、64、67の様に焼結助剤を10体積%以下含んだ試料は、焼結体を緻密にさせやすく、また、気孔が少ないために電極欠けの程度が大きくなかった。一方、試料No.54、56、58、59、60、63、65、66のような焼結助剤を含まない試料は、一定の寿命を示したが、気孔が残りやすく、それが電極割れの基点になりやすかったと考えられる。なお、表3ではアルミニウムの棒をクランプできる程度の破損を「欠け」、更に大きく、例えば2つに割れるような破損を「割れ」と記載し区別している。   Sample No. Samples containing 10% by volume or less of a sintering aid such as 51, 52, 53, 55, 57, 61, 62, 64 and 67 are easy to make the sintered body dense and have few pores. The degree of electrode chipping was not large. On the other hand, sample No. Samples that did not contain a sintering aid such as 54, 56, 58, 59, 60, 63, 65, and 66 showed a certain life, but pores remained easily, which was likely to be the starting point for electrode cracking. It is thought. In Table 3, breakage that can clamp an aluminum rod is described as “chip”, and breakage that is larger, for example, broken into two, is described as “crack”.

試料No.68は、金属化合成分であるZrNに、焼結助剤である酸化マグネシウムとタングステンを加えた電極の例である。この電極も欠けの程度は小さかった。焼結助剤とあわせてタングステン添加の効果が出ていると考える。
また、試料69は、金属化合成分であるTiBにモリブデンを加えた電極の例である。この電極も試料No.68と同様に、寿命が十分長く、欠けの程度も小さかった。
Sample No. 68 is an example of an electrode obtained by adding magnesium oxide and tungsten as sintering aids to ZrN which is a metallized synthetic component. The degree of chipping of this electrode was also small. I think that the effect of tungsten addition comes out together with the sintering aid.
Sample 69 is an example of an electrode in which molybdenum is added to TiB 2 which is a metallized synthetic component. This electrode is also sample no. Like 68, the lifetime was sufficiently long and the degree of chipping was small.

10 抵抗溶接用電極
20 スポット溶接用電極
30 クランプ電極
1 チップ部
2 シャンク部
3 溶接面
4 ワーク(被溶接材)
5 ナゲット
6 棒状のアルミニウム材ワーク
7 アルミニウム材の端面
8 電源装置
9 導線
DESCRIPTION OF SYMBOLS 10 Resistance welding electrode 20 Spot welding electrode 30 Clamp electrode 1 Tip part 2 Shank part 3 Welding surface 4 Workpiece (material to be welded)
5 Nugget 6 Bar-shaped aluminum workpiece 7 Aluminum end face 8 Power supply 9 Conductor

Claims (3)

少なくとも被溶接材と接触する部分を
周期律表の4a〜6a族金属の炭化物、窒化物、ホウ化物のいずれか1種または2種以上の混合物または相互の固溶体からなる焼結体で構成した抵抗溶接用電極。
Resistance comprising at least a portion in contact with the workpiece to be welded with a sintered body made of any one or a mixture of carbides, nitrides and borides of Group 4a to 6a metals of the periodic table, or a solid solution of each other Welding electrode.
前記焼結体のうち
周期律表の4a〜6a族金属の炭化物、窒化物、ホウ化物のいずれか1種または2種以上の混合物または相互の固溶体を90〜100体積%、
焼結助剤を10体積%以下(0体積%を除く)含む
請求項1に記載の抵抗溶接用電極。
90 to 100% by volume of one or more of carbides, nitrides and borides of Group 4a to 6a metals in the periodic table of the sintered body, or a mixture of two or more of them, or a solid solution of each other.
The electrode for resistance welding according to claim 1, comprising 10% by volume or less (excluding 0% by volume) of a sintering aid.
スポット溶接、プロジェクション溶接、熱カシメ、シーム溶接、突合せ溶接
のいずれかの方法で、
アルミニウム、銅、マグネシウム、チタン、真鍮、メッキ鋼板のいずれかの抵抗溶接に使用する
請求項1または請求項2に記載の抵抗溶接用電極の使用方法。
Spot welding, projection welding, thermal caulking, seam welding, or butt welding,
The usage method of the electrode for resistance welding of Claim 1 or Claim 2 used for resistance welding in any one of aluminum, copper, magnesium, titanium, brass, and a plated steel plate.
JP2013142198A 2013-07-06 2013-07-06 Resistance welding electrode Active JP6242616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142198A JP6242616B2 (en) 2013-07-06 2013-07-06 Resistance welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142198A JP6242616B2 (en) 2013-07-06 2013-07-06 Resistance welding electrode

Publications (3)

Publication Number Publication Date
JP2015014036A true JP2015014036A (en) 2015-01-22
JP2015014036A5 JP2015014036A5 (en) 2016-07-28
JP6242616B2 JP6242616B2 (en) 2017-12-06

Family

ID=52435968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142198A Active JP6242616B2 (en) 2013-07-06 2013-07-06 Resistance welding electrode

Country Status (1)

Country Link
JP (1) JP6242616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006972A (en) * 2015-06-25 2017-01-12 京セラ株式会社 Tip member for spot welding
JP2018183814A (en) * 2017-04-27 2018-11-22 新光機器株式会社 Boring machine type dresser device
WO2020184430A1 (en) * 2019-03-08 2020-09-17 出光興産株式会社 Rust preventive oil composition and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196063A (en) * 1987-10-07 1989-04-14 Komatsu Ltd Titanium compound sintered body
JPH0366483A (en) * 1989-08-07 1991-03-22 Denki Kagaku Kogyo Kk Electrode tip for resistance welding
JPH044984A (en) * 1990-04-19 1992-01-09 Nippon Tungsten Co Ltd Electrode for resistance welding and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196063A (en) * 1987-10-07 1989-04-14 Komatsu Ltd Titanium compound sintered body
JPH0366483A (en) * 1989-08-07 1991-03-22 Denki Kagaku Kogyo Kk Electrode tip for resistance welding
JPH044984A (en) * 1990-04-19 1992-01-09 Nippon Tungsten Co Ltd Electrode for resistance welding and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006972A (en) * 2015-06-25 2017-01-12 京セラ株式会社 Tip member for spot welding
JP2018183814A (en) * 2017-04-27 2018-11-22 新光機器株式会社 Boring machine type dresser device
WO2020184430A1 (en) * 2019-03-08 2020-09-17 出光興産株式会社 Rust preventive oil composition and method for producing same

Also Published As

Publication number Publication date
JP6242616B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
AU2001275856B2 (en) Reducing metals as a brazing flux
KR101361986B1 (en) Rotation tool
AU2001275856A1 (en) Reducing metals as a brazing flux
US8978957B2 (en) Coated rotary tool
JP5552543B2 (en) Zygote
JP6242616B2 (en) Resistance welding electrode
CN111188016A (en) High-performance CrAlSiX alloy target and preparation method thereof
JP6024739B2 (en) Coated rotating tool and manufacturing method thereof
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP6064987B2 (en) Coated rotating tool and manufacturing method thereof
JP2012139695A (en) Coated rotating tool
JP6193651B2 (en) Resistance welding electrode
JP5853543B2 (en) Coating rotation tool
JPWO2006057052A1 (en) Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
TW201943679A (en) Composite body and process for producing a composite body
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
JP2001187431A (en) Laminated structural material
JP2012139694A (en) Coated rotating tool
JP2003055729A (en) Sintered alloy material with excellent corrosion resistance and wear resistance, its manufacturing method, and member for machine structure using them
JP2007118012A (en) Vertical upward welding method
JP6453653B2 (en) Resistance welding electrode
JP2019063901A (en) Composite member and cutting tool
JP2015131347A (en) Rotating tool
JP2006247722A (en) Casting mold for continuous casting

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R150 Certificate of patent or registration of utility model

Ref document number: 6242616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150