JPH0196063A - Titanium compound sintered body - Google Patents

Titanium compound sintered body

Info

Publication number
JPH0196063A
JPH0196063A JP62254465A JP25446587A JPH0196063A JP H0196063 A JPH0196063 A JP H0196063A JP 62254465 A JP62254465 A JP 62254465A JP 25446587 A JP25446587 A JP 25446587A JP H0196063 A JPH0196063 A JP H0196063A
Authority
JP
Japan
Prior art keywords
sintered body
titanium
sintered
titanium compound
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62254465A
Other languages
Japanese (ja)
Inventor
Shuichi Takeda
修一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62254465A priority Critical patent/JPH0196063A/en
Publication of JPH0196063A publication Critical patent/JPH0196063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered body having excellent theoretical density, electric conductivity, hardness, m.p., and resistance to heat, corrosion, and wear by specifying the inevitable oxygen concn. in the Ti compd. sintered body. CONSTITUTION:A Ti compd. 13 (e.g., TiC) and a thermit composition 12 consisting of Al powder and Fe2O3 powder are arranged in a cylinder 1, a load is exerted on a piston 2 to generate a pressure of about 20,000atm in a sample part. A graphite heater 9 is then energized from the opposed piston 2 to heat the materials to 830-920 deg.C, hence the thermit composition 12 is ignited to generate heat, the TiC powder 13 is sintered by the heat, and a Ti compd. sintered body contg. <=1% inevitable oxygen, <=0.6% nitrogen, and <=0.5% carbon and having >=98% relative theoretical density, about 1mum mean crystal grain diameter, and about 3X10<4>OMEGAcm<-1> electric conductivity is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、テルミット反応による急激な加熱を利用して
焼結されるチタン化合物焼結体に関し、焼結体中の不可
避不純物を特定範囲内に制御することによって、高硬度
で、従来セラミックにない高電気伝導度を有するセラミ
ック焼結体を提供するものである。本発明品は、また高
融点で、耐熱、耐蝕、耐摩耗性にも豊むことがら、優れ
た電極材、各種電気接点材料、エレクトロニクス部品を
はじめ、化学工業部品及び各種機械機器分野で利用価値
の高い材料を提供する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a titanium compound sintered body that is sintered using rapid heating due to thermite reaction, and the present invention relates to a titanium compound sintered body that is sintered using rapid heating due to thermite reaction. By controlling this, it is possible to provide a ceramic sintered body with high hardness and high electrical conductivity not found in conventional ceramics. The product of the present invention also has a high melting point and is rich in heat resistance, corrosion resistance, and wear resistance, so it is useful in the fields of excellent electrode materials, various electrical contact materials, electronic parts, chemical industrial parts, and various mechanical equipment fields. Provide high quality materials.

(従来技術) テルミット反応の発熱によるセラミック粉末の焼結方法
については、既して出願済の特願昭60−026424
に記述されている通り、下記の特徴がある。
(Prior art) A method for sintering ceramic powder using exothermic heat generated by thermite reaction is disclosed in patent application No. 60-026424, which has already been filed.
As described, it has the following characteristics.

■チタン化合物等の被焼結粉末の周囲にテルミット組成
物を配置することによって、被焼結粉末を掻めて短時間
に加熱することができるため、結晶粒を粗大化させない
で緻密な多結晶焼結体が得られる。圧力は高い程、更に
結晶粒の成長が抑えられることも解っている。
■ By placing a thermite composition around the powder to be sintered, such as a titanium compound, the powder to be sintered can be scraped and heated in a short time, so it is possible to form dense polycrystals without coarsening the crystal grains. A sintered body is obtained. It is also known that the higher the pressure, the more the growth of crystal grains is suppressed.

■反応によって、テルミット組成物が溶融し。■The thermite composition melts due to the reaction.

被結晶粉末を静水圧的に加圧するため、結晶粒に等方性
があり、極めて均質な焼結体が得られる。
Since the powder to be crystallized is hydrostatically pressurized, the crystal grains are isotropic and an extremely homogeneous sintered body can be obtained.

■加熱が2.激に行われるため、大容盪の電源装置を必
要としない。
■Heating is 2. Since it is performed at high speed, it does not require a large-capacity power supply.

従って、高電気伝導度、高融点、耐熱、耐油。Therefore, it has high electrical conductivity, high melting point, heat resistance, and oil resistance.

耐摩耗性に優れていることにより、高温用発熱体、電極
材、電気接点材料等に広く利用される可能性が高い。
Due to its excellent wear resistance, it is likely to be widely used in high-temperature heating elements, electrode materials, electrical contact materials, etc.

(発明が解決しようとする問題点) 最近、産業の発達は著しく、工業用材料等にはますます
高度の品質が要求されるようになってきており、前記従
来技術の(fれた特性を更に向上する必要性が生じつつ
ある。
(Problems to be solved by the invention) In recent years, industrial development has been remarkable, and industrial materials are required to have increasingly higher quality. There is a growing need for further improvements.

(問題点を解決するための手段1作用)本発明は最近の
高度技術の要求に十分こたえることができるため、テル
ミット反応の発熱により焼結した。チタン化合物単体又
はチタン複化合物、あるいはそれらの混合物より成る焼
結体中の不可避酸素濃度を1%以下にしたことを特徴と
するチタン化合物焼結体を提供しようとするものである
(Means for solving the problem 1) Since the present invention can fully meet the demands of recent advanced technology, sintering was carried out by the exothermic reaction of thermite reaction. It is an object of the present invention to provide a sintered body of a titanium compound, which is characterized in that the unavoidable oxygen concentration in the sintered body is made of a single titanium compound, a titanium composite compound, or a mixture thereof, and is 1% or less.

本発明に於てはテルミット反応による急激な発熱を利用
したことによる前記従来技術の特徴に加え、焼結体中の
不可避酸素不純物を特定範囲内に管理することにより、
結晶粒子の組人化を著しく抑制できると共に、結晶粒境
面の酸化物の生成を防止できるので、結晶粒子間の結合
力が著しく向上して、硬度、融点、耐熱、耐油。
In addition to the features of the prior art described above due to the use of rapid heat generation due to the thermite reaction, the present invention also provides the following advantages:
It can significantly suppress the clumping of crystal grains and also prevent the formation of oxides on the grain boundaries, significantly improving the bonding strength between crystal grains and improving hardness, melting point, heat resistance, and oil resistance.

耐摩耗性を大幅に増加させる。Significantly increases wear resistance.

また、結晶粒境面の酸化物の生成を防止できることから
、電気伝導性を著しく向上するので。
In addition, it can prevent the formation of oxides at grain boundaries, significantly improving electrical conductivity.

優れた電気材料が得られる。Excellent electrical materials can be obtained.

(実施例1) 本発明の実施例を図面を参照して詳述する。(Example 1) Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明焼結体生成に用いた超高圧発生装置であ
り9図面中、1はシリンダ、2はピストン、3はパイロ
フィライト製ガスケット。
FIG. 1 shows an ultra-high pressure generator used to produce a sintered body according to the present invention, and in the nine drawings, 1 is a cylinder, 2 is a piston, and 3 is a pyrophyllite gasket.

4はパイロフィライト製断熱材、5,6.7は各々′銅
板、鋼製リング、鋼板、又はMO板、8はセラミック製
断熱材、9は黒鉛ヒータ、10はパイロフィライト製断
熱材、11は六方晶窒化硼素成形体、12はテルミット
組成物、13は被焼結セラミック粉末である。
4 is a pyrophyllite heat insulating material, 5, 6.7 are each a copper plate, steel ring, steel plate, or MO plate, 8 is a ceramic heat insulating material, 9 is a graphite heater, 10 is a pyrophyllite heat insulating material, 11 is a hexagonal boron nitride compact, 12 is a thermite composition, and 13 is a ceramic powder to be sintered.

前記構成要素に於て、シリンダ1とピストン2は超高圧
発生容器を形成するものであり、パイロフィライト製ガ
スケット3は圧力シールの役割をもつ。
In the above-mentioned components, the cylinder 1 and the piston 2 form an ultra-high pressure generating container, and the pyrophyllite gasket 3 has the role of a pressure seal.

銅板5.鋼製リング6、鋼板又はMOO12セラミック
製断熱材8は黒鉛ヒータ9に電流を供給するための組立
物であり、黒鉛ヒータ9はテルミット構成物を着火する
と共に、被焼結セラミック粉末焼結用外部ヒータを構成
する。
Copper plate 5. A steel ring 6, steel plate or MOO12 ceramic insulation 8 is an assembly for supplying current to a graphite heater 9, which ignites the thermite composition and provides an external sintering ceramic powder to be sintered. Configure the heater.

六方晶窒化硼素成型体11は被焼結セラミ・ツク粉末1
3とチルミント組成物12との反応防止、及び黒鉛ヒー
タ9との電気的絶縁の働きをする。
The hexagonal boron nitride molded body 11 is made of ceramic powder 1 to be sintered.
3 and the chillmint composition 12, and serves as electrical insulation from the graphite heater 9.

前記超高圧発生装置は次のように作動される。The ultra-high pressure generator is operated as follows.

被焼結セラミック粉末13.テルミット組成物12及び
その他の構成物をシリンダ1内に配置し、ピストン2に
荷重を加え試料部に2万気圧の圧力を発生させる。
Ceramic powder to be sintered 13. The thermite composition 12 and other components are placed in the cylinder 1, and a load is applied to the piston 2 to generate a pressure of 20,000 atmospheres in the sample section.

対向したピストン2から黒鉛ヒータ9に通電し、試料室
を830〜920°Cに加熱し、テルミット組成物12
に着火させる。テルミット組成物の化学反応は次式の通
りである。
Electricity is applied to the graphite heater 9 from the opposed piston 2 to heat the sample chamber to 830 to 920°C, and the thermite composition 12
ignite it. The chemical reaction of the thermite composition is as follows.

2 A 1. + F e z Ox  −→A ji
! z Oz + 2 F e +204 K c a
 lテルミット組成物着火による発熱で短時間に焼結後
、圧力を除去して焼結体を回収する。
2 A 1. + F ez Ox −→A ji
! z Oz + 2 Fe +204 K c a
After the thermite composition is sintered in a short time due to heat generated by ignition, the pressure is removed and the sintered body is recovered.

被焼結セラミック粉末13及びチルミー/ ト組成物1
2の詳細については、酸素含有量0.5%。
Ceramic powder to be sintered 13 and chilled composition 1
For details of 2, oxygen content 0.5%.

平均粒径1.20 u mのTiC粉末1.6gを直径
12.8−の円板状に、Al粉末とFe、O,粉末をモ
ル比で2/1に混合したテルミット組成物42gを直径
30IIII11の円板状及び外径30mmX内径21
.7 rrmの円筒状に分割冷間成型し、前記超高圧発
生装置で焼結させた。この時のテルミット反応による発
熱量は40Kcaffiであった。
1.6 g of TiC powder with an average particle size of 1.20 um was shaped into a disc with a diameter of 12.8 mm, and 42 g of thermite composition, which was a mixture of Al powder, Fe, O, and powder at a molar ratio of 2/1, was shaped into a disc with a diameter of 12.8 mm. 30III11 disc shape and outer diameter 30mm x inner diameter 21
.. It was divided into 7 rrm cylindrical shapes and cold-molded, and sintered using the ultra-high pressure generator. The amount of heat generated by the thermite reaction at this time was 40 Kcaffi.

得られた焼結体の相対密度は99%以上であり。The relative density of the obtained sintered body was 99% or more.

組繊はNa C1構造用単一相の緻密な多情品質より成
る。
The braided fiber consists of a dense polymorphic quality of a single structural phase of NaCl.

SEM破面硯察によれば、結晶粒径は平均1μmで粒成
長は認められなかった。
According to SEM fracture surface inspection, the average crystal grain size was 1 μm, and no grain growth was observed.

本焼結体の電気伝導度は3 X 10’XΩ−1cm 
−1である。本焼結体を直径10胴、厚み2.5 mm
に放電加工し、ダイヤモンド仕上後、Cu製スポット電
極先端部に平電極として装着した。
The electrical conductivity of this sintered body is 3 x 10'XΩ-1cm
-1. This sintered body has a diameter of 10 and a thickness of 2.5 mm.
After being subjected to electrical discharge machining and diamond finishing, it was attached as a flat electrode to the tip of a Cu spot electrode.

本セラミック電極をロボットによるスポット溶接装置に
セットし、0.7mm普通鋼板、亜鉛メツキ鋼板共に二
枚重ね溶接を実施した。
This ceramic electrode was set in a spot welding device using a robot, and double welding was performed on both a 0.7 mm ordinary steel plate and a galvanized steel plate.

溶接速度は3秒/1点とし、50点連続溶接後、電極先
端部をSEM観察したがTiC焼結体電極表面は、殆ん
ど摩耗及び金属との反応相が認められず、連続スポット
溶接電極として優れた特性を備えていることが明らかと
なった。
The welding speed was 3 seconds/point, and after 50 points of continuous welding, the tip of the electrode was observed by SEM, and the surface of the TiC sintered electrode showed almost no wear or reaction phase with the metal, indicating continuous spot welding. It has become clear that the material has excellent properties as an electrode.

(実施例2) 被焼結セラミック粉末13として酸素含有量0.8%、
平均粒径1.3μmのCとNの原子比がl:1の炭窒化
チタンT i Ca s N a s粉末1.9gを用
い、チルミント熱量を40Kcafとした以外は実施例
1と同一条件で焼結体を作成した。
(Example 2) As the ceramic powder 13 to be sintered, the oxygen content was 0.8%,
The conditions were the same as in Example 1, except that 1.9 g of titanium carbonitride TiCaSNas powder with an average particle size of 1.3 μm and an atomic ratio of C and N of 1:1 was used, and the chill mint calorific value was 40 Kcaf. A sintered body was created.

得られた焼結体の相対密度は99%以上であり、SEM
による破面観察では、いかなる粒成長も認められない繊
密な固相焼結であった。
The relative density of the obtained sintered body was 99% or more, and the SEM
When the fracture surface was observed by , it was found to be dense solid-phase sintering with no grain growth observed.

実施例1と同様、平電極による普通鋼板、亜鉛鋼板の二
板重ね溶接を実施したが、1g耗、変質は起っておらず
良好な電極特性を備えていることが示された。
As in Example 1, welding of two ordinary steel plates and zinc steel plates was carried out using a flat electrode, but no 1g wear or deterioration occurred, indicating that the electrode had good properties.

(実施例3) 被焼結セラミック粉末13として酸素含有量0.7%、
平均粒径0.5 u mのTiN粉末2.0 gを用い
、チルミント熱量を30Lccalとした以外は実施例
1と同じ条件で焼結した。
(Example 3) As the ceramic powder to be sintered 13, the oxygen content was 0.7%,
Sintering was carried out under the same conditions as in Example 1, except that 2.0 g of TiN powder with an average particle size of 0.5 μm was used and the chill mint calorific value was 30 Lccal.

溶接テストにおけるTiNセラミック電極の安定性は実
施例1及び実施例2と同様良好な結果が得られた。
As for the stability of the TiN ceramic electrode in the welding test, similar to Examples 1 and 2, good results were obtained.

(実施例4) 被焼結セラミック粉末13として、酸素含有量0.6%
、窒素、炭素含有量がそれぞれ0.52%、0.49%
で平均粒径0.98μmの二硼化チタン粉体1.2 g
を円板状にしたものを使用する以外は実施例1と全く同
様に焼結した。
(Example 4) As the ceramic powder 13 to be sintered, the oxygen content is 0.6%.
, nitrogen and carbon content are 0.52% and 0.49% respectively
1.2 g of titanium diboride powder with an average particle size of 0.98 μm
Sintering was carried out in exactly the same manner as in Example 1, except that a disk-shaped material was used.

得られた焼結体は98%以上の相対理論密度を有してお
り、銀光沢をもつ破面のSEM観察によれば、平均結晶
粒径はll1m以下で焼結中の粒成長は認められない。
The obtained sintered body has a relative theoretical density of 98% or more, and according to SEM observation of the silver-glossy fracture surface, the average crystal grain size is less than 11 m, and no grain growth was observed during sintering. do not have.

本焼結体のマイクロビッカース硬度測定結果は29.4
2 G P aであり、単一相多結晶質焼結体としては
従来に報告例のない極めて硬いものであった。
The micro Vickers hardness measurement result of this sintered body is 29.4
2 GPa, and was extremely hard, which has never been reported as a single-phase polycrystalline sintered body.

電気抵抗測定のため5本焼結体に放電加工処理を施こし
、ダイヤモンド研磨により2×2×1Offl111の
角状サンプルを準備した。電気抵抗測定はサンプルに0
.1 ranrの白金線をスポット溶接し。
For electrical resistance measurement, five sintered bodies were subjected to electric discharge machining treatment, and a 2×2×1 Offl111 square sample was prepared by diamond polishing. Electrical resistance measurement is 0 on the sample
.. Spot weld platinum wire of 1 ranr.

直流41fI子法にて行った。It was performed using a DC 41fI method.

得られた体積抵抗値から計算した電気伝導度は3X10
’Ω−+ cm −+ であり、従来にない高い電気伝
導度を示した。
The electrical conductivity calculated from the obtained volume resistance value is 3X10
'Ω-+cm-+, showing unprecedentedly high electrical conductivity.

(比較例1) 不可避不純物である酸素、炭素の焼結体微細組織及び硬
度、電気伝導度に及ぼす効果を明らかにするため、酸素
濃度を1.2%、炭素濃度を0.8%と前記二硼化チタ
ン粉末を実施例4と同様な手法により、二硼化チタンの
焼結体を得た。
(Comparative Example 1) In order to clarify the effects of oxygen and carbon, which are unavoidable impurities, on the microstructure, hardness, and electrical conductivity of the sintered body, the oxygen concentration was 1.2%, the carbon concentration was 0.8%, and the A sintered body of titanium diboride was obtained using titanium diboride powder in the same manner as in Example 4.

得られた焼結体の緻密度は98%以上であったが、平均
粒径は3〜5μmへと異常成長し。
Although the density of the obtained sintered body was 98% or more, the average grain size grew abnormally to 3 to 5 μm.

硬度も著しく減少した。同様な手法で測定した体積抵抗
値から算出した電気伝導度は5XlO’Ω−’ Cl1
1− ’まで急激に低下した。
Hardness was also significantly reduced. The electrical conductivity calculated from the volume resistance value measured using a similar method is 5XlO'Ω-' Cl1
It rapidly decreased to 1-'.

比較例1に窒素1.0%含有させ、他は比較例1と全く
同様に焼結した二側化チタン焼結体では、硬さ、電気伝
導度共に著しく低下する傾向にあった。
In the bilateral titanium sintered body of Comparative Example 1, which was sintered in the same manner as Comparative Example 1 except for containing 1.0% nitrogen, both hardness and electrical conductivity tended to decrease significantly.

なお、結晶粒径が10〜15μmを越えると結晶粒界よ
り多数のクランクが入り自己崩壊するため、結晶粒径は
10μm以下にする必要がある。
Note that if the crystal grain size exceeds 10 to 15 μm, a large number of cranks will enter the grain boundaries and cause self-disintegration, so the crystal grain size must be 10 μm or less.

(発明の効果) 本発明に係るセラミック焼彷体は、テルミット反応の急
激な発熱を利用した焼結であるため。
(Effects of the Invention) The ceramic incinerator according to the present invention is sintered using the rapid heat generation of thermite reaction.

結晶粒径の成長を極めて小さく抑えることができ、更に
テルミット溶融物の静水圧により等方性のある多結晶質
組織となる。
The growth of crystal grain size can be suppressed to an extremely small size, and the hydrostatic pressure of the thermite melt creates an isotropic polycrystalline structure.

前記チルミント反応を利用したセラミック焼結体の特徴
に加え、焼結体中に含まれる不可避酸素濃度を特定範囲
内に管理することによって。
In addition to the characteristics of the ceramic sintered body that utilizes the Chirmint reaction, the unavoidable oxygen concentration contained in the sintered body is controlled within a specific range.

前記焼結体の理論密度、電気伝導度等を更に著しく向上
できるので、硬度、融点2耐熱性、耐油性、i′fft
+2耗性も大幅に増加させることができる。
Since the theoretical density, electrical conductivity, etc. of the sintered body can be further significantly improved, the hardness, melting point 2 heat resistance, oil resistance, i'fft
+2 wear can also be significantly increased.

従って、従来にない優れた電極j、j、各I・1電気接
点材料、エレクトロニクス部品をはしめ、化学工業部品
及び各種機械機器分野で広く利用することができ、産業
の発展に大きく寄与することができる。
Therefore, it can be widely used in the fields of chemical industry parts and various mechanical devices, and can greatly contribute to the development of industry. can.

【図面の簡単な説明】 第1図は本発明に使用する超高圧発生装置の1実施例を
示す口である。 ■・・・シリンダ     2・・・ピストン9・・・
黒鉛ヒータ 11・・・六方晶窒化硼素成形体 12・・・チルミント組成物 13・・・被焼結セラミック粉末 特許出願人 株式会社小松製作所 代理人 (弁理士)岡 1)和 喜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of an ultrahigh pressure generator used in the present invention. ■...Cylinder 2...Piston 9...
Graphite heater 11... Hexagonal boron nitride compact 12... Chillmint composition 13... Ceramic powder to be sintered Patent applicant Komatsu Ltd. Representative (patent attorney) Oka 1) Kazuyuki

Claims (5)

【特許請求の範囲】[Claims] (1)テルミット反応の発熱により焼結した,チタン化
合物単体又はチタン複化合物,あるいはそれらセラミッ
クの混合物より成る焼結体中の不可避酸素濃度を1%以
下にしたことを特徴とするチタン化合物焼結体。
(1) Sintering of a titanium compound characterized by reducing the inevitable oxygen concentration in the sintered body made of a single titanium compound, a titanium composite compound, or a ceramic mixture thereof to 1% or less, which is sintered by exothermic heat generated by thermite reaction. body.
(2)電極材として使用することを特徴とする特許請求
の範囲第1項記載のチタン化合物焼結体。
(2) The titanium compound sintered body according to claim 1, which is used as an electrode material.
(3)チタン化合物が炭化チタン,窒化チタンであり,
チタン複化合物が炭窒化チタンであり,焼結体の多結晶
質がNaCl構造相単一相で,相対理論密度が99%以
上である特許請求の範囲第1項記載のチタン化合物焼結
体。
(3) The titanium compound is titanium carbide or titanium nitride,
The titanium compound sintered body according to claim 1, wherein the titanium composite compound is titanium carbonitride, the polycrystalline substance of the sintered body has a single NaCl structural phase, and the relative theoretical density is 99% or more.
(4)チタン化合物が二硼化チタン単体,多結晶質より
成り,相対理論密度が98%以上である特許請求の範囲
第1項記載のチタン化合物焼結体。
(4) The titanium compound sintered body according to claim 1, wherein the titanium compound is made of simple titanium diboride, polycrystalline, and has a relative theoretical density of 98% or more.
(5)焼結体中の不純物が窒素濃度0.6%以下,炭素
濃度0.5%以下であることを特徴とする特許請求の範
囲第4項記載のチタン化合物焼結体。
(5) The titanium compound sintered body according to claim 4, wherein the impurities in the sintered body have a nitrogen concentration of 0.6% or less and a carbon concentration of 0.5% or less.
JP62254465A 1987-10-07 1987-10-07 Titanium compound sintered body Pending JPH0196063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254465A JPH0196063A (en) 1987-10-07 1987-10-07 Titanium compound sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254465A JPH0196063A (en) 1987-10-07 1987-10-07 Titanium compound sintered body

Publications (1)

Publication Number Publication Date
JPH0196063A true JPH0196063A (en) 1989-04-14

Family

ID=17265406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254465A Pending JPH0196063A (en) 1987-10-07 1987-10-07 Titanium compound sintered body

Country Status (1)

Country Link
JP (1) JPH0196063A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020243A1 (en) * 1993-03-08 1994-09-15 Micropyretics Heaters International Method for elimination of porosity in micropyretically synthesized products and densified, sinter-homogenized products made therefrom
US5420399A (en) * 1992-01-16 1995-05-30 University Of Cincinnati Electrical heating element, related composites, and composition and method for producing such products using dieless micropyretic synthesis
US5425496A (en) * 1993-03-09 1995-06-20 University Of Cincinnati Method for joining ceramic and metal-ceramic heating elements to electrical terminals by micropyretic synthesis, compositions for electrical terminals and heaters comprising the same
US5611953A (en) * 1994-05-13 1997-03-18 Micropyretics Heaters International, Inc. Sinter-homogenized heating products
JP2015014036A (en) * 2013-07-06 2015-01-22 日本タングステン株式会社 Electrode for resistance welding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420399A (en) * 1992-01-16 1995-05-30 University Of Cincinnati Electrical heating element, related composites, and composition and method for producing such products using dieless micropyretic synthesis
US5484568A (en) * 1992-01-16 1996-01-16 University Of Cincinnati Electrical heating element, related composites, and composition and method for producing such products using dieless micropyretic synthesis
WO1994020243A1 (en) * 1993-03-08 1994-09-15 Micropyretics Heaters International Method for elimination of porosity in micropyretically synthesized products and densified, sinter-homogenized products made therefrom
EP0641268A1 (en) * 1993-03-08 1995-03-08 Micropyretics Heaters Int Method for elimination of porosity in micropyretically synthesized products and densified, sinter-homogenized products made therefrom.
US5425496A (en) * 1993-03-09 1995-06-20 University Of Cincinnati Method for joining ceramic and metal-ceramic heating elements to electrical terminals by micropyretic synthesis, compositions for electrical terminals and heaters comprising the same
US5449886A (en) * 1993-03-09 1995-09-12 University Of Cincinnati Electric heating element assembly
US5611953A (en) * 1994-05-13 1997-03-18 Micropyretics Heaters International, Inc. Sinter-homogenized heating products
JP2015014036A (en) * 2013-07-06 2015-01-22 日本タングステン株式会社 Electrode for resistance welding

Similar Documents

Publication Publication Date Title
Lei et al. Structure and synthesis of MAX phase materials: a brief review
US5217583A (en) Composite electrode for electrochemical processing and method for using the same in an electrolytic process for producing metallic aluminum
EP1035231A1 (en) Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
US8647534B2 (en) Copper-carbon composition
BG60372B1 (en) Method for the preparation of ceramic composite mass and products produced in this manner
WO2001023641A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
JPH0791567B2 (en) Sintering method
Wang et al. Microstructural and mechanical properties of inconel 600/ZrB2-SiC joints brazed with AgCu/Cu-foam/AgCu/Ti multi-layered composite filler
JPH01152254A (en) Gradually changed multiphase oxycarburizing and oxycarbrizing/nitriding material
Monisha et al. Titanium boride coating by high power diode laser alloying of amorphous boron with titanium and its surface property investigations
JPH0196063A (en) Titanium compound sintered body
JP5181329B2 (en) Method for producing aluminum nitride-containing material
JPS63241818A (en) Manufacture of superconducting wire rod
JP2006001829A (en) Titanium carbide sintered compact or titanium silicon carbide sintered compact, its manufacturing method, its processing method or coating method and substrate for the same
US4889665A (en) Process for producing ultrafine particles of ceramics
Zhan et al. The mechanism of combustion synthesis of (TiCxNy-TiB2)/Ni from a Ni-Ti-C-BN system
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JP2004091241A (en) Tungsten carbide type super-hard material and manufacturing method thereof
Paris et al. Investigation of mechanically activated field-activated pressure-assisted synthesis processing parameters for producing dense nanostructured FeAl
JP2005519843A (en) Method for producing zirconium diboride powder
RU2184644C2 (en) Diamond-containing laminate composition material and method for making such material
JP2000144301A (en) Tungsten carbide sintered body and its production
JPWO2006103931A1 (en) Contains aluminum nitride
JPS582260B2 (en) Container material for metal evaporation and its manufacturing method