JP2004176061A - Producing method of propylene resin composition - Google Patents

Producing method of propylene resin composition Download PDF

Info

Publication number
JP2004176061A
JP2004176061A JP2003385148A JP2003385148A JP2004176061A JP 2004176061 A JP2004176061 A JP 2004176061A JP 2003385148 A JP2003385148 A JP 2003385148A JP 2003385148 A JP2003385148 A JP 2003385148A JP 2004176061 A JP2004176061 A JP 2004176061A
Authority
JP
Japan
Prior art keywords
resin composition
component
melt
weight
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003385148A
Other languages
Japanese (ja)
Inventor
Takao Kuno
貴雄 久野
Noriyuki Yada
徳行 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2003385148A priority Critical patent/JP2004176061A/en
Publication of JP2004176061A publication Critical patent/JP2004176061A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a producing method of a propylene resin composition which is excellent in rigidity, impact resistance, and particularly appearance of a molded product while transparency is maintained, and to provide an injection-molded product made from the propylene resin composition. <P>SOLUTION: The producing method of the propylene resin composition comprises adding (D) 0.0001-0.03 pt.wt. of an organic peroxide, to 100 pts.wt. of a mixture of (A) 45-96 pts.wt. of a propylene-ethylene randam copolymer having a melt flow rate (hereafter referred to as MFR) of 0.5-50 g/10 min and an ethylene content of 2.0-5.0 wt.%, (B) 2-15 pts.wt. of an ethylene-α-olefin copolymer having an MFR of 5-70 g/10 min and a density of 0.860-0.913 g/cm<SP>3</SP>, and being made by a metallocene catalyst, (C) 2-40 pts.wt. of a propylene single polymer having an MFR of 0.5-30 g/10 min, a ratio of the (D)/the (B) being ≤1/100, making a serial melt kneading or a segmentation melt kneading, and obtaining the resin composition having an MFR being by 1.2-3 times that of the (A). <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、ポリプロピレン樹脂組成物の製造方法および該樹脂組成物からなる成形品に関し、さらに詳しくは、透明性を維持しながら、従来品より剛性、耐衝撃性に優れ、かつ成形品外観に大幅に優れるポリプロピレン樹脂組成物の製造方法及び該樹脂組成物からなる射出成形品に関する。   The present invention relates to a method for producing a polypropylene resin composition and a molded article comprising the resin composition. More specifically, the present invention relates to a molded article made of the resin composition. The present invention relates to a method for producing a polypropylene resin composition having excellent heat resistance and an injection-molded article comprising the resin composition.

ポリプロピレン系樹脂を用いた食品容器及び医療用器具などの射出成形品は、薄肉化の達成などにより、従来と比べてその製造コストが低減されている。しかしながら、実用面において該射出成形品は、食品、飲料、薬剤もしくは薬液を充填した状態にて保冷される場合が多々あり、かつ、その状態において衝撃が加えられる可能性を有している。従って、食品容器及び医療用器具の耐衝撃性向上の要請は、非常に大きいものになりつつある。
一般的に、ポリプロピレン系樹脂に耐衝撃性を付与する方法としては、エチレン含有量を増加させたプロピレン・エチレンランダム共重合体やプロピレン・エチレンブロック共重合体を、薄肉の射出成形品の基材として用いることにより、耐衝撃性を改良することは可能である。しかしながら、高エチレン含量のプロピレン・エチレンランダム共重合体を基材として用いた薄肉の射出成形品は、著しく剛性が低下し実際の使用時の作業性に支障を生ずる場合があり、また、高エチレン含量のプロピレン・エチレンブロック共重合体を基材として用いた薄肉射出成形品は、透明性が極端に悪化し、内容物の視認性に支障を生じかねない。
BACKGROUND ART Injection molded products such as food containers and medical instruments using a polypropylene-based resin have been reduced in manufacturing cost as compared with the related art due to the achievement of thinning and the like. However, in practical use, the injection-molded article is often kept cool in a state filled with food, beverage, drug, or drug solution, and there is a possibility that an impact is applied in that state. Therefore, the demand for improving the impact resistance of food containers and medical instruments is becoming very large.
Generally, as a method for imparting impact resistance to a polypropylene resin, a propylene / ethylene random copolymer or a propylene / ethylene block copolymer having an increased ethylene content is used as a base material for a thin injection molded product. It is possible to improve the impact resistance by using as. However, a thin injection molded product using a propylene / ethylene random copolymer having a high ethylene content as a base material may have a remarkably reduced rigidity and may impair workability in actual use. A thin-walled injection-molded article using a propylene / ethylene block copolymer having a low content as a base material has extremely poor transparency, which may cause a problem in the visibility of the contents.

このような問題を解決する方法として、例えば、(a)プロピレン単独重合体またはエチレン含量が3重量%以下であるエチレン・プロピレンランダム共重合体、(b)エチレン含量が4〜15重量%であるエチレン・プロピレンランダム共重合体、および(c)有機過酸化物からなる混合物であり、これら樹脂合計量中のエチレン含量が、1.5〜4.5重量%であり、かつ樹脂合計量100重量部に対する有機過酸化物の混合割合が0.001〜0.25重量部であり、かつメルトフローインデックスが15g/10分以上であるプロピレン系重合体組成物に関する技術が開示されている(例えば、特許文献1参照)。しかしながら、該技術による組成物は、γ線照射後の引張弾性率、耐衝撃性などが用途分野における近年の要望レベルに対して十分でない。
また、ラジカル発生剤の存在下にメルトフローレート(以下、「MFR」と略すことがある。)を0.05〜10g/10分から10〜100g/10分に減成した、プロピレン単独重合体ブロック5〜95重量%およびエチレン含量2〜15重量%のプロピレン・エチレンランダム共重合体ブロック95〜5重量%を含有するプロピレン系ブロック共重合体100重量部、およびソルビトール系化合物0.05〜0.5重量部からなるポリプロピレン組成物が開示されている(例えば、特許文献2参照。)。しかしながら、このポリプロピレン組成物は、プロピレン単独重合体とプロピレン・エチレンランダム共重合体とのブロック共重合体を用いているので、薄肉射出成形品に用いるのに十分な透明性を有しないという問題がある。
As a method for solving such problems, for example, (a) a propylene homopolymer or an ethylene / propylene random copolymer having an ethylene content of 3% by weight or less, and (b) an ethylene content of 4 to 15% by weight. A mixture comprising an ethylene / propylene random copolymer and (c) an organic peroxide, wherein the ethylene content in the total amount of these resins is 1.5 to 4.5% by weight, and the total amount of the resins is 100% by weight. There is disclosed a technique relating to a propylene-based polymer composition in which a mixing ratio of an organic peroxide to parts by weight is 0.001 to 0.25 parts by weight, and a melt flow index is 15 g / 10 minutes or more (for example, Patent Document 1). However, the composition according to this technique has insufficient tensile elasticity after γ-ray irradiation, impact resistance, and the like, which are not sufficient with respect to recent demand levels in the application field.
A propylene homopolymer block in which a melt flow rate (hereinafter, may be abbreviated as “MFR”) is reduced from 0.05 to 10 g / 10 min to 10 to 100 g / 10 min in the presence of a radical generator. 100 parts by weight of a propylene block copolymer containing 95 to 5% by weight of a propylene / ethylene random copolymer block having 5 to 95% by weight and an ethylene content of 2 to 15% by weight, and 0.05 to 0.1% of a sorbitol compound. A polypropylene composition comprising 5 parts by weight is disclosed (for example, see Patent Document 2). However, since this polypropylene composition uses a block copolymer of a propylene homopolymer and a propylene / ethylene random copolymer, there is a problem that the polypropylene composition does not have sufficient transparency to be used for a thin injection molded product. is there.

さらに、これらの薄肉で透明な射出成形品においては、成形外観の優劣が目立ちやすく、ジェットラインや白むらが少しでも発生すると成形外観不良となり、優れた成形外観品質が得られにくい状況にあった。また、耐衝撃性改良の目的から、分散相を含有する樹脂組成物を用いる場合があるが、成形時の樹脂流動と金型界面に生ずる応力などにより、分散相との界面や分散相内部で剥離現象が発生し、外観に著しい不良が生じる場合がある。
したがって、透明性を維持しながら、従来品より剛性、耐衝撃性に優れ、かつ成形品外観に大幅に優れる薄肉射出成形品の開発が強く求められていた。
特開昭61−159437号公報 特開昭60−215047号公報
Furthermore, in these thin and transparent injection-molded products, the superiority of the molded appearance is conspicuous, and even if jet lines or white spots occur even a little, the molded appearance becomes poor, and it is difficult to obtain excellent molded appearance quality. . For the purpose of improving impact resistance, a resin composition containing a dispersed phase may be used.However, due to resin flow during molding and stress generated at the mold interface, the resin composition at the interface with the dispersed phase or inside the dispersed phase is used. A peeling phenomenon may occur, causing a significant defect in appearance.
Therefore, there has been a strong demand for the development of a thin-walled injection-molded product which is more excellent in rigidity and impact resistance than conventional products, and which is significantly excellent in appearance of the molded product, while maintaining transparency.
JP-A-61-159439 JP-A-60-215047

本発明の目的は、透明性を維持しながら、剛性、耐衝撃性に優れ、特に成形品外観に大幅に優れるポリプロピレン樹脂組成物の製造方法、及び該ポリプロピレン樹脂組成物からなる射出成形品を提供することにある。   An object of the present invention is to provide a method for producing a polypropylene resin composition which is excellent in rigidity and impact resistance while maintaining transparency, and which is particularly excellent in appearance of a molded article, and an injection molded article comprising the polypropylene resin composition. Is to do.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、透明性、剛性及び耐衝撃性に優れる樹脂組成物におけるジェットラインや白むらなどの成形品外観の不良原因が、エチレン・α−オレフィン共重合体を主とする分散相の架橋状態及び分散状態であることを解明し、分散相界面の架橋状況を適切に制御し、かつ微細な分散状態となるよう制御することにより、成形品の外観不良が改善することを見出した。すなわち、特定のプロピレン・エチレンランダム共重合体と特定のメタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体、及び特定のプロピレン単独重合体とを特定の比率で含有する混合物に対し有機過酸化物を特定の比率で添加し、かつ逐次溶融混練又は分割溶融混練してなるプロピレン樹脂組成物の製造方法により、本課題を解決できることを見出し本発明を完成した。   The present inventors have conducted intensive studies in order to solve the above problems, and found that the cause of poor appearance of molded articles such as jet lines and white spots in a resin composition having excellent transparency, rigidity and impact resistance is ethylene.・ By elucidating the cross-linking state and dispersion state of the dispersed phase mainly composed of α-olefin copolymer, by appropriately controlling the cross-linking state at the interface of the dispersed phase, and controlling the dispersion state to a fine dispersion state. It was found that the appearance defect of the molded article was improved. That is, an organic polymer is used for a mixture containing a specific propylene / ethylene random copolymer, an ethylene / α-olefin copolymer polymerized using a specific metallocene catalyst, and a specific propylene homopolymer at a specific ratio. The present inventors have found that this problem can be solved by a method for producing a propylene resin composition by adding an oxide at a specific ratio and sequentially melting and kneading or split melting and kneading, thereby completing the present invention.

すなわち、本発明の第1の発明によれば、(A)メルトフローレート(230℃、21.18N荷重)が0.5〜50g/10分であって、エチレン含有量が2.0〜5.0重量%であるプロピレン・エチレンランダム共重合体:45〜96重量部、
(B)メルトフローレート(190℃、21.18N荷重)が5〜70g/10分であって、密度が0.860〜0.913g/cmであるメタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体:2〜15重量部、及び
(C)メルトフローレート(230℃、21.18N荷重)が0.5〜30g/10分であるプロピレン単独重合体:2〜40重量部
を含有する混合物の(A)成分〜(C)成分の合計100重量部に対し、(D)有機過酸化物を0.0001〜0.03重量部、かつ(D)成分の(B)成分に対する量比が1/100以下となるよう添加し、逐次溶融混練又は分割溶融混練してなるプロピレン樹脂組成物の製造方法であって、プロピレン樹脂組成物のメルトフローレート(230℃、21.18N荷重)が(A)成分のメルトフローレートの1.2〜3.5倍であることを特徴とするプロピレン樹脂組成物の製造方法が提供される。
(ただし、(A)成分、(C)成分、ポリプロピレン樹脂組成物のメルトフローレートはJIS K6758に準拠して測定する値、(B)成分のメルトフローレートはJIS K6760に準拠して測定する値、密度はJIS K6760に準拠して測定する値である。)
That is, according to the first aspect of the present invention, (A) the melt flow rate (230 ° C., 21.18 N load) is 0.5 to 50 g / 10 min, and the ethylene content is 2.0 to 5 g. 0.0% by weight of a propylene / ethylene random copolymer: 45 to 96 parts by weight;
(B) Ethylene / α polymerized using a metallocene catalyst having a melt flow rate (190 ° C., 21.18 N load) of 5 to 70 g / 10 min and a density of 0.860 to 0.913 g / cm 3 -An olefin copolymer: 2 to 15 parts by weight, and (C) a propylene homopolymer having a melt flow rate (230 ° C, 21.18 N load) of 0.5 to 30 g / 10 min: 2 to 40 parts by weight. (D) 0.0001 to 0.03 parts by weight of the organic peroxide and 100 parts by weight of the total amount of the components (A) to (C) of the mixture, A method for producing a propylene resin composition which is added so that the amount ratio becomes 1/100 or less, and is sequentially melt-kneaded or dividedly melt-kneaded, wherein the melt flow rate of the propylene resin composition (230 ° C., 21.18N load) ) (A) the production method of the polypropylene resin composition, which is a 1.2 to 3.5 times the component melt flow rate is provided.
(However, the melt flow rate of the component (A), the component (C) and the polypropylene resin composition is a value measured according to JIS K6758, and the melt flow rate of the component (B) is a value measured according to JIS K6760. , Density is a value measured according to JIS K6760.)

また、本発明の第2の発明によれば、第1の発明において、逐次溶融混練が(B)成分と(C)成分を溶融混練し、その後(A)成分を溶融混練してなる方法であることを特徴とするプロピレン樹脂組成物の製造方法が提供される。   Further, according to the second invention of the present invention, in the first invention, the sequential melt-kneading is performed by melting and kneading the components (B) and (C), and then melt-kneading the component (A). A method for producing a propylene resin composition is provided.

また、本発明の第3の発明によれば、第1の発明において、分割溶融混練が前段に(B)成分と(C)成分を供給し溶融混練し、後段に(A)成分を供給し溶融混練してなる方法であることを特徴とするプロピレン樹脂組成物の製造方法が提供される。   Further, according to the third invention of the present invention, in the first invention, in the split melting and kneading, the components (B) and (C) are supplied and melt-kneaded in the first stage, and the component (A) is supplied in the second stage. A method for producing a propylene resin composition is provided, which is a method of melt-kneading.

また、本発明の第4の発明によれば、第1の発明において、分割溶融混練が前段に(A)成分と(C)成分を供給し溶融混練し、後段に(B)成分を供給し溶融混練してなる方法であることを特徴とするプロピレン樹脂組成物の製造方法が提供される。   Further, according to the fourth invention of the present invention, in the first invention, in the split melting and kneading, the components (A) and (C) are supplied and melt-kneaded in the first stage, and the component (B) is supplied in the second stage. A method for producing a propylene resin composition is provided, which is a method of melt-kneading.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、逐次溶融混練又は分割溶融混練における樹脂温度が200〜230℃であることを特徴とするプロピレン樹脂組成物の製造方法が提供される。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the resin temperature in the sequential melt-kneading or the split melt-kneading is 200 to 230 ° C. Is provided.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において製造されるプロピレン樹脂組成物からなる射出成形品が提供される。   According to a sixth aspect of the present invention, there is provided an injection-molded article comprising the propylene resin composition produced in any one of the first to fifth aspects.

また、本発明の第7の発明によれば、第6の発明において、成形品の切り出し断面における分散相の最大粒子径が1μm以下であることを特徴とする射出成形品が提供される。   According to a seventh aspect of the present invention, there is provided the injection-molded article according to the sixth aspect, wherein the maximum particle size of the dispersed phase in the cut-out cross section of the molded article is 1 μm or less.

本発明の製造方法により得られたプロピレン樹脂組成物は、透明性を維持しながら、剛性、耐衝撃性に優れ、特に成形品外観に大幅に優れるものである。また、該ポリプロピレン樹脂組成物を使用して得られる射出成形品は、透明性、剛性、耐衝撃性に優れ、かつ成形品外観が大幅に改善されるものである。   The propylene resin composition obtained by the production method of the present invention is excellent in rigidity and impact resistance while maintaining transparency, and is particularly excellent in appearance of a molded product. In addition, an injection-molded article obtained by using the polypropylene resin composition is excellent in transparency, rigidity and impact resistance, and significantly improves the appearance of the molded article.

以下に、本発明のプロピレン樹脂組成物の製造方法、該製造方法から得られる樹脂組成物及びその特徴、用途について詳細に説明する。
1.プロピレン樹脂組組成物の構成成分
(1)プロピレン・エチレンランダム共重合体((A)成分)
本発明で使用する(A)プロピレン・エチレンランダム共重合体のメルトフローレート(230℃、21.18N荷重で測定する値であり、以下MFRと略すことがある。)は、0.5〜50g/10分、好ましくは2.5〜40g/10分、より好ましくは4.5〜35g/10分である。MFRが0.5g/10分未満のものでは、所定の(D)有機過酸化物の添加量による減成を行っても薄肉成形に好適なMFRが得られず、射出成形時に不具合を生じる。MFRが0.5g/10分未満のものを用いて薄肉成形に好適なMFRを得るためには、多量の有機過酸化物を添加して分子量減成を実施しなければならず、その場合、成形品の臭気が悪化し実用面で不具合となったり、成形品の外観不良に繋がる場合がある。逆に、MFRが50g/10分を超えるものは、特に放射線滅菌処理を施すような衛生性を要求する分野において照射後の耐衝撃性を代表とする機械物性が不足する傾向がある。
ここで、(A)成分のMFRは、JIS K6758ポリプロピレン試験法のMFR(条件:230℃、荷重21.18N)に従って測定するものである。
また、(A)成分のMFRは、重合段階における重合温度や水素濃度により調製することができる。さらに重合後、有機過酸化物や放射線照射処理を用い分子量減成によりMFRを高くすることができる。本発明で用いる(A)成分のMFRは、重合段階において調製することが好ましい。
Hereinafter, the production method of the propylene resin composition of the present invention, the resin composition obtained by the production method, its features, and applications will be described in detail.
1. Constituents of propylene resin composition (1) Propylene / ethylene random copolymer ((A) component)
The melt flow rate of the (A) propylene / ethylene random copolymer used in the present invention (a value measured at 230 ° C. under a load of 21.18 N, sometimes abbreviated as MFR hereinafter) is 0.5 to 50 g. / 10 minutes, preferably 2.5 to 40 g / 10 minutes, more preferably 4.5 to 35 g / 10 minutes. When the MFR is less than 0.5 g / 10 minutes, even if the predetermined amount of (D) organic peroxide is added, MFR suitable for thin-wall molding cannot be obtained, and a problem occurs during injection molding. In order to obtain an MFR suitable for thin-wall molding using a material having an MFR of less than 0.5 g / 10 minutes, a large amount of an organic peroxide must be added to carry out molecular weight reduction. In some cases, the odor of the molded product is deteriorated, causing a problem in practical use, or leading to poor appearance of the molded product. Conversely, when the MFR exceeds 50 g / 10 min, mechanical properties such as impact resistance after irradiation tend to be insufficient particularly in a field requiring hygiene such as radiation sterilization.
Here, the MFR of the component (A) is measured according to the MFR (conditions: 230 ° C., load: 21.18 N) of the JIS K6758 polypropylene test method.
The MFR of the component (A) can be adjusted according to the polymerization temperature and the hydrogen concentration in the polymerization stage. Further, after polymerization, MFR can be increased by molecular weight reduction using an organic peroxide or radiation irradiation treatment. The MFR of the component (A) used in the present invention is preferably prepared in the polymerization stage.

本発明で使用する(A)成分中のエチレン含有量は、2.0〜5.0重量%、好ましくは3.0〜4.5重量%である。プロピレン・エチレンランダム共重合体中のエチレン含量が2.0重量%未満のものでは、十分な耐衝撃性が得られず、一方、エチレン含量が5.0重量%を超えるものでは、十分な剛性が得られない。   The ethylene content in the component (A) used in the present invention is 2.0 to 5.0% by weight, preferably 3.0 to 4.5% by weight. If the ethylene content in the propylene / ethylene random copolymer is less than 2.0% by weight, sufficient impact resistance cannot be obtained. On the other hand, if the ethylene content exceeds 5.0% by weight, sufficient rigidity is not obtained. Can not be obtained.

(A)成分は、例えば、高立体規則性触媒を用いて、スラリー重合、気相重合あるいは塊状重合により製造される。重合方式としては、バッチ重合、連続重合のいずれの方式をも採用することができるが、生産性の観点より連続重合が好ましい。上記高立体規則性触媒としては、例えば、塩化マグネシウムに四塩化チタン、有機酸ハライドおよび有機珪素化合物を接触させて形成した固体成分に、有機アルミニウム化合物成分を組合わせた触媒を用いることができる。   The component (A) is produced by, for example, slurry polymerization, gas phase polymerization, or bulk polymerization using a highly stereoregular catalyst. As the polymerization method, any of a batch polymerization method and a continuous polymerization method can be adopted, but the continuous polymerization method is preferred from the viewpoint of productivity. As the above-mentioned highly stereoregular catalyst, for example, a catalyst obtained by combining an organic aluminum compound component with a solid component formed by contacting titanium tetrachloride, an organic acid halide and an organic silicon compound with magnesium chloride can be used.

(2)メタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体((B)成分)
本発明で使用する(B)メタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体は、ポリプロピレン樹脂組成物の透明性を維持しつつ耐衝撃性を付与する機能を有する。
(B)成分は、エチレンと炭素数3〜12のα−オレフィン、例えば、プロピレン、ブテン−1、4−メチル−ペンテン−1、ヘキセン−1、オクテン−1等との共重合体である。炭素数3〜12のα−オレフィンは、1種類または2種類以上であってもよい。
(B)成分の、190℃、21.18N荷重で測定するMFRは、5〜70g/10分、好ましくは6〜60g/10分、より好ましくは8〜50g/10分である。MFRが5g/10分未満のものでは、ポリプロピレン成分中への分散が困難となり、透明性を良好にすることが困難である。逆に、MFRが70g/10分を超えるものは、ポリプロピレン成分との溶融粘度差が大きくなり過ぎることに起因し、造粒持の均一分散が困難となる他、造粒機内もしくは成形機内で滞留を起こし易いため、耐衝撃性改良効果を得られないかもしくは損なう場合があり、また、滞留に伴う色調外観の悪化などに繋がる場合があり好ましくない。
ここで、(B)成分のMFRは、JIS K6760に準拠し、190℃、荷重21.18Nにて測定するものである。
(B)成分のMFRは、重合段階における重合温度や水素濃度により調製することができる。さらに重合後、有機過酸化物や放射線照射処理により分子量を高くすることができる。本発明で用いる(B)成分のMFRは、重合段階において調製することが好ましい。
(2) Ethylene / α-olefin copolymer polymerized using metallocene catalyst (component (B))
The ethylene / α-olefin copolymer polymerized using the metallocene catalyst (B) used in the present invention has a function of imparting impact resistance while maintaining the transparency of the polypropylene resin composition.
The component (B) is a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms, for example, propylene, butene-1, 4-methyl-pentene-1, hexene-1, octene-1, and the like. The α-olefin having 3 to 12 carbon atoms may be one kind or two or more kinds.
The MFR of the component (B) measured at 190 ° C. and a load of 21.18 N is 5 to 70 g / 10 min, preferably 6 to 60 g / 10 min, and more preferably 8 to 50 g / 10 min. When the MFR is less than 5 g / 10 minutes, dispersion in the polypropylene component becomes difficult, and it is difficult to improve transparency. Conversely, when the MFR exceeds 70 g / 10 minutes, the difference in melt viscosity from the polypropylene component becomes too large, which makes it difficult to uniformly disperse the granules, and also causes the granules to stay in the granulator or the molding machine. , The effect of improving the impact resistance may not be obtained or may be impaired, and the appearance of the color tone may be deteriorated due to stagnation, which is not preferable.
Here, the MFR of the component (B) is measured at 190 ° C. under a load of 21.18 N in accordance with JIS K6760.
The MFR of the component (B) can be adjusted according to the polymerization temperature and the hydrogen concentration in the polymerization stage. Further, after polymerization, the molecular weight can be increased by an organic peroxide or irradiation treatment. The MFR of the component (B) used in the present invention is preferably prepared in the polymerization stage.

また、(B)成分の密度は、0.860〜0.913g/cm、好ましくは0.870〜0.910g/cm、より好ましくは0.880〜0.905g/cmである。
密度が、0.860g/cm未満のメタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体は、透明性や剛性を著しく悪化せしめる。一方、密度が0.913g/cmを超えるメタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体は、本発明の樹脂組成物系では、十分な耐衝撃性改良効果もなく、透明性さえも損なう。
ここで、密度は、JIS K6760に準拠して測定する値である。
(B)成分の密度は、エチレンとα−オレフィンの組成比により調製することができる。
The density of the component (B) is 0.860 to 0.913 g / cm 3 , preferably 0.870 to 0.910 g / cm 3 , and more preferably 0.880 to 0.905 g / cm 3 .
An ethylene / α-olefin copolymer polymerized using a metallocene catalyst having a density of less than 0.860 g / cm 3 significantly deteriorates transparency and rigidity. On the other hand, an ethylene / α-olefin copolymer polymerized by using a metallocene catalyst having a density exceeding 0.913 g / cm 3 has no sufficient effect of improving impact resistance in the resin composition of the present invention, and has a high transparency. Even spoil.
Here, the density is a value measured according to JIS K6760.
The density of the component (B) can be adjusted by the composition ratio of ethylene and α-olefin.

さらに、本発明で使用する(B)成分は、示差走査熱量計(DSC)による10℃/分の降温サーモグラムでの結晶化ピーク温度(Tc)が、2つ以上観測されるものであることが好ましい。
また、結晶化ピーク温度(Tc)の高温側(Tc2:高温結晶化ピーク温度)と低温側(Tcl:低温結晶化ピーク温度)の差は、好ましくは5℃以上、さらに好ましくは8℃以上である。
また、Tc2は、好ましくは110℃以下、さらに好ましくは100℃以下、望ましくは90℃以下であり、Tclは、好ましくは70℃以下、さらに好ましくは60℃以下、望ましくは50℃以下である。
Further, the component (B) used in the present invention is one in which two or more crystallization peak temperatures (Tc) are observed in a temperature-lowering thermogram at 10 ° C./min by a differential scanning calorimeter (DSC). Is preferred.
The difference between the high temperature side (Tc2: high temperature crystallization peak temperature) and the low temperature side (Tcl: low temperature crystallization peak temperature) of the crystallization peak temperature (Tc) is preferably 5 ° C. or more, more preferably 8 ° C. or more. is there.
Further, Tc2 is preferably 110 ° C. or lower, more preferably 100 ° C. or lower, and desirably 90 ° C. or lower, and Tcl is preferably 70 ° C. or lower, more preferably 60 ° C. or lower, and desirably 50 ° C. or lower.

また、本発明で使用する(B)成分は、α−オレフィンの炭素数(c)および密度(d)から下記式で求められる温度T1に対して、下記式で求められる温度T2以上の温度上昇溶融分離(TREF)による全溶出量は、全溶出分の5重量%以上であることが好ましい。
Tl(℃)=−1097+c×2.3+d×1270
T2(℃)=(Tl+30)
The component (B) used in the present invention has a temperature rise of not less than the temperature T2 obtained from the following equation with respect to the temperature T1 obtained from the following equation from the carbon number (c) and the density (d) of the α-olefin. The total elution amount by melt separation (TREF) is preferably at least 5% by weight of the total elution.
Tl (° C.) = − 1097 + c × 2.3 + d × 1270
T2 (° C.) = (Tl + 30)

なお、温度上昇溶離分別(TREF:Temperature Rising Elution Fraction)による測定は、「Journal of Applied Po1ymer Science、第26巻、第4217〜4231頁(1981年)」および「高分子論文集 2PIC09(1985年)」に記載されている原理に基づき、以下のようにして行われる。
まず、測定の対象とするポリマーを溶媒中で完全に溶解させる。その後、冷却して不活性担体表面に薄いポリマー層を形成させる。かかるポリマー層は、結晶し易いものが内側(不活性担体表面に近い側)に、結晶しにくいものが外側に形成されてなるものである。次に温度を連続または段階的に上昇させると、低温度段階では、対象のポリマー組成中の非晶部分、すなわちポリマーの持つ短鎖分岐の分岐度の多いものから溶出し、温度が上昇するとともに徐々に分岐度の少ないものが溶出し、最終的に分岐のない直鎖状の部分が溶出し測定は終了する。かかる温度での溶出成分の濃度を検出し、その溶出量と溶出温度によって描かれるグラフによってポリマーの組成分布を見ることができるものである。
The measurement by temperature rising elution fractionation (TREF: Temperature Rising Fraction) is described in “Journal of Applied Polymer Science, Vol. 26, pp. 4217-4231 (1981)”, and “Polymer Journal 2PIC09 (1981)” (1985). Is performed as follows on the basis of the principle described in "1.
First, a polymer to be measured is completely dissolved in a solvent. Thereafter, cooling is performed to form a thin polymer layer on the surface of the inert carrier. Such a polymer layer is formed such that an easily crystallizable material is formed on the inner side (closer to the surface of the inert carrier), and a hardly crystallizable material is formed on the outer side. Next, when the temperature is increased continuously or stepwise, in the low temperature stage, the polymer is eluted from the amorphous portion in the target polymer composition, that is, the polymer having a high degree of short-chain branching, and the temperature increases. The one with a low degree of branching gradually elutes, and finally the linear part without branching elutes, and the measurement is completed. The concentration of the eluted component at such a temperature is detected, and the composition distribution of the polymer can be seen from a graph drawn by the amount of the eluted and the elution temperature.

(3)プロピレン単独重合体((C)成分)
本発明で使用する(C)プロピレン単独重合体は、ポリプロピレン樹脂組成物に剛性及び成形サイクル性を付与する機能を有する。
(C)成分の230℃、21.18N荷重で測定したMFRは、0.5〜30g/10分、好ましくは1.0〜25g/10分、より好ましくは2.0〜20g/10分である。MFRが0.5g/10分未満のものでは、良好な成形性を得るために大幅な分子量減成が必要となり、その面でも経済性を損なう。逆に、MFRが30g/10分を超えるものは、成形品の特に放射線滅菌処理後における耐衝撃性を損なう。
ここで、(C)成分のMFRは、JIS K6758ポリプロピレン試験法のMFR(条件:230℃、荷重21.18N)に従って測定する。
(C)成分のMFRは、重合段階における重合温度や水素濃度により調製することができる。さらに重合後、有機過酸化物や放射線照射処理を用い分子量減成によりMFRを高くすることができる。本発明で用いる(C)成分のMFRは、重合段階において調製することが好ましい。
(3) Propylene homopolymer (component (C))
The propylene homopolymer (C) used in the present invention has a function of imparting rigidity and molding cycle properties to the polypropylene resin composition.
The MFR of the component (C) measured at 230 ° C. and a load of 21.18 N is 0.5 to 30 g / 10 min, preferably 1.0 to 25 g / 10 min, more preferably 2.0 to 20 g / 10 min. is there. If the MFR is less than 0.5 g / 10 minutes, a significant reduction in molecular weight is required to obtain good moldability, which also impairs economic efficiency. Conversely, those having an MFR of more than 30 g / 10 minutes impair the impact resistance of molded articles, especially after radiation sterilization.
Here, the MFR of the component (C) is measured according to the MFR of the JIS K6758 polypropylene test method (condition: 230 ° C., load: 21.18 N).
The MFR of the component (C) can be adjusted according to the polymerization temperature and the hydrogen concentration in the polymerization stage. Further, after polymerization, MFR can be increased by molecular weight reduction using an organic peroxide or radiation irradiation treatment. The MFR of the component (C) used in the present invention is preferably prepared in the polymerization stage.

(4)原料樹脂混合比
本発明の原料樹脂混合物は、(A)成分〜(C)成分の合計を100重量部として、(A)成分を45〜96重量部、好ましくは57〜92重量部、より好ましくは64〜88重量部、(B)成分を2〜15重量部、好ましくは2〜12重量部、より好ましくは3〜10重量部、および(C)成分を2〜40重量部、好ましくは5〜35重量部、より好ましくは10〜30重量部含有する。
(A)成分の含有量が45重量部未満であると耐衝撃性と透明性が不足するとともに、成形性に不具合を生ずる場合がある。一方、(A)成分の含有量が96重量部を超えると(B)成分を配合することにより達成され得る耐衝撃性を十分に向上せしめることが困難となるか、または、(C)成分の配合により達成され得る良好な成形サイクル性が得られなくなる。
(B)成分の含有量が15重量部を超えると、剛性が不足するとともに、成形時の樹脂流動と金型界面に生ずる応力などにより、エチレン・α−オレフィン共重合体からなる分散相との界面や分散相内部で剥離現象が発生し、外観に著しい不良が生じ易くなり、成形性、特に外観に不具合を生ずる場合がある。一方、(B)成分の含有量が2重量部未満であると、耐衝撃性を十分に向上せしめることが不可能となる。
(C)成分の含有量が2重量部未満であると、剛性や成形サイクル性の改良効果が認められず、一方、(C)成分の含有量が40重量部を超えると、耐衝撃性や透明性が実用面で好適ではなくなる場合が多く好ましくない。
(4) Raw Material Resin Mixing Ratio In the raw material resin mixture of the present invention, the component (A) is 45 to 96 parts by weight, preferably 57 to 92 parts by weight, based on 100 parts by weight of the total of the components (A) to (C). More preferably 64 to 88 parts by weight, the component (B) 2 to 15 parts by weight, preferably 2 to 12 parts by weight, more preferably 3 to 10 parts by weight, and the component (C) 2 to 40 parts by weight, The content is preferably 5 to 35 parts by weight, more preferably 10 to 30 parts by weight.
When the content of the component (A) is less than 45 parts by weight, impact resistance and transparency may be insufficient, and a problem may occur in moldability. On the other hand, when the content of the component (A) exceeds 96 parts by weight, it becomes difficult to sufficiently improve the impact resistance that can be achieved by blending the component (B), or Good molding cycle properties that can be achieved by blending cannot be obtained.
If the content of the component (B) exceeds 15 parts by weight, the rigidity is insufficient, and the resin and the dispersed phase composed of an ethylene / α-olefin copolymer are mixed with each other due to the resin flow during molding and the stress generated at the mold interface. A peeling phenomenon occurs at the interface or inside the dispersed phase, and a remarkable defect tends to occur in the appearance, which may cause a problem in the moldability, particularly in the appearance. On the other hand, when the content of the component (B) is less than 2 parts by weight, it becomes impossible to sufficiently improve the impact resistance.
When the content of the component (C) is less than 2 parts by weight, the effect of improving rigidity and molding cycleability is not recognized, while when the content of the component (C) exceeds 40 parts by weight, impact resistance and In many cases, transparency is not suitable in practical use, which is not preferable.

(5)有機過酸化物((D)成分)
本発明のポリプロピレン樹脂組成物においては、その製造時に、上記原料樹脂混合物(A)成分〜(C)成分の合計100重量部に、(D)有機過酸化物を0.0001〜0.03重量部、好ましくは0.001〜0.028重量部、より好ましくは0.005〜0.025重量部、かつ(B)成分に対する量比が1/100以下、好ましくは0.5/100〜1/100、より好ましくは0.6/100〜0.9/100となるよう添加して用いる。
(D)成分が、上記原料樹脂混合物(A)成分〜(C)成分の合計100重量部に対して、0.0001重量部未満であると、薄肉成形に好適な流動特性が得られない場合や放射線滅菌処理の後の機械物性が短期間に著しく悪化する不具合に繋がり、0.03重量部を超えると、成形品の臭気が悪化し実用面で不具合となったり、(B)成分の架橋度が必要以上に高くなってしまい成形品の外観不良に繋がる場合がある。
さらに(D)成分が、(B)成分に対する量比において1/100を超えると、(B)成分の架橋度が必要以上に高くなってしまい成形品の外観不良に繋がる。
(5) Organic peroxide ((D) component)
In the polypropylene resin composition of the present invention, (D) an organic peroxide is added in an amount of 0.0001 to 0.03 parts by weight to a total of 100 parts by weight of the raw material resin mixture (A) to (C) during the production thereof. Parts, preferably 0.001 to 0.028 parts by weight, more preferably 0.005 to 0.025 parts by weight, and the amount ratio to the component (B) is 1/100 or less, preferably 0.5 / 100 to 1 / 100, more preferably 0.6 / 100 to 0.9 / 100.
If the component (D) is less than 0.0001 part by weight based on 100 parts by weight of the total of the raw material resin mixture (A) to (C), flow characteristics suitable for thin-wall molding cannot be obtained. If the amount exceeds 0.03 parts by weight, the odor of the molded product deteriorates, causing problems in practical use, and crosslinking of the component (B). The degree may be higher than necessary, which may lead to poor appearance of the molded product.
Further, when the amount ratio of the component (D) to the component (B) exceeds 1/100, the degree of crosslinking of the component (B) becomes unnecessarily high, leading to poor appearance of a molded article.

(D)成分の具体例としては、例えば、メチルエチルケトンパーオキシド、t−ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキシド、クメンヒドロパーオキシド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキシン−3、ジ−t−ブチルパーオキシフタレートなどが挙げられる。好ましくは、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキシン−3である。   Specific examples of the component (D) include, for example, methyl ethyl ketone peroxide, t-butyl peroxyisopropyl carbonate, dicumyl peroxide, cumene hydroperoxide, 2,5-dimethyl-2,5-di (t-butyl peroxide). Oxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexine-3, di-t-butylperoxyphthalate, and the like. Preferred are 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-butylperoxy) hexine-3.

(6)任意成分
本発明で用いる原料樹脂には、本発明の効果を著しく損なわない範囲において、他の付加成分を任意に配合することができる。
任意成分としては、ポリエチレン、上記(B)成分以外のエチレン・α−オレフィン共重合体などの樹脂成分や各種添加剤が挙げられる。
本発明で任意に使用することのできるポリエチレンは、エチレンの単独重合体または、炭素数3〜12のα−オレフィンを共重合成分とする共重合体であって、190℃、21.18N荷重で測定したMFRが、好ましくは10〜50g/10分、より好ましくは13〜40g/10分、さらに好ましくは15〜30g/10分である。MFRが10g/10分未満のものでは、分散不良などによる透明性の悪化に繋がる場合がある。逆に、MFRが50g/10分を超えるものは、本系で目的とする物性改良に寄与が少なく、成形性や外観を損なう傾向があり好ましくない。
また、好ましいポリエチレンの密度は、0.940〜0.980g/cm、より好ましくは0.947〜0.969g/cm、さらに好ましくは0.951〜0.963g/cmである。密度が、0.940g/cm未満のポリエチレンは、核剤的性質が不足し、物性改良効果が不十分となる傾向があり好ましくない。一方、密度が0.980g/cmを超えるポリエチレンは、耐衝撃性を損なう可能性があり好ましくない。
その他の任意成分としては、通常のポリオレフィン樹脂に用いられる樹脂添加剤、例えば、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、中和剤、光安定剤、紫外線吸収剤、造核剤、透明核剤、滑剤、スリップ剤、帯電防止剤、難燃剤、金属不活性剤、充填剤などが挙げられる。これらの付加成分の配合量は、一般に、上記原料樹脂混合物100重量部に対して、0.001〜2重量部程度、好ましくは0.01〜0.8重量部程度である。
(6) Optional Components The raw resin used in the present invention may optionally contain other additional components as long as the effects of the present invention are not significantly impaired.
Examples of the optional component include a resin component such as polyethylene and an ethylene / α-olefin copolymer other than the component (B), and various additives.
Polyethylene that can be optionally used in the present invention is a homopolymer of ethylene or a copolymer containing an α-olefin having 3 to 12 carbon atoms as a copolymer component, and is heated at 190 ° C. and a load of 21.18 N. The measured MFR is preferably 10 to 50 g / 10 minutes, more preferably 13 to 40 g / 10 minutes, and still more preferably 15 to 30 g / 10 minutes. If the MFR is less than 10 g / 10 minutes, transparency may be deteriorated due to poor dispersion or the like. Conversely, those having an MFR of more than 50 g / 10 minutes are not preferred because they do not contribute much to the improvement of the desired physical properties in the present system and tend to impair moldability and appearance.
The preferred density of polyethylene is 0.940 to 0.980 g / cm 3 , more preferably 0.947 to 0.969 g / cm 3 , and still more preferably 0.951 to 0.963 g / cm 3 . Polyethylene having a density of less than 0.940 g / cm 3 is not preferred because nucleating agent properties tend to be insufficient and the effect of improving physical properties tends to be insufficient. On the other hand, polyethylene having a density of more than 0.980 g / cm 3 is not preferred because impact resistance may be impaired.
Other optional components include resin additives used in ordinary polyolefin resins, for example, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, neutralizing agents, light stabilizers, ultraviolet absorbers, Examples include nucleating agents, transparent nucleating agents, lubricants, slip agents, antistatic agents, flame retardants, metal deactivators, and fillers. The amount of these additional components is generally about 0.001 to 2 parts by weight, preferably about 0.01 to 0.8 parts by weight, based on 100 parts by weight of the raw resin mixture.

2.ポリプロピレン樹脂組成物の製造
(1)製造方法
本発明のポリプロピレン樹脂組成物の製造方法は、上記の各成分、および必要に応じて添加剤を、上記割合にて配合して攪拌混合し、混練・造粒する際、(B)成分が混練に伴い微粒子化する段階におけるサイズと、その状態における有機過酸化物の接触が必要最低限となるよう、逐次溶融混練又は分割溶融混練の方法により製造する必要がある。
逐次溶融混練又は分割溶融混練による製造方法(造粒方法)でなく、一括投入で混練造粒すると、架橋処理の後に微粒子化された(B)成分の架橋による分散相が生じ、成形品において巨大な凝集物を生じやすい傾向となり、透明性や成形品外観などの不具合が生じる。
2. Production of Polypropylene Resin Composition (1) Production Method In the production method of the polypropylene resin composition of the present invention, the above-mentioned components and, if necessary, additives are blended in the above-mentioned proportions, mixed by stirring, and kneaded. At the time of granulation, the component (B) is manufactured by a method of sequential melt-kneading or split melt-kneading so that the size at the stage where the component (B) becomes fine particles as a result of kneading and the contact of the organic peroxide in that state are minimized. There is a need.
When kneading and granulating by batch injection instead of the production method (granulation method) by sequential melt-kneading or split melt-kneading, a dispersed phase is generated by crosslinking of the finely divided component (B) after crosslinking treatment, resulting in a huge molded product. Agglomerates tend to occur, resulting in problems such as transparency and appearance of molded articles.

逐次溶融混練による造粒の好ましい形態は、先ず(B)成分と(C)成分を溶融混練し、その後(A)成分を溶融混練してなる逐次溶融混練により製造されるプロピレン樹脂組成物の製造方法である。ここで(D)成分の有機過酸化物は、(A)成分とともに後段で添加することが好ましい。
(B)成分と(C)成分を溶融混練した後、造粒したものをマスターバッチとして用い、別に準備する(A)成分および(D)成分の有機過酸化物を加えて、溶融混練することも好ましい。
A preferred form of granulation by sequential melt-kneading is to produce a propylene resin composition produced by sequential melt-kneading, in which the components (B) and (C) are first melt-kneaded, and then the component (A) is melt-kneaded. Is the way. Here, the organic peroxide of the component (D) is preferably added at a later stage together with the component (A).
After melt-kneading the components (B) and (C), the granulated product is used as a master batch, and separately prepared organic peroxides of the components (A) and (D) are added and melt-kneaded. Is also preferred.

分割溶融混練による造粒の好ましい形態の一つは、先ず前段に(B)成分と(C)成分を供給し溶融混練し、後段に(A)成分を供給し溶融混練してなる分割溶融混練により製造されるプロピレン樹脂組成物の製造方法である。ここで、(D)成分の有機過酸化物は、(A)成分とともに後段で添加することが好ましい。
また、分割溶融混練による造粒の好ましい形態の一つは、先ず前段に(A)成分と(C)成分を供給し溶融混練し、後段に(B)成分を供給し溶融混練してなる分割溶融混練により製造されるプロピレン樹脂組成物の製造方法である。ここで、(D)成分の有機過酸化物は、(A)成分及び(C)成分とともに前段で添加する(主投入)ことが好ましい。(B)成分を後段のフィード孔から、(D)成分の有機過酸化物の分解が進んだ段階で供給することが好ましい。
One of the preferred forms of granulation by split melt-kneading is to first melt-knead the components (B) and (C) and supply the component (A) to the first stage and melt-knead the components. Is a method for producing a propylene resin composition produced by the method described above. Here, the organic peroxide of the component (D) is preferably added at a later stage together with the component (A).
One preferred form of granulation by split melt-kneading is to first supply components (A) and (C) and melt-knead them in the first stage, and then feed and melt-knead component (B) in the second stage. This is a method for producing a propylene resin composition produced by melt-kneading. Here, it is preferable that the organic peroxide of the component (D) is added (main charging) in the former stage together with the components (A) and (C). It is preferable to supply the component (B) from the feed hole at the stage after the decomposition of the organic peroxide of the component (D) has advanced.

上記のプロピレン樹脂組成物の製造方法において、逐次溶融混練又は分割溶融混練における樹脂温度は、好ましくは200〜230℃、より好ましくは220〜230℃である。樹脂温度が、200℃より低いと有機過酸化物の必要量が多くなるか、もしくは、薄肉成形に好適なMFRまでの調整が困難となる場合、または、未分解で残留する(D)成分の有機過酸化物が成形段階で(B)成分の架橋処理に繋がり成形品概観が不良となるなどの傾向があり好ましくなく、230℃より高いと(A)成分や(C)成分の熱劣化に伴う臭気の悪化や(B)成分の必要以上の架橋度向上と分散状態不良の傾向があり好ましくない。   In the above method for producing a propylene resin composition, the resin temperature in the sequential melt-kneading or the split melt-kneading is preferably from 200 to 230 ° C, more preferably from 220 to 230 ° C. If the resin temperature is lower than 200 ° C., the required amount of the organic peroxide increases, or it becomes difficult to adjust the MFR to a value suitable for thin-wall molding, or the component (D) remaining undecomposed remains. The organic peroxide tends to lead to the crosslinking treatment of the component (B) at the molding stage, and the appearance of the molded product tends to be poor. This is not preferred because the odor tends to worsen, the degree of crosslinking of the component (B) becomes more than necessary, and the dispersion state tends to be poor.

プロピレン樹脂組成物の逐次溶融混練又は分割溶融混練に使用する混練機は、一軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、ニーダーなどの通常の混練機を用いて混練・造粒することができる。逐次溶融混練により製造する場合には、後段の原材料樹脂の投入しやすさから二軸押出機を用いることが好ましい。   The kneader used for sequential melt kneading or split melt kneading of the propylene resin composition is kneaded using a usual kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a roll mixer, a Brabender plastograph, and a kneader.・ It can be granulated. In the case of manufacturing by sequential melt-kneading, it is preferable to use a twin-screw extruder from the viewpoint of easiness of feeding a raw material resin at a later stage.

(2)プロピレン樹脂組成物
本発明のプロピレン樹脂組成物の製造方法に基づき製造されるポリプロピレン樹脂組成物は、透明性を維持しながら、従来品より剛性、耐衝撃性に優れ、かつ成形品外観に大幅に優れるものである。
上記のいずれかのプロピレン樹脂組成物の製造方法に基づき製造されたプロピレン樹脂組成物のMFR(230℃、21.18N荷重)は、(A)成分のMFRの1.2〜3.5倍、好ましくは1.4〜3.2倍、より好ましくは2.0〜3.0倍である。プロピレン樹脂組成物のMFRが、(A)成分のMFRの1.2倍未満であると、薄肉成形品における成形流動性が不充分であるか、または、放射線滅菌処理後の機械物性の経時的な維持の面に問題を生じる場合があり、3倍を超えると、(D)成分の有機過酸化物の多さが原因となる(B)成分由来の成形品の外観不良に繋がる。
特に、薄肉射出成形品用としてのプロピレン樹脂組成物の好ましいMFR範囲は、10〜100g/10分程度である。一般に、MFRが10g/10分未満であると、高速成形性が十分ではない。一方、100g/10分を超えると、耐衝撃性が低下したり、スキン層厚の低下に伴い剛性が低下するなどの不具合を生じる。
ここで、プロピレン樹脂組成物のMFRは、(A)成分のMFRと同じく、JIS K6758ポリプロピレン試験法のMFR(条件:230℃、荷重21.18N)に従って測定する。
(2) Propylene resin composition The polypropylene resin composition produced according to the method for producing a propylene resin composition of the present invention has higher rigidity and impact resistance than conventional products while maintaining transparency, and appearance of molded products. Is much better.
The MFR (at 230 ° C., 21.18 N load) of the propylene resin composition produced based on any of the above-mentioned methods for producing a propylene resin composition is 1.2 to 3.5 times the MFR of the component (A), Preferably it is 1.4 to 3.2 times, more preferably 2.0 to 3.0 times. When the MFR of the propylene resin composition is less than 1.2 times the MFR of the component (A), the molding fluidity of the thin-walled molded product is insufficient, or the mechanical properties after radiation sterilization treatment with time. In some cases, there is a problem in terms of maintenance, and when the ratio exceeds 3 times, the amount of the organic peroxide of the component (D) is large, which leads to poor appearance of the molded article derived from the component (B).
In particular, the preferred MFR range of the propylene resin composition for thin injection molded articles is about 10 to 100 g / 10 minutes. Generally, if the MFR is less than 10 g / 10 minutes, the high-speed moldability is not sufficient. On the other hand, when it exceeds 100 g / 10 minutes, problems such as a decrease in impact resistance and a decrease in rigidity due to a decrease in skin layer thickness occur.
Here, the MFR of the propylene resin composition is measured in accordance with the MFR of the JIS K6758 polypropylene test method (conditions: 230 ° C., load: 21.18 N), similarly to the MFR of the component (A).

また、プロピレン樹脂組成物のQ値は、2.2〜5が好ましく、より好ましくは2.5〜4.2、特に好ましくは2.9〜3.8である。プロピレン樹脂組成物のQ値が2.2未満であると、薄肉成形における樹脂の流動性が劣位となり形状追随性が不良となった結果として良好な成形品が得られなくなり、Q値が5を超える場合は、配合する原料由来の低分子量成分の存在量が多量となり耐溶剤抽出性の観点で好ましくない。
ここで、Q値はGPCにより測定した重量平均分子量Mwと数平均分子量Mwとの比(Mw/Mn)であり、次の条件により測定するものである。
装置 :Waters社製HLC/GPC 150C
カラム温度:135℃
溶媒 :o−ジクロロベンゼン
流量 :1.0ml/min
カラム :東ソー株式会社製 GMHHR−H(S)HT 60cm×1
注入量 :0.15ml(濾過処理無し)
溶液濃度 :5mg/3.4ml
試料調整 :o−ジクロロベンゼンを用い、5mg/3.4mlの溶液に調整し140℃で1〜3時間溶解させる。
検量線 :ポリスチレン標準サンプルを使用する。
検量線次数:1次
PP分子量:PS×0.639
Further, the Q value of the propylene resin composition is preferably from 2.2 to 5, more preferably from 2.5 to 4.2, and particularly preferably from 2.9 to 3.8. When the Q value of the propylene resin composition is less than 2.2, the flowability of the resin in thin-wall molding is inferior and the shape following property is poor, so that a good molded product cannot be obtained. If the amount exceeds the above range, the amount of low molecular weight components derived from the raw materials to be blended becomes large, which is not preferable from the viewpoint of solvent extraction resistance.
Here, the Q value is a ratio (Mw / Mn) between the weight average molecular weight Mw and the number average molecular weight Mw measured by GPC, and is measured under the following conditions.
Apparatus: Waters HLC / GPC 150C
Column temperature: 135 ° C
Solvent: o-dichlorobenzene Flow rate: 1.0 ml / min
Column: Tosoh Corporation GMH HR- H (S) HT 60 cm x 1
Injection volume: 0.15 ml (no filtration treatment)
Solution concentration: 5 mg / 3.4 ml
Sample preparation: Adjust to a solution of 5 mg / 3.4 ml using o-dichlorobenzene and dissolve at 140 ° C. for 1 to 3 hours.
Calibration curve: Use a polystyrene standard sample.
Calibration curve order: 1st order PP molecular weight: PS × 0.639

3.プロピレン樹脂組成物からなる射出成形品
本発明のポリプロピレン樹脂組成物を使用して、射出成形品を得ることができる。本発明の薄肉で透明な射出成形品は、上記のプロピレン樹脂組成物のペレットを、射出成形法(ガス射出成形法も含む)、または射出圧縮成形法(インジェクションプレス)にて成形することにより製造する。
3. Injection molded article comprising propylene resin composition An injection molded article can be obtained using the polypropylene resin composition of the present invention. The thin and transparent injection molded article of the present invention is produced by molding the propylene resin composition pellets by an injection molding method (including a gas injection molding method) or an injection compression molding method (injection press). I do.

上記の用にして得られた本発明のポリプロピレン樹脂組成物からなる射出成形品は、切り出し断面における分散相の最大粒子径が好ましくは1μm以下、より好ましくは0.1〜1.0μm、さらに好ましくは0.2〜0.8μm、特に好ましくは0.2〜0.6μmである特徴を有する。
分散相の最大粒子径が1μmを超えると、透明性を阻害したり成形時の流動応力に起因する粗大な界面剥離の結果としての外観不良などの不具合を生じやすくなる傾向があり好ましくない。
ここで分散相の最大粒子径は、形態観察により認められる最大の分散相における長手方向長さの最大値とする。すなわち、最大の分散相が楕円形である場合には、その長径を最大粒子径とし、最大の分散相が長く配向した分散相である場合には、分散相の長手方向の長さとする。
分散相の最大粒子径の測定方法は、射出成形品の厚みが1±0.2mmの部分を切り出しその肉厚方向における中心部に関し、四酸化ルテニウムによる染色処理と金もしくは白金による蒸着処理にて前処理を施し、走査型電子顕微鏡(SEM)を用いて、1万倍の形態観察を行い、写真撮影した10μm×12μmの視野の異なる2枚の写真を用い、その視野における分散粒子のなかで最大の分散相を特定し、その長手方向の長さを最大粒子径とする。
The injection-molded article comprising the polypropylene resin composition of the present invention obtained as described above has a maximum particle diameter of the dispersed phase in the cut cross section of preferably 1 μm or less, more preferably 0.1 to 1.0 μm, and still more preferably. Has a characteristic of 0.2 to 0.8 μm, particularly preferably 0.2 to 0.6 μm.
If the maximum particle size of the dispersed phase exceeds 1 μm, transparency tends to be impaired, and defects such as poor appearance as a result of coarse interfacial peeling due to flow stress during molding tend to easily occur, which is not preferable.
Here, the maximum particle diameter of the dispersed phase is the maximum value of the length in the longitudinal direction of the largest dispersed phase observed by morphological observation. That is, when the largest dispersed phase is elliptical, the major axis is the largest particle diameter, and when the largest dispersed phase is a long oriented dispersed phase, the length in the longitudinal direction of the dispersed phase is taken.
The method for measuring the maximum particle size of the dispersed phase is as follows. A portion of the injection molded article having a thickness of 1 ± 0.2 mm is cut out, and the center in the thickness direction is dyed with ruthenium tetroxide and deposited with gold or platinum. A pre-process was performed, a morphological observation of 10,000 times was performed using a scanning electron microscope (SEM), and two different photographs of 10 μm × 12 μm with different visual fields were taken. Among the dispersed particles in the visual field, The largest dispersed phase is specified, and the length in the longitudinal direction is defined as the maximum particle size.

本発明の射出成形品は、透明性、剛性、耐衝撃性に優れ、かつ成形品外観が大幅に改善されるものである。
したがって、本発明のポリプロピレン樹脂組成物からなる射出成形品は、マーガリン容器、ゼリー容器、プリン容器、水羊羹類用の容器などの食品容器、コーヒー飲料、乳飲料等を代表例とするワンハンドカップタイプの各種飲料用の容器や哺乳瓶などの飲料容器、薬剤容器などの医療用容器などに好適に用いることができる。
The injection-molded article of the present invention is excellent in transparency, rigidity and impact resistance, and greatly improves the appearance of the molded article.
Therefore, the injection-molded article comprising the polypropylene resin composition of the present invention is a one-hand cup type typically represented by food containers such as margarine containers, jelly containers, pudding containers, containers for mizuyokan, coffee drinks, milk drinks and the like. It can be suitably used for containers for various beverages, beverage containers such as baby bottles, and medical containers such as drug containers.

本発明を以下に実施例を示して具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、ポリプロピレン樹脂組成物及び射出成形品の物性測定方法および評価方法は、以下の通りである。   The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The methods for measuring and evaluating the properties of the polypropylene resin composition and the injection-molded article are as follows.

(1)MFR:(A)プロピレン・エチレンランダム共重合体および(C)プロピレン単独重合体のMFRは、JIS K6758ポリプロピレン試験法のMFR(条件:230℃、荷重21.18N)に従って測定した。また、(B)メタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体のMFRは、JIS K6760に準拠し、190℃、荷重21.18Nにて測定した。
(2)密度:(B)エチレン・α−オレフィン共重合体の密度は、JIS K6760に準拠し、測定した。
(3)Q値:前述の方法により測定した。
(4)ヘイズ:120mm×80mm×2mmの平板の射出成形品を試料として、JIS K7105に準拠し、23℃で測定した。
(5)平板落錘衝撃:120mm×80mm×2mmの平板の射出成形品を試料として、JIS K7214に準拠し、0℃で測定した。
(6)分散相の粒子径:100mm×100mm×1mmの平板の射出成形品を試料として、ゲート側角から25mm×25mmの位置の厚みが所定の値であることを確認した後、前述の方法で測定した。
(7)成形品の外観評価:コップ状成形品に白むらおよび白濁部分の有無を観察し、成形外観の優劣を目視評価した。
○:コップ全体に関し異常な外観が存在しない
△:コップの一部に軽微な外観異常点が認められる
×:コップの半分以上の面積部分において外観異常点が認められる
(1) MFR: The MFR of (A) propylene / ethylene random copolymer and (C) propylene homopolymer was measured according to JIS K6758 polypropylene test method MFR (conditions: 230 ° C, load: 21.18N). The MFR of the ethylene / α-olefin copolymer (B) polymerized using a metallocene catalyst was measured at 190 ° C. and a load of 21.18 N in accordance with JIS K6760.
(2) Density: The density of the (B) ethylene / α-olefin copolymer was measured according to JIS K6760.
(3) Q value: measured by the method described above.
(4) Haze: Measured at 23 ° C. in accordance with JIS K7105 using a flat injection-molded product of 120 mm × 80 mm × 2 mm as a sample.
(5) Flat plate falling weight impact: Measured at 0 ° C. according to JIS K7214 using a flat injection molded product of 120 mm × 80 mm × 2 mm as a sample.
(6) The particle size of the dispersed phase: using a flat injection molded product of 100 mm x 100 mm x 1 mm as a sample, confirming that the thickness at a position of 25 mm x 25 mm from the gate side corner is a predetermined value, and then performing the above-described method. Was measured.
(7) Appearance evaluation of molded article: The cup-shaped molded article was observed for the presence or absence of white unevenness and white turbidity, and the appearance of the molded article was visually evaluated.
:: No abnormal appearance is present in the entire cup. △: Minor appearance abnormality is observed in a part of the cup. ×: Abnormal appearance is observed in half or more area of the cup.

なお、本実施例に用いた樹脂(A)、樹脂(B)、樹脂(C)は、日本ポリケム社製市販グレードあるいは、以下の製造例により製造したものを用いた。
(製造例1(樹脂A1の製造))
(i)予備重合触媒成分の製造
還流冷却器を付けた5リットルの反応容器に、窒素ガス雰囲気下で、チップ状の金属マグネシウム(純度99.5%、平均粒径1.6mm)40g及びn−ヘキサン1250mlを入れ、68℃で1時間攪拌後、金属マグネシウムを取り出し、65℃で減圧乾燥することにより、予備活性化した金属マグネシウムを得た。
この金属マグネシウムに、n−ブチルエーテル700ml及びn−ブチルマグネシウムクロリドのn−ブチルエーテル溶液(1.75mol/l)を2.5ml加え、得た懸濁液を55℃に保ち、更にn−ブチルエーテル250mlにn−ブチルクロリド192.5mlを溶解した溶液を50分間で滴下した。攪拌下70℃で4時間反応を行った後、反応液を25℃に保持した。
この反応液にHC(OC 278.5mlを1時間で滴下した。滴下終了後、60℃で15分間反応を行い、反応生成固体をn−ヘキサン各1500mlで6回洗浄し、室温で1時間減圧乾燥し、マグネシウムを19.0%、塩素を28.9%含むマグネシウム含有固体158gを回収した。
還流冷却器、攪拌機及び滴下ロートを取り付けた1500mlの反応容器に、窒素ガス雰囲気下マグネシウム含有固体31.5g及びn−ヘプタン250mlを入れて懸濁液を作り、室温で攪拌しながら2,2,2−トリクロルエタノール100ml(0.02ミリモル)とn−ヘプタン55mlの混合溶液を滴下ロートから30分間で滴下し、更に80℃で1時間攪拌した。得られた固体を濾過し、室温のn−ヘキサン各500mlで4回洗浄し、更にトルエン各500mlで2回洗浄して固体成分を得た。
上記の固体成分にトルエン200mlを加え、更に四塩化チタン/トルエンの体積比が3/2になるように四塩化チタンを加えて90℃に昇温した。撹拌下、フタル酸ジn−ブチル10mlとトルエン25mlの混合溶液を5分間で滴下した後、120℃で2時間攪拌した。得られた固体状物質を90℃で濾別し、トルエン各500mlで2回、90℃で洗浄した。更に、新たに四塩化チタン/トルエンの体積比が3/2になるように四塩化チタンを加え、120℃で2時間攪拌した。得られた固体物質を110℃でろ別し、室温の各500mlのn−ヘキサンにて7回洗浄した。かくして、マグネシウム化合物にチタニウム化合物を担持した固体触媒成分を得た。固体触媒成分の一部を窒素雰囲気下で乾燥し、元素分析したところ、チタンは1.6重量%であった。
撹拌機のついた内容積10L金属容器を窒素置換した後、n−ヘキサン6000ml、上記固体触媒成分200gを含むn−ヘキサン溶液を添加し、内容物を20℃に保った。続いて、トリエチルアルミニウム70gを添加し、撹拌下でプロピレン400gを系内20℃に保ちながら120分かけて供給した。プロピレンの供給停止後、さらに20分間撹拌を続けて、反応を完結した。20分間静定させた後、デカンテーション法により上澄み液を除去し、さらにn−ヘキサン6000mlを添加し、25℃で撹拌した後、静定させて上澄み液を除去する操作を5回繰り返して予備重合触媒成分を得た。
The resin (A), the resin (B), and the resin (C) used in this example were commercially available grades manufactured by Nippon Polychem Co., Ltd., or those manufactured by the following manufacturing examples.
(Production Example 1 (Production of Resin A1))
(I) Production of Prepolymerization Catalyst Component In a 5 liter reaction vessel equipped with a reflux condenser, 40 g of chip-shaped metallic magnesium (purity 99.5%, average particle size 1.6 mm) and n were placed under a nitrogen gas atmosphere. After adding 1250 ml of -hexane and stirring at 68 ° C for 1 hour, the metallic magnesium was taken out and dried at 65 ° C under reduced pressure to obtain preactivated metallic magnesium.
To this metallic magnesium, 700 ml of n-butyl ether and 2.5 ml of an n-butyl ether solution of n-butylmagnesium chloride (1.75 mol / l) were added, and the resulting suspension was kept at 55 ° C. and further added to 250 ml of n-butyl ether. A solution in which 192.5 ml of n-butyl chloride was dissolved was added dropwise over 50 minutes. After performing the reaction at 70 ° C. for 4 hours with stirring, the reaction solution was kept at 25 ° C.
278.5 ml of HC (OC 2 H 5 ) 3 was added dropwise to the reaction solution over 1 hour. After the completion of the dropwise addition, the reaction was carried out at 60 ° C. for 15 minutes, and the solid produced by the reaction was washed six times with 1500 ml each of n-hexane, and dried under reduced pressure at room temperature for 1 hour, containing 19.0% of magnesium and 28.9% of chlorine. 158 g of a magnesium-containing solid were recovered.
Under a nitrogen gas atmosphere, 31.5 g of a magnesium-containing solid and 250 ml of n-heptane were put into a 1500 ml reaction vessel equipped with a reflux condenser, a stirrer and a dropping funnel to form a suspension. A mixed solution of 100 ml (0.02 mmol) of 2-trichloroethanol and 55 ml of n-heptane was dropped from the dropping funnel over 30 minutes, and further stirred at 80 ° C. for 1 hour. The resulting solid was filtered, washed four times with 500 ml each of n-hexane at room temperature, and twice with 500 ml each of toluene to obtain a solid component.
200 ml of toluene was added to the solid component, and titanium tetrachloride was further added so that the volume ratio of titanium tetrachloride / toluene was 3/2, and the temperature was raised to 90 ° C. Under stirring, a mixed solution of 10 ml of di-n-butyl phthalate and 25 ml of toluene was added dropwise over 5 minutes, followed by stirring at 120 ° C. for 2 hours. The obtained solid substance was separated by filtration at 90 ° C., and washed at 90 ° C. twice with each 500 ml of toluene. Further, titanium tetrachloride was newly added so that the volume ratio of titanium tetrachloride / toluene became 3/2, and the mixture was stirred at 120 ° C. for 2 hours. The obtained solid substance was separated by filtration at 110 ° C., and washed seven times with 500 ml of n-hexane at room temperature. Thus, a solid catalyst component in which the titanium compound was supported on the magnesium compound was obtained. A portion of the solid catalyst component was dried under a nitrogen atmosphere and subjected to elemental analysis. As a result, the content of titanium was 1.6% by weight.
After replacing the metal container with an internal volume of 10 L equipped with a stirrer with nitrogen, 6000 ml of n-hexane and an n-hexane solution containing 200 g of the solid catalyst component were added, and the content was kept at 20 ° C. Subsequently, 70 g of triethylaluminum was added, and 400 g of propylene was supplied with stirring at 120 ° C. over 120 minutes while maintaining the system at 20 ° C. After the supply of propylene was stopped, stirring was continued for another 20 minutes to complete the reaction. After allowing to settle for 20 minutes, the supernatant was removed by a decantation method, 6000 ml of n-hexane was further added, and the mixture was stirred at 25 ° C., then allowed to settle, and the operation of removing the supernatant was repeated 5 times. A polymerization catalyst component was obtained.

(ii)プロピレン−エチレン共重合体の製造
容量200Lのループ型反応槽1基に、液化プロピレンを100kg/hr、上記(1)で得られた予備重合触媒成分0.2g/hr(以下、予備重合ポリマーを除いた触媒固体量換算とする。)、トリエチルアルミニウム7.3g/hr、シクロヘキシルメチルジメトキシシラン2.2g/hrを連続的に供給した。また、分子量調整剤として水素をプロピレン液中濃度が0.21mol%、コモノマーとしてエチレンをプロピレン液中濃度が0.75mol%になるように連続的に供給した。重合温度は70℃、平均滞留時間は1時間に保った。
反応槽から連続的に抜き出したスラリーを向流洗浄塔に導き、スラリーと同容量の新たな液体プロピレンで洗浄を施した後、未反応プロピレンを揮発させ、更に乾燥することによりプロピレン−エチレン共重合体パウダー(樹脂A1)を6.4kg/hrの生産レートで得た。得られたパウダーのMFRは5.0g/10分、エチレン含量は4.0wt%であった。
(Ii) Production of Propylene-Ethylene Copolymer 100 kg / hr of liquefied propylene and 0.2 g / hr of the prepolymerized catalyst component obtained in (1) above (hereinafter referred to as “preliminary The amount was converted to the catalyst solid amount excluding the polymerized polymer.), 7.3 g / hr of triethylaluminum, and 2.2 g / hr of cyclohexylmethyldimethoxysilane were continuously supplied. In addition, hydrogen was continuously supplied as a molecular weight adjuster so that the concentration in the propylene liquid became 0.21 mol%, and ethylene as a comonomer became 0.75 mol% in the propylene liquid. The polymerization temperature was kept at 70 ° C. and the average residence time was kept at 1 hour.
The slurry continuously withdrawn from the reaction tank is led to a countercurrent washing tower, washed with a new liquid propylene of the same volume as the slurry, and then unreacted propylene is volatilized and dried to obtain a propylene-ethylene copolymer. The combined powder (resin A1) was obtained at a production rate of 6.4 kg / hr. The MFR of the obtained powder was 5.0 g / 10 minutes, and the ethylene content was 4.0 wt%.

(製造例2〜4(樹脂A2、A3、A4の製造))
予備重合触媒成分供給量、液中水素濃度、液中エチレン濃度を表1のとおりとした以外は製造例1と同様にしてプロピレン−エチレン共重合体パウダーを得た。得られたパウダーの性状を表1に示す。
(Production Examples 2 to 4 (Production of Resins A2, A3, A4))
A propylene-ethylene copolymer powder was obtained in the same manner as in Production Example 1 except that the supply amount of the prepolymerization catalyst component, the hydrogen concentration in the liquid, and the ethylene concentration in the liquid were as shown in Table 1. Table 1 shows the properties of the obtained powder.

Figure 2004176061
Figure 2004176061

(実施例1)
(A)MFRが5.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A1)75重量%、(B)MFRが35g/10分、密度が0.885g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ650T:日本ポリケム社製)5重量%、及び(C)MFRが5.0g/10分であるプロピレン単独重合体パウダー(MA4A:日本ポリケム社製)20重量%からなる樹脂原料100重量部に対し、添加剤としてリン系酸化防止剤(トリス−(2,4−ジ−t−ブチルフェニル)ホスファイト)0.10重量部、中和剤(ステアリン酸カルシウム)0.05重量部、ソルビトール系造核剤(1,3,2,4−ジ−p−メチル−ベンジリデン−ソルビトール)0.20重量部、光安定剤(4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとコハク酸とのポリエステル)0.05重量部およびスリップ剤(ポリシロキサン系オイル)0.03重量部、ならびに(D)有機過酸化物として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキサン(パーヘキサ25B:日本油脂社製)230重量ppmを秤量した。
上記の内、(B)成分、(C)成分、及び添加剤を攪拌混合し、二軸押出機(池貝鉄工社製PCM30)を用いて、造粒温度220℃にて、1段目の溶融混練をなし造粒した。この1段目の溶融混練で得られたペレットと上記(A)成分及び(D)有機過酸化物を攪拌混合し、二軸押出機(同上)を用いて、造粒温度230℃にて、2段目の溶融混練・造粒を実施し、ポリプロピレン樹脂組成物のペレットを得た。得られたポリプロピレン樹脂組成物の物性を測定した。
次に、得られたポリプロピレン樹脂組成物のペレットを用い、各成形品形状に続いて記載する射出成形機を使用し、樹脂温度220℃の条件にて、100mm×100mm×1mmの平板(日本製鋼所社製J100SA)、120mm×80mm×2mmの平板(東芝機械社製EC100−2B)、底面直径50mm、上面直径60mm、肉厚0.7mmのコップ状成形品(東芝機械社製IS220F−10A)を射出成形し、成形品の評価を行った。
得られたポリプロピレン樹脂組成物およびこれを用いた射出成形品の評価結果を表2に示す。
(Example 1)
(A) MFR of 5.0 g / 10 min, ethylene content of 4.0 wt% propylene / ethylene random copolymer powder (resin A1) 75 wt%, (B) MFR of 35 g / 10 min, density Propylene / 1-hexene copolymer (kernel KJ650T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a MFR of 0.885 g / cm 3 , and (C) an MFR of 5.0 g / 10 And a phosphorus-based antioxidant (tris- (2,4-di-t-butyl) as an additive to 100 parts by weight of a resin material composed of 20% by weight of a propylene homopolymer powder (MA4A: manufactured by Nippon Polychem Co., Ltd.). Phenyl) phosphite) 0.10 part by weight, neutralizing agent (calcium stearate) 0.05 part by weight, sorbitol nucleating agent (1,3,2,4-di-p-methyl) -Benzylidene-sorbitol) 0.20 part by weight, a light stabilizer (polyester of 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and succinic acid) 0.05 part by weight and a slip agent ( 0.03 parts by weight of polysiloxane oil) and 230 of (D) 2,5-dimethyl-2,5-di (t-butylperoxy) hexane as organic peroxide (Perhexa 25B: manufactured by NOF CORPORATION) The weight ppm was weighed.
Among the above, the components (B), (C) and the additives are mixed by stirring, and the first-stage melting is performed at a granulation temperature of 220 ° C. using a twin-screw extruder (PCM30 manufactured by Ikegai Iron Works Co., Ltd.). The mixture was kneaded and granulated. The pellets obtained by the first-stage melt-kneading, the components (A) and (D) the organic peroxide were stirred and mixed, and the mixture was granulated at a granulation temperature of 230 ° C. using a twin-screw extruder (same as above). The second stage of melt kneading and granulation was performed to obtain pellets of the polypropylene resin composition. The physical properties of the obtained polypropylene resin composition were measured.
Next, a 100 mm × 100 mm × 1 mm flat plate (Nippon Steel Corporation) was obtained using the obtained polypropylene resin composition pellets, using an injection molding machine described after each molded product shape, at a resin temperature of 220 ° C. J100SA manufactured by Shosho Co., Ltd., a flat plate of 120 mm x 80 mm x 2 mm (EC100-2B manufactured by Toshiba Machine Co., Ltd.), a cup-shaped molded product having a bottom diameter of 50 mm, a top surface diameter of 60 mm, and a wall thickness of 0.7 mm (Toshiba Machine Co., IS220F-10A) Was injection molded, and the molded product was evaluated.
Table 2 shows the evaluation results of the obtained polypropylene resin composition and injection molded articles using the same.

(実施例2)
(D)有機過酸化物の量を250重量ppmとした以外は、実施例1と同じ原料樹脂(A)成分、(B)成分、(C)成分、及び添加剤からなる秤量物を使用し、下記の方法により分割溶融混練にした以外は、実施例1と同様にして、ポリプロピレン樹脂組成物の製造及び評価を行った。
原料樹脂(A)成分、(C)成分、添加剤、及び(D)有機過酸化物250重量ppmを攪拌混合し、二軸押出機(神戸製鋼社製KTX44)の主フィード孔へ重量フィーダーを使用して所定の配合割合となるよう供給し、前段の造粒温度を230℃に設定し、後段のサブフィード孔へ原料樹脂(B)成分を重量フィーダーを使用して所定の配合割合となるよう供給し、後段の造粒温度を200℃に設定し、溶融混練し造粒し、ポリプロピレン樹脂組成物のペレットを得た。結果を表2に示す。
(Example 2)
(D) The same weighed material consisting of the raw resin (A) component, the (B) component, the (C) component, and the additive was used, except that the amount of the organic peroxide was 250 ppm by weight. The production and evaluation of the polypropylene resin composition were carried out in the same manner as in Example 1 except that the melt-kneading was performed by the following method.
The raw resin (A) component, (C) component, additive, and (D) 250 ppm by weight of organic peroxide are mixed with stirring, and a weight feeder is fed to a main feed hole of a twin screw extruder (KTX44 manufactured by Kobe Steel). The raw material resin (B) is fed into the sub-feed hole at the subsequent stage by using a weight feeder to supply the raw material resin (B) to the predetermined mixing ratio. And the subsequent granulation temperature was set at 200 ° C., melt-kneaded and granulated to obtain pellets of the polypropylene resin composition. Table 2 shows the results.

(実施例3)
(D)有機過酸化物の量を240重量ppmとした以外は、実施例1と同じ原料樹脂(A)成分、(B)成分、(C)成分、及び添加剤からなる秤量物を使用し、下記の方法により分割溶融混練にした以外は、実施例1と同様にして、ポリプロピレン樹脂組成物の製造及び評価を行った。
原料樹脂(B)成分、(C)成分、及び添加剤を攪拌混合し、二軸&単軸タンデムタイプ押出機(神戸製鋼所社製KCM50+KE60)の主フィード孔へ重量フィーダーを使用して所定の配合割合となるよう供給し、前段の造粒温度を220℃に設定し、後段のサブフィード孔へ原料樹脂(A)成分及び(D)有機過酸化物240重量ppmの混合物を重量フィーダーを使用して所定の配合割合となるよう供給し、後段の造粒温度を230℃に設定し、溶融混練し造粒し、ポリプロピレン樹脂組成物のペレットを得た。結果を表2に示す。
(Example 3)
(D) Except that the amount of the organic peroxide was changed to 240 ppm by weight, the same weighed material comprising the raw resin (A) component, the (B) component, the (C) component, and the additive was used. The production and evaluation of the polypropylene resin composition were carried out in the same manner as in Example 1 except that the melt-kneading was performed by the following method.
The raw resin (B) component, the (C) component, and the additives are stirred and mixed, and the mixture is fed into a main feed hole of a twin-screw & single-screw tandem type extruder (KCM50 + KE60 manufactured by Kobe Steel) using a weight feeder to a predetermined amount. The mixture is supplied at the mixing ratio, the former granulation temperature is set to 220 ° C., and the mixture of the raw material resin (A) component and (D) organic peroxide 240 wt ppm is used in the latter sub-feed hole using a weight feeder. Then, the mixture was supplied so as to have a predetermined mixing ratio, and the granulation temperature in the subsequent stage was set to 230 ° C., and the mixture was melt-kneaded and granulated to obtain pellets of a polypropylene resin composition. Table 2 shows the results.

(実施例4)
(A)成分として、MFRが10.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(F409CE:日本ポリケム社製)を用いる以外は実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒により製造し、評価を行った。結果を表2に示す。
(Example 4)
Example 1 except that a propylene / ethylene random copolymer powder (F409CE: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 10.0 g / 10 min and an ethylene content of 4.0% by weight was used as the component (A). Similarly, a polypropylene resin composition was produced by successive melt-kneading and granulation, and evaluated. Table 2 shows the results.

(実施例5)
(A)成分として、MFRが10.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(F409CE:日本ポリケム社製)を用いる以外は実施例2と同様にして、ポリプロピレン樹脂組成物を分割溶融混練・造粒により製造し、評価を行った。結果を表2に示す。
(Example 5)
Example 2 was the same as Example 2 except that as the component (A), a propylene / ethylene random copolymer powder (F409CE: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 10.0 g / 10 min and an ethylene content of 4.0% by weight was used. Similarly, a polypropylene resin composition was produced by split-melt kneading and granulation, and evaluated. Table 2 shows the results.

(実施例6)
(A)成分として、MFRが10.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(F409CE:日本ポリケム社製)を用いる以外は実施例3と同様にして、ポリプロピレン樹脂組成物を分割溶融混練・造粒により製造し、評価を行った。結果を表2に示す。
(Example 6)
Example 3 was the same as Example 3 except that as the component (A), a propylene / ethylene random copolymer powder (F409CE: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 10.0 g / 10 min and an ethylene content of 4.0% by weight was used. Similarly, a polypropylene resin composition was produced by split-melt kneading and granulation, and evaluated. Table 2 shows the results.

(実施例7)
実施例1において、(A)MFRが10.0g/10分、エチレン含有量が3.0重量%であるプロピレン・エチレンランダム共重合体パウダー(MG3:日本ポリケム社製)を73重量%、(B)MFRが35g/10分、密度が0.885g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ650T:日本ポリケム社製)を7重量%、及び(D)有機過酸化物の量を270重量ppmに変更した以外は、実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒により製造し、評価を行った。結果を表2に示す。
(Example 7)
In Example 1, 73% by weight of (A) a propylene / ethylene random copolymer powder (MG3: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 10.0 g / 10 minutes and an ethylene content of 3.0% by weight, B) 7% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ650T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having an MFR of 35 g / 10 min and a density of 0.885 g / cm 3 ; And (D) a polypropylene resin composition was produced by successive melt-kneading and granulation in the same manner as in Example 1 except that the amount of the organic peroxide was changed to 270 ppm by weight, and evaluated. Table 2 shows the results.

(実施例8)
(B)成分として、MFRが15g/10分、密度が0.898g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKS560T:日本ポリケム社製)を用いる以外は実施例4と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒により製造し、評価を行った。結果を表1に示す。
(Example 8)
As the component (B), an ethylene / propylene / 1-hexene copolymer (kernel KS560T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having an MFR of 15 g / 10 min and a density of 0.898 g / cm 3 is used. A polypropylene resin composition was produced by successive melt-kneading and granulating in the same manner as in Example 4 except for using, and evaluated. Table 1 shows the results.

(実施例9)
実施例1において、(A)MFRが20.0g/10分、エチレン含有量が3.0重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A2)を70重量%、(B)MFRが50g/10分、密度が0.880g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ740T:日本ポリケム社製)を10重量%、及び(C)MFRが10g/10分であるプロピレン単独重合体パウダー(MA3:日本ポリケム社製)20重量%に変更した以外は、実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒により製造し、評価を行った。結果を表2に示す。
(Example 9)
In Example 1, (A) 70% by weight of a propylene / ethylene random copolymer powder (resin A2) having an MFR of 20.0 g / 10 min and an ethylene content of 3.0% by weight, and (B) an MFR of 10% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ740T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a density of 50 g / 10 min and a density of 0.880 g / cm 3 , and (C) The polypropylene resin composition was successively melt-kneaded and granulated in the same manner as in Example 1 except that the propylene homopolymer powder (MA3: manufactured by Nippon Polychem) having an MFR of 10 g / 10 min was changed to 20% by weight. Manufactured and evaluated. Table 2 shows the results.

(比較例1)
(A)MFRが3.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A3)75重量%、(D)有機過酸化物の量を400重量ppmとした以外は、実施例1と同じ原料樹脂(B)成分、(C)成分、及び添加剤からなる秤量物を使用し、下記の方法により一括溶融混練・造粒にした。
原料樹脂(A)成分、(B)成分、(C)、添加剤、及び(D)有機過酸化物400重量ppmからなる秤量物を攪拌混合し、二軸押出機(池貝鉄工社製PCM30)の主フィード孔へ供給し、造粒温度215℃にて、一括して溶融混練し造粒し、ポリプロピレン樹脂組成物のペレットを得た。結果を表3に示す。
(Comparative Example 1)
(A) 75% by weight of a propylene / ethylene random copolymer powder (resin A3) having an MFR of 3.0 g / 10 minutes and an ethylene content of 4.0% by weight, and (D) an amount of an organic peroxide of 400%. Except for the weight ppm, the same weighed material consisting of the raw resin (B) component, the (C) component, and the additives was used as in Example 1, and was subjected to batch melt kneading and granulation by the following method.
A raw resin (A), a component (B), a component (C), an additive, and a weighed substance comprising (D) an organic peroxide of 400 ppm by weight are mixed and stirred, and a twin-screw extruder (PCM30 manufactured by Ikegai Iron Works) And the mixture was melt-kneaded and granulated at a granulation temperature of 215 ° C to obtain pellets of the polypropylene resin composition. Table 3 shows the results.

(比較例2)
(A)成分として、MFRが2.5g/10分、エチレン含有量が3.5重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A4)を用い、(D)有機過酸化物の量を450重量ppmとした以外は、比較例1と同様にして一括溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表3に示す。
(Comparative Example 2)
As the component (A), a propylene / ethylene random copolymer powder (resin A4) having an MFR of 2.5 g / 10 min and an ethylene content of 3.5% by weight was used. Was changed to 450 ppm by weight, and batch melting, kneading and granulating were performed in the same manner as in Comparative Example 1 to produce and evaluate a polypropylene resin composition. Table 3 shows the results.

(比較例3)
(A)成分として、MFRが5.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A1)を用いる以外は、比較例1と同様にして一括溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表3に示す。
(Comparative Example 3)
(A) The same procedure as in Comparative Example 1 was carried out except that a propylene / ethylene random copolymer powder (resin A1) having an MFR of 5.0 g / 10 min and an ethylene content of 4.0% by weight was used as the component (A). Batch melt kneading and granulation were performed to produce and evaluate a polypropylene resin composition. Table 3 shows the results.

(比較例4)
(A)成分として、MFRが5.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A1)を用いる以外は、比較例2と同様にして一括溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表3に示す。
(Comparative Example 4)
The same procedure as in Comparative Example 2 was carried out, except that a propylene / ethylene random copolymer powder (resin A1) having an MFR of 5.0 g / 10 min and an ethylene content of 4.0% by weight was used as the component (A). Batch melt kneading and granulation were performed to produce and evaluate a polypropylene resin composition. Table 3 shows the results.

(比較例5)
(D)有機過酸化物の量を450重量ppmとした以外は、実施例1と同じ原料樹脂(A)成分、(B)成分、(C)成分、及び添加剤からなる秤量物を使用し、逐次溶融混練における1段目の樹脂温度を195℃とし、2段目の樹脂温度を195℃とした以外は、実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表3に示す。
(Comparative Example 5)
(D) Except that the amount of the organic peroxide was changed to 450 ppm by weight, the same weighed material comprising the raw material resins (A), (B), (C) and additives was used as in Example 1. In the same manner as in Example 1, except that the resin temperature of the first stage in the sequential melt-kneading was set at 195 ° C. and the resin temperature of the second stage was set at 195 ° C., the polypropylene resin composition was sequentially melt-kneaded and granulated. Then, the production and evaluation of the polypropylene resin composition were performed. Table 3 shows the results.

(比較例6)
(D)有機過酸化物380重量ppmを用いるを以外は実施例7と同じ成分を使用し、分割溶融混練における1段目の樹脂温度を220℃とし、2段目の樹脂温度を200℃とした以外は、実施例2と同様にして、ポリプロピレン樹脂組成物を分割溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表3に示す。
(Comparative Example 6)
(D) The same components as in Example 7 were used except that 380 ppm by weight of the organic peroxide was used. The resin temperature of the first stage in the split melting and kneading was 220 ° C., and the resin temperature of the second stage was 200 ° C. Except for the above, the polypropylene resin composition was subjected to split melt-kneading and granulation in the same manner as in Example 2 to produce and evaluate the polypropylene resin composition. Table 3 shows the results.

(比較例7)
(A)MFRが10.0g/10分、エチレン含有量が3.0重量%であるプロピレン・エチレンランダム共重合体パウダー(MG3:日本ポリケム社製)72重量%、(B)MFRが15g/10分、密度が0.898g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKS560T:日本ポリケム社製)8重量%、(C)MFRが5g/10分であるプロピレン単独重合体パウダー(MA4A:日本ポリケム社製)20重量%、及び(D)有機過酸化物の量を250重量ppmとした以外は、実施例1と同じ成分を使用し、下記の方法により一括溶融混練・造粒にした。
原料樹脂(A)成分、(B)成分、(C)、添加剤、及び(D)有機過酸化物からなる秤量物を攪拌混合し、二軸押出機(池貝鉄工社製PCM30)の主フィード孔へ供給し、造粒温度230℃にて、一括して溶融混練し造粒し、ポリプロピレン樹脂組成物のペレットを得た。結果を表4に示す。
(Comparative Example 7)
(A) 72% by weight of a propylene / ethylene random copolymer powder (MG3: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 10.0 g / 10 min and an ethylene content of 3.0% by weight, and (B) an MFR of 15 g / 10 minutes, 8% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KS560T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a density of 0.898 g / cm 3 , and (C) an MFR of 5 g / cm 3 The same components as in Example 1 were used except that the propylene homopolymer powder (MA4A: manufactured by Nippon Polychem Co., Ltd.) was 20% by weight for 10 minutes and the amount of the organic peroxide (D) was 250 ppm by weight. Batch melting kneading and granulation were performed by the following method.
The raw materials (A) component, (B) component, (C), additives and (D) a weighed material composed of an organic peroxide are stirred and mixed, and the main feed of a twin-screw extruder (PCM30 manufactured by Ikegai Iron Works Co., Ltd.) The mixture was supplied to the holes, melt-kneaded and granulated all at a granulation temperature of 230 ° C., and pellets of a polypropylene resin composition were obtained. Table 4 shows the results.

(比較例8)
(A)MFRが8.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(FG4:日本ポリケム社製)75重量%、(B)MFRが35g/10分、密度が0.885g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ650T:日本ポリケム社製)5重量%、(C)MFRが5g/10分であるプロピレン単独重合体パウダー(MA4A:日本ポリケム社製)20重量%、及び(D)有機過酸化物の量を310重量ppmとした以外は、比較例7と同様にして、ポリプロピレン樹脂組成物を一括溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表4に示す。
(Comparative Example 8)
(A) 75% by weight of a propylene / ethylene random copolymer powder (FG4: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 8.0 g / 10 minutes and an ethylene content of 4.0% by weight, and (B) an MFR of 35 g / 10 minutes, 5% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ650T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a density of 0.885 g / cm 3 , and (C) an MFR of 5 g / A polypropylene resin was prepared in the same manner as in Comparative Example 7 except that the amount of propylene homopolymer powder (MA4A: manufactured by Nippon Polychem Co., Ltd.) was 20% by weight and the amount of (D) the organic peroxide was 310 ppm by weight. The composition was subjected to collective melt kneading and granulation to produce and evaluate a polypropylene resin composition. Table 4 shows the results.

(比較例9)
(A)MFRが10.0g/10分、エチレン含有量が3.0重量%であるプロピレン・エチレンランダム共重合体パウダー(MG3:日本ポリケム社製)73重量%、(B)MFRが35g/10分、密度が0.885g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ650T:日本ポリケム社製)7重量%、(C)MFRが10g/10分であるプロピレン単独重合体パウダー(MA3:日本ポリケム社製)20重量%、及び(D)有機過酸化物の量を400重量ppmとした以外は、実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表4に示す。
(Comparative Example 9)
(A) A propylene / ethylene random copolymer powder having an MFR of 10.0 g / 10 min and an ethylene content of 3.0% by weight (MG3: manufactured by Nippon Polychem) 73% by weight, (B) an MFR of 35 g / 10 minutes, 7% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ650T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a density of 0.885 g / cm 3 , and (C) an MFR of 10 g / cm 3 A polypropylene resin was prepared in the same manner as in Example 1 except that the amount of the propylene homopolymer powder (MA3: manufactured by Nippon Polychem Co., Ltd.) was 10% by weight and the amount of the organic peroxide (D) was 400 ppm by weight. The composition was sequentially melt-kneaded and granulated to produce and evaluate a polypropylene resin composition. Table 4 shows the results.

(比較例10)
(A)MFRが5.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(樹脂A1)78重量%、(B)MFRが35g/10分、密度が0.885g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ650T:日本ポリケム社製)2重量%、(C)MFRが5g/10分であるプロピレン単独重合体パウダー(MA4A:日本ポリケム社製)20重量%、及び(D)有機過酸化物の量を250重量ppmとした以外は、実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表4に示す。
(Comparative Example 10)
(A) MFR is 5.0 g / 10 min, ethylene content is 4.0 wt%, propylene / ethylene random copolymer powder (resin A1) 78 wt%, (B) MFR is 35 g / 10 min, density 2% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ650T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a MFR of 0.885 g / cm 3 , and (C) an MFR of 5 g / 10 min. Propylene homopolymer powder (MA4A: manufactured by Nippon Polychem Co., Ltd.) was 20% by weight and (D) the amount of the organic peroxide was 250 ppm by weight, except that the polypropylene resin composition was successively prepared in the same manner as in Example 1. Melt kneading and granulation were performed to produce and evaluate a polypropylene resin composition. Table 4 shows the results.

(比較例11)
(A)MFRが10.0g/10分、エチレン含有量が4.0重量%であるプロピレン・エチレンランダム共重合体パウダー(F409CE:日本ポリケム社製)78重量%、(B)MFRが35g/10分、密度が0.885g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ650T:日本ポリケム社製)2重量%、(C)MFRが5g/10分であるプロピレン単独重合体パウダー(MA4A:日本ポリケム社製)20重量%、及び(D)有機過酸化物の量を250重量ppmとした以外は、実施例1と同様にして、ポリプロピレン樹脂組成物を逐次溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表4に示す。
(Comparative Example 11)
(A) a propylene / ethylene random copolymer powder having an MFR of 10.0 g / 10 min and an ethylene content of 4.0% by weight (F409CE: manufactured by Nippon Polychem Co., Ltd.); 78% by weight; (B) an MFR of 35 g / 10 minutes, 2% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ650T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a density of 0.885 g / cm 3 , and (C) an MFR of 5 g / A polypropylene resin was prepared in the same manner as in Example 1 except that the propylene homopolymer powder (MA4A: manufactured by Nippon Polychem Co., Ltd.), which was 10 minutes, was 20% by weight, and the amount of the organic peroxide (D) was 250 ppm by weight. The composition was sequentially melt-kneaded and granulated to produce and evaluate a polypropylene resin composition. Table 4 shows the results.

(比較例12)
(A)MFRが10.0g/10分、エチレン含有量が3.0重量%であるプロピレン・エチレンランダム共重合体パウダー(MG3:日本ポリケム社製)70重量%、(B)MFRが50g/10分、密度が0.880g/cmであるメタロセン触媒を用いて重合したエチレン・プロピレン・1−ヘキセン共重合体(カーネルKJ740T:日本ポリケム社製)10重量%、(C)MFRが10g/10分であるプロピレン単独重合体パウダー(MA3:日本ポリケム社製)20重量%、及び(D)有機過酸化物の量を480重量ppmとした以外は、比較例7と同様にして、ポリプロピレン樹脂組成物を一括溶融混練・造粒をし、ポリプロピレン樹脂組成物の製造及び評価を行った。結果を表4に示す。
(Comparative Example 12)
(A) 70% by weight of a propylene / ethylene random copolymer powder (MG3: manufactured by Nippon Polychem Co., Ltd.) having an MFR of 10.0 g / 10 min and an ethylene content of 3.0% by weight, and (B) an MFR of 50 g / 10 minutes, 10% by weight of an ethylene / propylene / 1-hexene copolymer (kernel KJ740T: manufactured by Nippon Polychem Co., Ltd.) polymerized using a metallocene catalyst having a density of 0.880 g / cm 3 , and (C) an MFR of 10 g / cm 3 A polypropylene resin was prepared in the same manner as in Comparative Example 7 except that the amount of the propylene homopolymer powder (MA3: manufactured by Nippon Polychem Co., Ltd.) was 20% by weight and the amount of the organic peroxide (D) was 480 ppm by weight. The composition was subjected to collective melt kneading and granulation to produce and evaluate a polypropylene resin composition. Table 4 shows the results.

Figure 2004176061
Figure 2004176061

Figure 2004176061
Figure 2004176061

Figure 2004176061
Figure 2004176061

表2〜4より明らかなように、本発明の製造方法により得られたポリプロピレン樹脂組成物からの射出成形品は、成形外観、透明性、耐衝撃性に優れていた(実施例1〜9)。一方、逐次溶融混練または分割溶融混練でない一括溶融混練による樹脂組成物からの射出成形品は、成形外観に劣り(比較例1〜4、7、8、12)、逐次溶融混練または分割溶融混練であっても有機過酸化物量が多すぎる場合は、やはり成形外観に劣り(比較例5、6、9)、逐次溶融混練または分割溶融混練であっても有機過酸化物量の(B)成分に対する相対比率が高くなる組成比においては、必要とするレベルの耐衝撃性が発現できなくなる(比較例10、11)。   As is clear from Tables 2 to 4, injection molded articles from the polypropylene resin composition obtained by the production method of the present invention were excellent in molded appearance, transparency, and impact resistance (Examples 1 to 9). . On the other hand, an injection-molded product from a resin composition obtained by batch melt kneading other than sequential melt kneading or split melt kneading is inferior in molding appearance (Comparative Examples 1 to 4, 7, 8, and 12). If the amount of the organic peroxide is too large, the appearance of the molded product is also inferior (Comparative Examples 5, 6, and 9). At the composition ratio where the ratio becomes high, the required level of impact resistance cannot be exhibited (Comparative Examples 10 and 11).

本発明の製造方法により得られたプロピレン樹脂組成物は、透明性を維持しながら、剛性、耐衝撃性に優れ、特に成形品外観に大幅に優れるものである。また、該ポリプロピレン樹脂組成物を使用して得られる射出成形品は、透明性、剛性、耐衝撃性に優れ、かつ成形品外観が大幅に改善されるものであるので、食品容器、各種飲料用容器、医療用容器などに用いることができその工業的価値は大きい。   The propylene resin composition obtained by the production method of the present invention is excellent in rigidity and impact resistance while maintaining transparency, and is particularly excellent in appearance of a molded product. In addition, injection molded products obtained using the polypropylene resin composition are excellent in transparency, rigidity, impact resistance, and the appearance of the molded product is greatly improved. It can be used for containers, medical containers, etc., and has great industrial value.

Claims (7)

(A)メルトフローレート(230℃、21.18N荷重)が0.5〜50g/10分であって、エチレン含有量が2.0〜5.0重量%であるプロピレン・エチレンランダム共重合体:45〜96重量部、
(B)メルトフローレート(190℃、21.18N荷重)が5〜70g/10分であって、密度が0.860〜0.913g/cmであるメタロセン触媒を用いて重合したエチレン・α−オレフィン共重合体:2〜15重量部、及び
(C)メルトフローレート(230℃、21.18N荷重)が0.5〜30g/10分であるプロピレン単独重合体:2〜40重量部
を含有する混合物の(A)成分〜(C)成分の合計100重量部に対し、(D)有機過酸化物を0.0001〜0.03重量部、かつ(D)成分の(B)成分に対する量比が1/100以下となるよう添加し、逐次溶融混練又は分割溶融混練してなるプロピレン樹脂組成物の製造方法であって、プロピレン樹脂組成物のメルトフローレート(230℃、21.18N荷重)が(A)成分のメルトフローレートの1.2〜3.5倍であることを特徴とするプロピレン樹脂組成物の製造方法。
(ただし、(A)成分、(C)成分、ポリプロピレン樹脂組成物のメルトフローレートはJIS K6758に準拠して測定する値、(B)成分のメルトフローレートはJIS K6760に準拠して測定する値、密度はJIS K6760に準拠して測定する値である。)
(A) A propylene / ethylene random copolymer having a melt flow rate (230 ° C., 21.18 N load) of 0.5 to 50 g / 10 min and an ethylene content of 2.0 to 5.0% by weight. : 45 to 96 parts by weight,
(B) Ethylene / α polymerized using a metallocene catalyst having a melt flow rate (190 ° C., 21.18 N load) of 5 to 70 g / 10 min and a density of 0.860 to 0.913 g / cm 3 -An olefin copolymer: 2 to 15 parts by weight, and (C) a propylene homopolymer having a melt flow rate (230 ° C, 21.18 N load) of 0.5 to 30 g / 10 min: 2 to 40 parts by weight. (D) 0.0001 to 0.03 parts by weight of the organic peroxide and 100 parts by weight of the total amount of the components (A) to (C) of the mixture, A method for producing a propylene resin composition which is added so that the amount ratio becomes 1/100 or less, and is sequentially melt-kneaded or dividedly melt-kneaded, wherein the melt flow rate of the propylene resin composition (230 ° C., 21.18N load) ) (A) the production method of the polypropylene resin composition, which is a 1.2 to 3.5 times the component melt flow rate.
(However, the melt flow rate of the component (A), the component (C) and the polypropylene resin composition is a value measured according to JIS K6758, and the melt flow rate of the component (B) is a value measured according to JIS K6760. , Density is a value measured according to JIS K6760.)
前記逐次溶融混練が(B)成分と(C)成分を溶融混練し、その後(A)成分を溶融混練してなる方法であることを特徴とする請求項1に記載のプロピレン樹脂組成物の製造方法。   2. The method for producing a propylene resin composition according to claim 1, wherein the successive melt kneading is a method in which the component (B) and the component (C) are melt kneaded, and then the component (A) is melt kneaded. Method. 前記分割溶融混練が前段に(B)成分と(C)成分を供給し溶融混練し、後段に(A)成分を供給し溶融混練してなる方法であることを特徴とする請求項1に記載のプロピレン樹脂組成物の製造方法。   2. The split melting and kneading method according to claim 1, wherein the component (B) and the component (C) are supplied and melt kneaded in the first stage, and the component (A) is supplied and melt kneaded in the second stage. A method for producing a propylene resin composition. 前記分割溶融混練が前段に(A)成分と(C)成分を供給し溶融混練し、後段に(B)成分を供給し溶融混練してなる方法であることを特徴とする請求項1に記載のプロピレン樹脂組成物の製造方法。   2. The split melting and kneading method according to claim 1, wherein the components (A) and (C) are supplied and melt kneaded in the first stage, and the component (B) is supplied and melt kneaded in the second stage. A method for producing a propylene resin composition. 前記逐次溶融混練又は分割溶融混練における樹脂温度が200〜230℃であることを特徴とする請求項1〜4のいずれか1項に記載のプロピレン樹脂組成物の製造方法。   The method for producing a propylene resin composition according to any one of claims 1 to 4, wherein a resin temperature in the sequential melt-kneading or the split melt-kneading is 200 to 230 ° C. 請求項1〜5のいずれか1項に記載のプロピレン樹脂組成物の製造方法で得られたプロピレン樹脂組成物からなる射出成形品。   An injection molded article comprising the propylene resin composition obtained by the method for producing a propylene resin composition according to claim 1. 成形品の切り出し断面における分散相の最大粒子径が1μ以下であることを特徴とする請求項6に記載の射出成形品。   The injection-molded article according to claim 6, wherein the maximum particle size of the dispersed phase in the cut section of the molded article is 1 µm or less.
JP2003385148A 2002-11-14 2003-11-14 Producing method of propylene resin composition Pending JP2004176061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385148A JP2004176061A (en) 2002-11-14 2003-11-14 Producing method of propylene resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002330432 2002-11-14
JP2003385148A JP2004176061A (en) 2002-11-14 2003-11-14 Producing method of propylene resin composition

Publications (1)

Publication Number Publication Date
JP2004176061A true JP2004176061A (en) 2004-06-24

Family

ID=32716204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385148A Pending JP2004176061A (en) 2002-11-14 2003-11-14 Producing method of propylene resin composition

Country Status (1)

Country Link
JP (1) JP2004176061A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291131A (en) * 2005-04-14 2006-10-26 Risu Pack Co Ltd Modified polypropylene resin composition and its production method
JP2007231161A (en) * 2006-03-01 2007-09-13 Sumitomo Chemical Co Ltd Polypropylene resin composition and injection molded article made thereof
JP2008514457A (en) * 2004-09-27 2008-05-08 クーパー−スタンダード・オートモーティブ・インコーポレーテッド Composite material comprising a crosslinkable thermoplastic and a TPV show layer
JP2008133020A (en) * 2006-11-29 2008-06-12 Japan Polypropylene Corp Deep drawing container
JP2009019119A (en) * 2007-07-12 2009-01-29 Sumitomo Chemical Co Ltd Polypropylene resin composition and molding
JP2009155422A (en) * 2007-12-26 2009-07-16 Sumitomo Chemical Co Ltd Polypropylene resin composition and molded article
WO2010074394A3 (en) * 2008-12-26 2010-08-12 호남석유화학 주식회사 Polypropylene resin compositions having high melt tension and method for preparing the same
KR101183747B1 (en) * 2005-05-10 2012-09-17 에스케이종합화학 주식회사 Polypropylene compositions having improved impact strength, flexural modulus and high transparency, and articles thereof
WO2023036207A1 (en) * 2021-09-07 2023-03-16 金发科技股份有限公司 High-gloss and good-dispersion polypropylene talcum powder masterbatch, and preparation method therefor and use thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514457A (en) * 2004-09-27 2008-05-08 クーパー−スタンダード・オートモーティブ・インコーポレーテッド Composite material comprising a crosslinkable thermoplastic and a TPV show layer
JP2006291131A (en) * 2005-04-14 2006-10-26 Risu Pack Co Ltd Modified polypropylene resin composition and its production method
JP4632844B2 (en) * 2005-04-14 2011-02-16 リスパック株式会社 Modified polypropylene resin composition and method for producing the same
KR101183747B1 (en) * 2005-05-10 2012-09-17 에스케이종합화학 주식회사 Polypropylene compositions having improved impact strength, flexural modulus and high transparency, and articles thereof
JP2007231161A (en) * 2006-03-01 2007-09-13 Sumitomo Chemical Co Ltd Polypropylene resin composition and injection molded article made thereof
JP2008133020A (en) * 2006-11-29 2008-06-12 Japan Polypropylene Corp Deep drawing container
JP2009019119A (en) * 2007-07-12 2009-01-29 Sumitomo Chemical Co Ltd Polypropylene resin composition and molding
JP2009155422A (en) * 2007-12-26 2009-07-16 Sumitomo Chemical Co Ltd Polypropylene resin composition and molded article
WO2010074394A3 (en) * 2008-12-26 2010-08-12 호남석유화학 주식회사 Polypropylene resin compositions having high melt tension and method for preparing the same
KR100996420B1 (en) * 2008-12-26 2010-11-24 호남석유화학 주식회사 Polypropylene resin having high melt tension and a process for preparing the same
WO2023036207A1 (en) * 2021-09-07 2023-03-16 金发科技股份有限公司 High-gloss and good-dispersion polypropylene talcum powder masterbatch, and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
EP1801156B1 (en) Polyolefin compositions
EP1874838B1 (en) Propylene polymer composition for thermoforming
EP2403883B1 (en) Process for the production of propylene random copolymers for injection moulding applications
EP1844100B1 (en) Propylene polymer composition for injection molding
JP2022159554A (en) Propylene-based compositions of enhanced appearance and excellent mold flowability
EA029083B1 (en) Process for the preparation of a composition comprising heterophasic propylene copolymer and talc, impact composition and shaped article
JP2006213918A (en) Polypropylene-based resin composition and its molded body
CN1662598A (en) Impact-resistant polyolefin compositions
JP6499765B2 (en) Modified polypropylene and polymer blends thereof
JP2004176061A (en) Producing method of propylene resin composition
JPWO2018168760A1 (en) Heterophasic propylene polymer material and propylene resin composition
JP3931725B2 (en) POLYPROPYLENE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND INJECTION MOLDED PRODUCT COMPRISING THE SAME
CN109476889B (en) Polyolefin compatibilizer composition for compounding to improve stiffness and impact balance
JP2006213917A (en) Method for producing polypropylene resin composition
JPH09309984A (en) Modified polyethylene impact copolymer composition
US6187869B1 (en) Modifiers based on ethylenes or amorphous olefin elastomers for reducing the surface tack of amorphous polypropylenes
JP2011111579A (en) Polyethylene resin composition for bottle cap
JP6390494B2 (en) Polypropylene resin composition for injection molding and injection molded body
JP3964048B2 (en) Propylene polymer composition for extrusion foaming and method for producing the same
US20030212193A1 (en) Propylene-based polymer and injection molded article made of the same
JPH0971693A (en) Polypropylene resin composition
JP2002226649A (en) Outer cylinder for syringe
JP3757198B2 (en) Polypropylene resin composition
JP7410666B2 (en) injection molded body
JP2020158652A (en) Propylene-based polymer composition and molding thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060913

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090528

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Effective date: 20091117

Free format text: JAPANESE INTERMEDIATE CODE: A02