JP2004174625A - ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法 - Google Patents

ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法 Download PDF

Info

Publication number
JP2004174625A
JP2004174625A JP2002341047A JP2002341047A JP2004174625A JP 2004174625 A JP2004174625 A JP 2004174625A JP 2002341047 A JP2002341047 A JP 2002341047A JP 2002341047 A JP2002341047 A JP 2002341047A JP 2004174625 A JP2004174625 A JP 2004174625A
Authority
JP
Japan
Prior art keywords
finger
motor
hardness
robot
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002341047A
Other languages
English (en)
Inventor
Shinji Ishii
眞二 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002341047A priority Critical patent/JP2004174625A/ja
Publication of JP2004174625A publication Critical patent/JP2004174625A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】対象物を確実かつ適切に把持し得るロボット装置の手構造、駆動装置、駆動方法、ロボット装置を提案する。
【解決手段】ロボット装置の指部601に、第1の硬度を有する骨格層80と、骨格層701を覆うように設けられた第1の硬度よりも低い第2の硬度を有する柔軟層74,85と、柔軟層74,85を覆うように設けられた、第1の硬度よりも低くかつ第2の硬度よりも高い硬度を有する表面層75,86とを設けるようにした。またロボットの手を駆動する駆動装置及び駆動方法において、指部を駆動する駆動源としてのモータの回転状態を検出し、当該検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御するようにした。
【選択図】 図15

Description

【0001】
【発明の属する技術分野】
本発明はロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法に関し、例えばヒューマノイドタイプのロボット装置に適用して好適なものである。
【0002】
【従来の技術】
近年、人間の形態を模したヒューマノイドタイプのロボット装置の研究開発が多くの企業や各種研究機関において行われている。
【0003】
この場合、この種のロボット装置においては、各種作業を行う上で『手』の構造は非常に重要であり、より人間に近い動きを望む場合、対象物を掴む、摘む又は握るといった複雑な動作を確実に行い得る構造であることが要求され、またその動きにも各種の工夫が要求される。
【0004】
なお、従来、ロボットの手の構造として、その表面に所定パターンの隆線(突条)を形成することにより、把持能力を向上させ得るようにしたものが提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特表平9−506532号(特願平7−516794号)公報 (第10頁、図9)
【0006】
【発明が解決しようとする課題】
ところで、従来のロボットにおいては、手に設けられる指部が単層構造であり、対象物を掴む等する際の指部の変位量がその材質の特性に依存していた。この場合、ロボットが対象物を確実に掴む等できるようにするためには、把持する際の対象物と指部との密着性を高くすることが望まれる。
【0007】
しかしながら、ロボットの指部の材質を変位量の多いものにすると表面に傷がつきやすく、長期使用に耐え得ない問題があり、また、これを避けるために指部の材質を変位量の多いものにすると対象物及び指部間の密着性が悪くなって当該対象物の確実な把持等を行い難くなる問題があった。
【0008】
一方、ロボットが対象物を把持するに際しては、その対象物を破壊せずかつ当該対象物を確実に把持できる程度の圧力で指部を当該対象物に接触させる必要がある。
【0009】
このため従来では、かかる把持時における各指部の動作を制御する方法として、各指部における対象物との接触位置に圧力センサをそれぞれ設け、対象物を把持する際に圧力センサによって検出される圧力が所定の値となるように各指部の動作を制御する方法が提案されていた。
【0010】
しかしながら、この方法によると、各指部における対象物との接触位置に圧力センサをそれぞれ設ける必要があるため、当該接触位置からの配線や、指部の大きさに応じた圧力センサが必要となり、その分ロボットの手の構成が煩雑化及び大型化し、小型ロボットへの応用が困難な問題があった。
【0011】
本発明は以上の点を考慮してなされたもので、対象物を確実かつ適切に把持し得るロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法を提案しようとするものである。
【0012】
【課題を解決するための手段】
かかる課題を解決するため本発明においては、ロボット装置の手構造において、指部が、第1の硬度を有する骨格層と、骨格層を覆うように設けられた第1の硬度よりも低い第2の硬度を有する柔軟層と、柔軟層を覆うように設けられた、第1の硬度よりも低くかつ第2の硬度よりも高い硬度を有する表面層とを有するようにした。
【0013】
この結果、このロボット装置の手構造によれば、対象物を把持する際の指部の密着性を向上させながら、当該指部の耐久性を向上させることができる。
【0014】
また本発明においては、ロボット装置において、その指部が、第1の硬度を有する骨格層と、骨格層を覆うように設けられた第1の硬度よりも低い第2の硬度を有する柔軟層と、柔軟層を覆うように設けられた、第1の硬度よりも低くかつ第2の硬度よりも高い硬度を有する表面層とを有するようにした。
【0015】
この結果、このロボット装置によれば、対象物を把持する際の指部の密着性を向上させながら、当該指部の耐久性を向上させることができる。
【0016】
さらに本発明においては、ロボットの手の駆動装置において、指部を駆動する動力源としてのモータと、外部からの指令に応じてモータの回転を制御する制御手段と、モータの回転状態を検出するセンサ手段とを設け、制御手段が、センサ手段の検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御するようにした。
【0017】
この結果、この駆動装置によれば、各指部における対象物との接触位置からの配線や、指部における当該接触位置の大きさに応じた圧力センサを必要とすることなく、把持時における指部の適切な動作制御を行うことができる。
【0018】
さらに本発明においては、ロボットの当該手の駆動方法において、指部を駆動する駆動源としてのモータの回転状態を検出する第1のステップと、当該検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御する第2のステップとを設けるようにした。
【0019】
この結果、この駆動方法によれば、各指部における対象物との接触位置からの配線や、指部における当該接触位置の大きさに応じた圧力センサを必要とすることなく、把持時における指部の適切な動作制御を行うことができる。
【0020】
さらに本発明においては、ロボット装置において、指部を駆動する動力源としてのモータと、外部からの指令に応じてモータの回転を制御する制御手段と、モータの回転状態を検出するセンサ手段とを設け、制御手段が、センサ手段の検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御するようにした。
【0021】
この結果、このロボット装置によれば、各指部における対象物との接触位置からの配線や、指部における当該接触位置の大きさに応じた圧力センサを必要とすることなく、把持時における指部の適切な動作制御を行うことができる。
【0022】
【発明の実施の形態】
以下図面について、本発明の一実施の形態を詳述する。
【0023】
(1)本実施の形態によるロボットの構成
図1及び図2において、1は全体として本実施の形態による2足歩行型のロボットを示し、胴体部ユニット2の上部に頭部ユニット3が配設されると共に、当該胴体部ユニット2の上部左右にそれぞれ同じ構成の腕部ユニット4A、4Bがそれぞれ配設され、かつ胴体部ユニット2の下部左右にそれぞれ同じ構成の脚部ユニット5A、5Bがそれぞれ所定位置に取り付けられることにより構成されている。
【0024】
胴体部ユニット2においては、体幹上部を形成するフレーム10及び体幹下部を形成する腰ベース11が腰関節機構12を介して連結することにより構成されており、体幹下部の腰ベース11に固定された腰関節機構12の各アクチュエータA、Aをそれぞれ駆動することによって、体幹上部を図3に示す直交するロール軸13及びピッチ軸14の回りにそれぞれ独立に回転させ得るようになされている。
【0025】
また頭部ユニット3は、フレーム10の上端に固定された肩ベース15の上面中央部に首関節機構16を介して取り付けられており、当該首関節機構16の各アクチュエータA、Aをそれぞれ駆動することによって、図3に示す直交するピッチ軸17及びヨー軸18の回りにそれぞれ独立に回転させ得るようになされている。
【0026】
さらに各腕部ユニット4A、4Bは、それぞれ肩関節機構19を介して肩ベース15の左右に取り付けられており、対応する肩関節機構19の各アクチュエータA、Aをそれぞれ駆動することによって図3に示す直交するピッチ軸20及びロール軸21の回りにそれぞれ独立に回転させ得るようになされている。
【0027】
この場合、各腕部ユニット4A、4Bは、それぞれ上腕部を形成するアクチュエータAの出力軸に肘関節機構22を介して前腕部を形成するアクチュエータAが連結され、当該前腕部の先端に手部23が取り付けられることにより構成されている。
【0028】
そして各腕部ユニット4A、4Bでは、アクチュエータAを駆動することによって前腕部を図3に示すヨー軸24の回りに回転させ、アクチュエータAを駆動することによって前腕部を図3に示すピッチ軸25の回りにそれぞれ回転させることができるようになされている。
【0029】
これに対して各脚部ユニット5A、5Bにおいては、それぞれ股関節機構26を介して体幹下部の腰ベース11にそれぞれ取り付けられており、それぞれ対応する股関節機構26の各アクチュエータをA〜A11それぞれ駆動することによって、図3に示す互いに直交するヨー軸27、ロール軸28及びピッチ軸29の回りにそれぞれ独立に回転させ得るようになされている。
【0030】
この場合各脚部ユニット5A、5Bは、それぞれ大腿部を形成するフレーム30の下端に膝関節機構31を介して下腿部を形成するフレーム32が連結されると共に、当該フレーム32の下端に足首関節機構33を介して足部34が連結されることにより構成されている。
【0031】
これにより各脚部ユニット5A、5Bにおいては、膝関節機構31を形成するアクチュエータA12を駆動することによって、下腿部を図3に示すピッチ軸35の回りに回転させることができ、また足首関節機構33のアクチュエータA13、A14をそれぞれ駆動することによって、足部34を図3に示す直交するピッチ軸36及びロール軸37の回りにそれぞれ独立に回転させ得るようになされている。
【0032】
一方、胴体部ユニット2の体幹下部を形成する腰ベース11の背面側には、図4に示すように、当該ロボット1全体の動作制御を司るメイン制御部40と、電源回路及び通信回路などの周辺回路41と、バッテリ45(図5)となどがボックスに収納されてなる制御ユニット42が配設されている。
【0033】
そしてこの制御ユニット42は、各構成ユニット(胴体部ユニット2、頭部ユニット3、各腕部ユニット4A、4B及び各脚部ユニット5A、5B)内にそれぞれ配設された各サブ制御部43A〜43Dと接続されており、これらサブ制御部43A〜43Dに対して必要な電源電圧を供給したり、これらサブ制御部43A〜43Dと通信を行うことができるようになされている。
【0034】
また各サブ制御部43A〜43Dは、それぞれ対応する構成ユニット内の各アクチュエータA〜A14と接続されており、当該構成ユニット内の各アクチュエータA〜A14をメイン制御部40から与えられる各種制御コマンドに基づいて指定された状態に駆動し得るようになされている。
【0035】
さらに頭部ユニット3には、図5に示すように、このロボット1の「目」として機能するCCD(Charge Coupled Device )カメラ50及び「耳」として機能するマイクロホン51及びタッチセンサ52などからなる外部センサ部53と、「口」として機能するスピーカ54となどがそれぞれ所定位置に配設され、制御ユニット42内には、バッテリセンサ55及び加速度センサ56などからなる内部センサ部57が配設されている。
【0036】
そして外部センサ部53のCCDカメラ50は、周囲の状況を撮像し、得られた画像信号S1Aをメイン制御部に送出する一方、マイクロホン51は、ユーザから音声入力として与えられる「歩け」、「伏せ」又は「ボールを追いかけろ」等の各種命令音声を集音し、かくして得られた音声信号S1Bをメイン制御部40に送出するようになされている。
【0037】
またタッチセンサ52は、図1及び図2において明らかなように頭部ユニット3の上部に設けられており、ユーザからの「撫でる」や「叩く」といった物理的な働きかけにより受けた圧力を検出し、検出結果を圧力検出信号S1Cとしてメイン制御部40に送出する。
【0038】
さらに内部センサ部57のバッテリセンサ55は、バッテリ45のエネルギ残量を所定周期で検出し、検出結果をバッテリ残量検出信号S2Aとしてメイン制御部40に送出する一方、加速度センサ56は、3軸方向(x軸、y軸及びz軸)の加速度を所定周期で検出し、検出結果を加速度検出信号S2Bとしてメイン制御部40に送出する。
【0039】
メイン制御部部40は、外部センサ部53のCCDカメラ50、マイクロホン51及びタッチセンサ52等からそれぞれ供給される画像信号S1A、音声信号S1B及び圧力検出信号S1C等(以下、これらをまとめて外部センサ信号S1と呼ぶ)と、内部センサ部57のバッテリセンサ55及び加速度センサ等からそれぞれ供給されるバッテリ残量検出信号S2A及び加速度検出信号S2B等(以下、これらをまとめて内部センサ信号S2と呼ぶ)に基づいて、ロボット1の周囲及び内部の状況や、ユーザからの指令、ユーザからの働きかけの有無などを判断する。
【0040】
そしてメイン制御部40は、この判断結果と、予め内部メモリ40Aに格納されている制御プログラムと、そのとき装填されている外部メモリ58に格納されている各種制御パラメータとに基づいて続く行動を決定し、決定結果に基づく制御コマンドを対応するサブ制御部43A〜43Dに送出する。この結果、この制御コマンドに基づき、そのサブ制御部43A〜43Dの制御のもとに、対応するアクチュエータA〜A14が駆動され、かくして頭部ユニット3を上下左右に揺動させたり、腕部ユニット4A、4Bを上にあげたり、歩行するなどの行動がロボット1により発現されることとなる。
【0041】
またこの際メイン制御部40は、必要に応じて所定の音声信号S3をスピーカ54に与えることにより当該音声信号S3に基づく音声を外部に出力させたり、外見上の「目」として機能する頭部ユニット3の所定位置に設けられたLEDに駆動信号を出力することによりこれを点滅させる。
【0042】
このようにしてこのロボット1においては、周囲及び内部の状況や、ユーザからの指令及び働きかけの有無などに基づいて自律的に行動することができるようになされている。
【0043】
(2)ロボット1における手部23の構成
(2−1)手部23の概略構成
次に、このロボット1における手部23の構成について説明する。
【0044】
このロボット1の手部23には、図6(A)及び(B)に示すように、それぞれ人間の親指、人差し指、中指、薬指及び小指に相当する第1〜第5の指部60〜60が設けられている。
【0045】
この場合、第1の指部60は、指先部61及び指元部61が第1の指関節61を介して手部23の内側に向けて屈折自在に連結されることにより構成されており、指元部61の下端部が、手本体部62の内側面(以下、これを手の平面と呼ぶ)62Aにおける下部右端近傍位置(右手)又は下部左端近傍位置(左手)に、第2の指関節61を介して手部23の内側に向けて屈曲自在に連結されている。
【0046】
また第2〜第5の指部60〜60は、それぞれ指先部62及び中指部62が第1の指関節62を介して手部23の内側に向けて屈折自在に連結されると共に、指中部62及び指元部62が第2の指関節62を介して手部23の内側に向けて屈折自在に連結されることにより構成され、指元部62の下端部が、手本体部62の先端に第3の指関節62を介して手部23の内側に向けて屈曲自在に連結されている。
【0047】
これによりこのロボット1においては、第1〜第5の指部60〜60を伸ばし又は屈曲させることで、図6のように手部を開いたり、図7及び図8のように手部23を閉じたりすることができ、かくして例えば図9及び図10のようにボール等の対象物64、65を掴んだり、図11のように紙や薄板等の対象物66を摘むことができるようになされている。
【0048】
このとき第2〜第5の指部60〜60は、図6に示すように、手を開いた状態において、これら第2〜第5の指部60〜60が手部本体62の下端部1点Pを中心として一定角度間隔(例えば15〔°〕間隔)で放射方向に伸びるように手本体部62に取り付けられている。また第1の指部60は、図7に示すように、その中心線Kが第3の指部の中心線Kと一定角度θthをもって交差するように手本体部62に取り付けられている。
【0049】
これによりこのロボット1においては、第1〜第5の指部60〜60によって、例えば図9及び図10のように対象物64、65を複数方向から包み込むように把持することができ、かくして大きな対象物から小さな対象物まで広い範囲の大きさの対象物を確実に把持することができるようになされている。
【0050】
また、かかる第1の指部60の角度θthは、図7のように対象物を掴む状態に第1〜第5の指部60〜60を屈曲させたときに、第1の指部60の先端部が第2の指部60の先端部及び第3の指部60の先端部とそれぞれ接触する角度に選定されており、かくして対象物を摘む際に、図11のように、少なくとも第1の指部60の先端部と、第2の指部60の先端部と、第3の指部60の先端部との3点によって当該対象物67を確実に保持し得るようになされている。
【0051】
なおこの実施の形態の場合、第1〜第5の指部60〜60の長さは、それぞれ異なる長さに選定されており、これにより第1〜第5の指部60〜60を広い範囲で接触させながら対象物を把持することができるようになされている。
【0052】
(2−2)手部23の具体的構成
ここで、実際上、手本体部62においては、図12に示すように、手の平面62Aが全体としてほぼ丸四角形状となるように構成されており、その第1の指部60の取付け位置を含む下部と、当該手の平面62A全体の4分の3程度の面積を占める先端部とに凸形状の丘部62A、62A(図12(A)において斜線部よりも上側部分及び下側部分)が設けられると共に、これら先端部の丘部62A及び下部の丘部62A間に凹形状の窪み部62A(図12(A)において斜線部分)が設けられている。
【0053】
この場合、図12からも明らかなように、先端部の丘部62A及び窪み部62A間は滑らかな曲面により繋がれているのに対し、下部の丘部62A及び窪み部62A間には段差62Bが設けられており、これにより対象物を手の平面62A上に安定して載せることができ、また対象物を安定して把持することができるようになされている。
【0054】
また手本体部62の手の平面62Aには、ゴム材等の摩擦係数の大きい材料からなる表面材63が貼着されており、これにより対象物を把持する際に当該表面材63と対象物との間に生じる摩擦によってより一層と安定して当該対象物を手の平面62A内に保持し得るようになされている。
【0055】
一方、第1の指部60においては、図13(A)及び(B)に示すように、指先部61の骨を構成する樹脂又はアルミ合金等の硬度の高い材料からなる第1の骨格層70と、指元部61の骨を構成する同じ材料からなる第2の骨格層70とを有し、これら第1及び第2の骨格層70、70が第1の指関節61を構成する当該第1の指部60の横方向(矢印a)と平行に設けられた第1の軸体71により、一体にかつ屈曲自在に連結されている。
【0056】
また指元部61の下端部には、第2の指関節61を構成する第2の軸体72が当該指元部61を第1の軸体71と平行に貫通するように設けられ、この第2の軸体72が手本体部62(図6)の所定位置に設けられた軸受け73(図6(A))によって軸支されている。
【0057】
これにより第1の指部60においては、図7について上述したように、第3の指部60の中心軸kとの角度θthを保ちながら、指先部61及び指元部61をそれぞれ独立に手部の内62A側に自在に屈曲させ得るようになされている。
【0058】
このとき、第1及び第2の骨格層70、70は、図13(C)に示すように、αゲル、ソルボセイン又は発泡ウレタン等の硬度がHs0の柔軟材からなる柔軟層74により一体に覆われると共に、当該柔軟層74は、厚さ0.3〜1〔mm〕程度、硬度がHs40〜60程度の例えばゴム、PCV又はパリウレタン等の屈曲性のある材料を用いて形成された表面層75により一体に覆われている。
【0059】
これによりこのロボット1においては、対象物を把持等する際に、第1の指部60の内側面をその対象物の表面形状に応じて凹む方向に弾力的かつ柔軟に変位させて当該対象物に密着させることができることから、当該対象物を確実に把持等することができ、また上述のように第1の指部60が第1及び第2の骨格層70、70、柔軟層74及び表面層75の3層構造となっていることから、第1の指部60の表面に柔軟性をもたせながらも当該表面が損傷し難く、長期使用にも実用上十分に耐え得るようになされている。
【0060】
同様に、第2〜第5の指部60〜60においては、図14(A)及び(B)に示すように、指先部63の骨を構成する樹脂又はアルミ合金等の硬度の高い材料からなる第1の骨格層80と、指中部63の骨を構成する同じ材料からなる第2の骨格層80と、指元部63の骨を構成する同じ材料からなる第3の骨格層80とを有し、これら第1〜第3の骨格層80〜80が、第1の指関節63を構成する第1の軸体81と、第2の指関節63を構成する第2の軸体82とにより、一体にかつ屈曲自在に連結されている。
【0061】
また指元部63の下端部には、第3の指関節63を構成する第3の軸体83が当該指元部63を第1及び第2の軸体81、82と平行に貫通するように設けられ、この第3の軸体83が手本体部62の所定位置に設けられた対応する軸受け84〜84(図6(A))によって軸支されている。
【0062】
これにより第2〜第5の指部60〜60においては、図6について上述したように、指先部63、指中部63及び指元部63をそれぞれ独立に手部23の内側に向けて自在に屈曲させ得るようになされている。
【0063】
このとき、第1〜第3の骨格層80〜80は、図14(C)に示すように、第1の指部60の場合と同様に、αゲル、ソルボセイン又は発泡ウレタン等の硬度がHs0の柔軟材からなる柔軟層85により一体に覆われると共に、当該柔軟層85は、厚さ0.3〜1〔mm〕程度、硬度がHs40〜60程度の例えばゴム、PCV又はパリウレタン等の屈曲性のある材料を用いて形成された表面層86により一体に覆われている。
【0064】
これによりこのロボット1においては、対象物を把持等する際に、第2〜第5の指部60〜60の内側面をその対象物の表面形状に応じて凹む方向に弾力的かつ柔軟に変位させて当該対象物に密着させることができることから、当該対象物を確実に把持等することができ、また上述のように第2〜第5の指部60〜60が第1〜第3の骨格層80〜80、柔軟層85及び表面層86の3層構造となっていることから、第2〜第5の指部60〜60の表面に柔軟性をもたせながらも当該表面が損傷し難く、長期使用にも実用上十分に耐え得るようになされている。
【0065】
なおこの実施の形態の場合、図15に示すように、第1〜第5の指部60〜60における各指先部61、63(図13、図14)の先端部は、先端に行くほど腹面60A〜60Aが背面に近づくように湾曲して形成されると共に、これと対向する第1の骨格層70、80の先端部70A、80Aは、その第1〜第5の指部60〜60の先端に行くにつれて当該第1〜第5の指部60〜60の背面側に近づくように、例えば45〔°〕程度の傾斜角を有するテーパ状に形成されている。
【0066】
これによりロボット1においては、対象物を掴むときに最も力が加わる第1〜第5の指部60〜60の各指先部61、63における腹面60A〜60Aの先端部を、より一層と当該対象物の表面に沿って凹むように変位させてその接触面積を拡大させることができ、かくして当該対象物と第1〜第5の指部60〜60との間の摩擦力を向上させて、対象物をより一層確実に把持し得るようになされている。
【0067】
またこの実施の形態の場合、第1〜第5の指部60〜60の表面層75、86においては、全体としてその断面形状が図13(C)及び図14(C)に示すように中空の丸四角形状に選定されると共に、各指先部61、63の腹面形状が丸四角形状に選定されており、これにより第1〜第5の指部60〜60を対象物と広い接触面積で接触させて、当該対象物を確実に把持することができるようになされている。
【0068】
このとき第1の指部60は第2〜第5の指部60〜60よりも幅広に形成されており、これにより例えば図11(B)のように第1〜第3の指部60〜60によって3点支持により紙又は薄板等の対象物67を摘む際にも、1点支持側となる第1の指部60の当該対象物67に対する接触面積を大きくして、当該対象物67をより安定に保持し得るようになされている。
【0069】
さらにこの実施の形態の場合、第1〜第5の指部60〜60における各指先部61、63の腹面60A〜60A側には、図16に示すように、複数の同心円状の凹凸からなる凹凸パターンでなる指紋部87が摩擦力向上のため設けられており、これにより例えば図17に示すように、床面88上に置かれた紙89を、第1及び第2の指部601、602の各指紋部87との間に生じる摩擦を利用して摘み上げ得るようになされている。
【0070】
また第1〜第5の指部60〜60における各指紋部87の中央部には、図16(A)に示すように、それぞれ所定深さの窪み部87Aが設けられており、かくして図18のように第1〜第5の指部60〜60の腹面60A〜60Aを対象物90に接触させたときに、これら第1〜第5の指部60〜60の指紋部87における窪み部87A内の空気圧が上昇して当該窪み部87A内から空気が外部に押し出されて、当該窪み部87Aにおいて吸着作用を生じさせ得るようになされている。
【0071】
これによりこのロボット1においては、対象物をより一層確実に把持することができ、かくして例えば第1〜第5の指部60〜60の各指紋部87による摩擦力と、当該各指紋部87の窪み部87Aにおける吸着力と、指先の柔軟性とを利用して、図19(A)に示すように、ボール91をその重心G位置よりも高い位置において把持することもできるようになされている。
【0072】
さらにこの実施の形態の場合、第1〜第5の指部60〜60の表面層75、86は無色透明な材料を用いて形成されており、当該表面層75、86(図13(C)、図14(C))における柔軟層74、85(図13(C)、図14(C))との境界面(表面層75、86の内面)又は柔軟層74、85における表面層75、86との境界面(柔軟層74、85の表面)にはそのロボット1に固有の識別情報が例えば図20に示すような2次元バーコードとして印刷されている。
【0073】
これによりこのロボット1においては、この2次元バーコードに基づいて識別することができ、これによりロボット1間の混同を防止すると共にロボット1の盗難等を抑制することができるようになされている。
【0074】
他方、第1〜第5の指部60〜60においては、図13及び図14に示すように、それぞれその背面側の先端位置に、例えば樹脂材等の硬度がHs70程度でかつ滑り易い材料からなる爪92が接着剤等を用いて交換自在に取り付けられている。
【0075】
この場合、爪92は、その先端部が第1〜第5の指部60〜60の先端から僅かに突出するように接着されており、これにより机面上や床面上に置かれた小物や紙を、これら第1〜第5の指部60〜60の先端から突出する爪92を引掻けるようにして摘むことができるようになされている。
【0076】
また爪92においては、図13及び図14からも明らかなように、その先端部は円弧状に形成されており、これにより各方向から爪92を対象物に均等に引掻け得るように、かつ爪92を対象物に引掻けるなどする際に当該爪92に作用する外力を分散させて、当該爪92を破損し難くし得るようになされている。
【0077】
また爪92の先端部は、先に行くほど第1〜第5の指部60〜60の腹面60A〜60A側に反るように湾曲して形成されており、これにより例えば図19(B)に示すように、床面上にある小物93を第1の指部60の爪92と、第2の指部60の爪92とにより引掻けるようにして、確実に摘むことができるようになされている。
【0078】
(3)ロボット1における手部23の駆動制御
(3−1)システム構成
次に、かかる構造を有する手部23を駆動制御する駆動制御系のシステム構成について説明する。
【0079】
このロボット1の場合、手部23における手本体部62の内部には、図21(A)及び(B)に示すように、第1〜第5の指部60〜60にそれぞれ対応させて、これら第1〜第5の指部60〜60を伸ばし又は曲げるように駆動するための第1〜第5のアクチュエータ部100〜100が収納され、当該手部23及び前腕部間を連結する手首関節101には、手部23をロール方向(軸θの回りの方向)及びピッチ方向(軸θの回りの方向)に駆動するため2軸一体型の第6のアクチュエータ部102が設けられている。
【0080】
また第1〜第5のアクチュエータ部100〜100内には、図22に示すように、それぞれ当該第1〜第5のアクチュエータ部100〜100を制御するための第1〜第5の制御装置103〜103が収納されると共に、第6のアクチュエータ部102内には、ピッチ軸用及びロール軸用の第6及び第7の制御装置104、104が収納されている。さらにロボット1の前腕部を構成するアクチュエータA(図1、図21)内には、インテリジェントHUB105が収納され、当該インテリジェントHUB105と、第1〜第7の制御装置103〜103、104、104とがディジーチェーン接続されている。
【0081】
この場合、インテリジェントHUB105は、図22に示すように、USB(Universal Serial Bus)インターフェース回路110、CPU(Central Processing Unit)111及びシリアル通信用インターフェース回路112と、ROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリ113とが設けられており、USBインターフェース回路110を介して上位コントローラ(サブ制御部43C(図4))と通信し、またシリアル通信用インターフェース回路112を介して第1〜第7の制御装置103〜103、104、104とシリアル通信し得るようになされている。
【0082】
そしてこのインテリジェントHUB105には、上位コントローラから各第1〜第7の制御装置103〜103、104、104に対する位置指令(U1(N)〜U7(N))が2〔ms〕周期で与えられ、インテリジェントHUB105は、これら位置指令(U1(N)〜U7(N))のデータフォーマットを所定のデータフォーマットのサーボ指令(Ref1(k)〜Ref7(k))に変換して、ディジーチェーン接続された後段の第1の制御装置103に送出するようになされている。
【0083】
このとき第1の制御装置103は、前段のインテリジェントHUB105からサーボ指令が与えられると、そのうちの自己に対するサーボ指令(Ref1(k))を取り込み、この後はこのサーボ指令に基づいて対応する第1のアクチュエータ部100を制御する一方、前段のインテリジェントHUB105から与えられたサーボ指令(Ref1(k)〜Ref7(k))のうち、自己に対するサーボ指令(Ref1(k))を、当該第1のアクチュエータ部100内の後述する対応するDCモータの現在位置を表す現在位置データ(P1(k))に置き換えて、これらを後段の第2の制御装置103に送出する。
【0084】
同様に、第2〜第7の制御装置103〜103、104、104は、前段の他の第1〜第6の制御装置103〜103、104から現在位置データ及びサーボ指令が与えられると、そのうちの自己に対するサーボ指令を取り込み、この後はこのサーボ指令に基づいて対応する第2〜第6のアクチュエータ部100〜100、101を制御する一方、前段の第1〜第6の制御装置103〜103、104から与えられたサーボ指令及び現在位置データのうち、自己に対するサーボ指令を、対応する第2〜第6のアクチュエータ部100〜100、104、104内の後述するDCモータの現在位置を表す現在位置データ(P2(k)〜P7(k))に置き換えて、これらをさらに後段の他の第3〜第7の制御装置103〜103、104、104又はインテリジェントHUB105に送出する。
【0085】
この結果、インテリジェントHUB105には、最後の第7の制御装置104から各DCモータの現在位置データが与えられ、かくしてインテリジェントHUB105は、これら各DCモータの現在位置データを上位コントローラに送出する。そして、上位コントローラは、これら各DCモータの現在位置データに基づいて、各第1〜第7の制御装置103〜103、104、104に対する新たな位置指令(U1(N)〜U7(N))を生成し、これを次の周期にインテリジェントHUB105に与える。
【0086】
このようにしてこのロボット1においては、上位コントローラがインテリジェントHUB105を介して手部23の容姿制御を行い得るようになされている。
【0087】
(3−2)第1〜第6のアクチュエータ部100〜100、102の構成
ここで、第1〜第5のアクチュエータ100〜100においては、図23に示すように、ギアボックス120に固定されたDCモータ121を動力源として有している。そしてDCモータ121の出力軸121Aにはギア122が取り付けられ、当該ギア122がギアボックス120内の例えば冠歯車等でなるギア123と歯合している。
【0088】
またギア123は、当該ギア123を同軸に貫通する回転軸124に固定されると共に、当該回転軸124はギアボックス120内において回転自在に枢支され、かつ当該回転軸124の両端部にはそれぞれ握締め用回転軸125及び開放用回転軸126が同軸に固定されている。
【0089】
そして握締め用回転軸125の周側面には、第1のワイヤ127の一端側がDCモータ121を正転駆動したときに巻き取り得る方向に巻回されると共に、その先端部が固定されている。またこの第1のワイヤ127の他端側は、対応する第1〜第5の指部60〜60の内部腹面側を通って当該第1〜第5の指部60〜60の内部先端にその端部が固定されている。
【0090】
これによりロボット1においては、第1〜第5のアクチュエータ部100〜100のDCモータ121を正転駆動して第1のワイヤ127を握締め用回転軸125の周側面に巻き取ることで、当該第1のワイヤ127により指先部61、63をその腹面側に引っ張るようにして、対応する第1〜第5の指部60〜60を屈曲するように駆動させることができるようになされている。
【0091】
また開放用回転軸126の周側面には、第2のワイヤ128の一端部がDCモータ121を逆転駆動したときに巻き取り得る方向に巻回されると共に、その先端部が固定されている。またこの第2のワイヤ128の他端側は、対応する第1〜第5の指部60〜60の内部背面側を通って当該第1〜第5の指部60〜60の内部先端にその端部が固定されている。
【0092】
これによりロボット1においては、第1〜第5のアクチュエータ部100〜100のDCモータ121を逆転駆動して第2のワイヤ128を開放用回転軸126の周側面に巻き取ることで、当該第2のワイヤ128により指先部61、63をその背面側に引っ張るようにして、対応する第1〜第5の指部100〜100を伸ばすように駆動させることができるようになされている。
【0093】
さらに開放用回転軸126の端面には、位置検出センサ130を構成する環状の樹脂マグネット131が当該開放用回転軸126と同軸に固着されると共に、これと平行にかつ僅かな距離を介して対向するように制御基板132が配置され、当該制御基板132における樹脂マグネット131と対向する所定位置に樹脂マグネット131と共に位置検出センサ130を構成する第1及び第2のホール素子133A、133Bが搭載されている。
【0094】
このとき樹脂マグネット131は、その回転位置に応じて第1及び第2のホール素子133A、133Bにより検出される磁極密度が変化するように所定パターンで着磁されており、これにより第1及び第2のホール素子133A、133Bからそれぞれ出力される第1及び第2のセンサ信号(以下、これを第1及び第2の位置検出信号と呼ぶ)に基づいて対応するDCモータ121の現在位置を検出し得るようになされている。
【0095】
また制御基板132には、対応するDCモータ121を駆動制御する図22について上述した第1〜第5の制御装置103〜103が形成されている。そして、この第1〜第5の制御装置103〜103には、上述のように上位コントローラからのサーボ指令(Ref1(k)〜Ref7(k))(図22)と、上述の位置検出センサ130(図23(B))の第1及び第2のホール素子133A、133Bから出力される第1及び第2の位置検出信号とが与えられる。かくして第1〜第5の制御装置103〜103は、このサーボ指令と、第1及び第2の位置検出信号とに基づいて対応するDCモータ121を駆動制御するようになされている。
【0096】
なおこの実施の形態の場合、第1及び第2のワイヤ127、128においては、常に一定のテンションをもって握締め用回転軸125又は開放用回転軸126に巻回されており、これにより例えば第1〜第5の指部60〜60にその屈曲可能な方向の外力が与えられたときに、これに応じて握締め用回転軸125又は開放用回転軸126が回転するようになされている。これによりこのロボット1においては、かかる外力が第1〜第5の指部60〜60に与えられたことを、対応する第1〜第5の制御装置103〜103が位置検出センサ130からの第1及び第2の位置検出信号に基づいて容易に認識し得るようになされている。
【0097】
一方、第6のアクチュエータ102においては、図24に示すように、筐体140内部の所定位置に固定された動力源としてのロール軸用のDCモータ141及びピッチ軸用のDCモータ142を有している。
【0098】
この場合、ロール軸用のDCモータ141の出力軸141Aにはギア143が固着されると共に、当該ギア143は、ギア144、当該ギア144と一体形成されたギア145、ギア146、当該ギア146と一体形成されたギア147、ギア148、当該ギア148と一体形成されたギア149及びギア150を順次介してロール軸用出力軸151と連結されている。
【0099】
このときロール軸用出力軸151は、図21からも明らかなように、ロボット1の前腕部に固定されており、かくしてDCモータ141を駆動することによって手部23を全体としてロール方向に回転駆動することができるようになされている。
【0100】
またピッチ軸用のDCモータ142の出力軸142Aにはギア152が固定されると共に、当該ギア152は、ギア153、当該ギア153と一体形成されたギア154、ギア155、当該ギア155と一体形成されたギア156及びギア157を順次介してピッチ軸用出力軸158と連結されている。
【0101】
このときピッチ軸用出力軸158は、図21からも明らかなように、手部23の手部本体62の後端に固定された第1の軸受け158Aにより固定保持されている。また筐体140におけるピッチ軸用出力軸158との対向面には当該ピッチ軸用出力軸158と同軸に回転軸160が回転自在に設けられていると共に、当該回転軸160は、図21からも明らかなように、手部23の手部本体62の後端に固定された第2の軸受け159Bにより固定保持されている。
【0102】
これによりこのロボット1においては、第6のアクチュエータ部102におけるDCモータ142を回転駆動することによって、手部23を全体としてピッチ方向に回転駆動することができるようになされている。
【0103】
さらに第6のアクチュエータ部102においては、ロール軸用出力軸151の内面側に環状の樹脂マグネット162が当該ロール軸用出力軸151と同軸に固着されると共に、これと平行にかつ僅かな距離を介して対向するように制御基板163が配置され、当該制御基板163における樹脂マグネット162と対向する所定位置に樹脂マグネット162と共に位置検出センサ161を構成する第1及び第2のホール素子164A、164Bが搭載されている。
【0104】
このとき樹脂マグネット162は、図23について上述した樹脂マグネット131と同様に、その回転位置に応じて第1及び第2のホール素子164A、164Bにより検出される磁極密度が変化するように所定パターンで着磁されており、これにより第1及び第2のホール素子164A、164Bからそれぞれ出力される第1及び第2のセンサ信号(以下、これを第1及び第2の位置検出信号と呼ぶ)に基づいて対応するDCモータ141の現在位置を検出し得るようになされている。
【0105】
また制御基板163には、図22について上述した第6の制御装置104が形成されている。そしてこの第6の制御装置104には、上述のように上位コントローラからのサーボ指令(Ref1(k)〜Ref7(k))(図22)と、上述の位置検出センサ161(図24(A))の第1及び第2のホール素子164A、164Bから出力される第1及び第2の位置検出信号とが与えられる。かくして第6の制御装置104は、かかるサーボ指令と、第1及び第2の位置検出信号とに基づいて対応するDCモータ141を駆動制御するようになされている。
【0106】
これと同様にして、ピッチ軸用出力軸158の内面側には環状の樹脂マグネット165が当該ピッチ軸用出力軸158と同軸に固着されると共に、これと平行にかつ僅かな距離を介して対向するように制御基板166が配置され、当該制御基板166における樹脂マグネット165と対向する所定位置に樹脂マグネット165と共に位置検出センサ167を構成する第1及び第2のホール素子168A、168Bが搭載されている。
【0107】
このとき樹脂マグネット165は、図23について上述した樹脂マグネット131と同様に、その回転位置に応じて第1及び第2のホール素子168A、168Bにより検出される磁極密度が変化するように所定パターンで着磁されており、これにより第1及び第2のホール素子168A、168Bからそれぞれ出力される第1及び第2の位置検出信号に基づいて対応するDCモータ142の現在位置を検出し得るようになされている。
【0108】
また制御基板166には、図22について上述した第7の制御装置104が形成されている。そしてこの第7の制御装置104には、上述のように上位コントローラからのサーボ指令(Ref1(k)〜Ref7(k))(図22)と、上述の位置検出センサ167(図24(A))の第1及び第2のホール素子から出力される第1及び第2の位置検出信号とが与えられる。かくして第7の制御装置104は、かかるサーボ指令と、第1及び第2の位置検出信号とに基づいて対応するDCモータ142を駆動制御するようになされている。
【0109】
(3−3)第1〜第7の制御装置103〜103、104、104の構成
ここで第1〜第7の制御装置103〜103、104、104においては、図25に示すように、制御基板132、163、166上に各種通信及び制御回路等が形成されたモータ制御用LSI(Large Scale Integrated circuit)170並びに第1及び第2のホール素子133A、133B、164A、164B、168A、168Bが搭載されると共に、当該制御基板132、163、166にモータ駆動回路171が形成されることにより構成されている。
【0110】
この場合、第1〜第7の制御装置103〜103、104、104では、第1及び第2のホール素子133A、133B、164A、164B、168A、168Bから出力される上述の第1及び第2の位置検出信号S1A、S1Bと、後述のようにモータ駆動回路171により検出された対応するDCモータ121、141、142のコイル電流値を表す駆動電流検出信号S2がモータ制御用LSI170に与えられる。
【0111】
また、第1〜第7の制御装置103〜103、104、104においては、電源ラインLVcc及びアースラインLGNDと、送信用及び受信用の2本のシリアル通信ラインLRXD、LTXDと、クロック入力用の1本の信号ラインLCLKとを有するケーブル172を通じて他の第1〜第7の制御装置103〜103、104、104又はインテリジェントHUB105(図22)と接続されており、かくしてモータ制御用LSI170がこのケーブル172を介して駆動電力を入力し、かつ他の第1〜第7の制御装置103〜103、104、104等を介して上位コントローラと交信することができるようになされている。
【0112】
そしてモータ制御用LSI170は、このケーブル172等を介して上位コントローラから与えられるサーボ指令(Ref1(k)〜Ref7(k))(図22)と、第1及び第2のホール素子133A、133B、164A、164B、168A、168Bからの第1及び第2の位置検出信号S1A、S1Bと、モータ駆動回路171からの駆動電流検出信号S2とに基づいて、当該DCモータ121、141、142に印加すべき駆動電流値を算出し、当該算出結果に基づき生成したPWM(Pulse Width Modulation)信号S3をモータ駆動回路171に出力するようになされている。
【0113】
かくしてモータ駆動回路171は、モータ制御用LSI170から与えられるPWM信号S3に基づいて、対応する値の駆動電流Iを対応するDCモータ121、141、142に印加することにより当該DCモータ121、141、142を駆動する。
【0114】
またこの際、モータ駆動回路171は、そのDCモータ121、141、142のコイルに流れる駆動電流の実際値を検出し、当該検出結果を上述のように駆動電流検出信号S2としてモータ制御用システムLSI170に送出する。
【0115】
このようにしてこのロボット1においては、モータ制御用LSI170及びモータ駆動回路171からなる第1〜第7の制御装置103〜103、104、104によって、上位コントローラから与えられたサーボ指令に応じて対応するDCモータ121、141、142を駆動させ得るようになされている。
【0116】
(3−4)モータ制御用LSI170及びモータ駆動回路171の構成
ここでモータ制御用LSI170においては、図26に示すように、演算処理ブロック180と、レジスタ181と、電流制御部189を構成する減算器182、電流比例ゲイン乗算器183、PWM変換ブロック184、位置検出ブロック185並びに第1及び第2のアナログ/ディジタル変換回路186、187とから構成されている。
【0117】
そして、このモータ制御用LSI170では、第1及び第2のホール素子133A、133B、164A、164B、168A、168B(図25)から供給される第1及び第2の位置検出信号S1A、S1Bが第2のアナログ/ディジタル変換回路188においてディジタル変換され、得られた第1及び第2の位置検出データD1A、D1Bが位置検出ブロック185に与えられる。
【0118】
位置検出ブロック185は、供給される第1及び第2の位置検出データD1A、D1Bに基づいて、対応する第1〜第5のアクチュエータ部100〜100(図23)内のDCモータ121(図23)の現在位置、又は第6のアクチュエータ部102(図24)内の対応するDCモータ141、142(図24)の回転位置を検出し、かくして得られた上述の現在位置データ(P1(k)〜P7(k))(図22)をレジスタ181に格納する。
【0119】
演算処理ブロック180は、このレスジタ181に格納された現在位置データを読み出し、当該読み出した現時位置データと、上位コントローラから与えられるサーボ指令(Ref1(k)〜Ref7(k))(図22)とに基づいて、対応するDCモータ121、141、142(図25)の出力軸を指定された回転角度にまで回転駆動させるためのトルクを発生させるために必要な電流の目標値(以下、これを目標電流値と呼ぶ)Iを算出し、得られた目標電流値Iをレジスタ181に格納する。
【0120】
一方、レジスタ181に格納された目標電流値Iは減算器182により読み出される。このとき減算器182には、モータ駆動回路171(図25)から与えられる上述の駆動電流検出信号S2を第1のアナログ/ディジタル変換回路186においてディジタル変換してなる駆動電流検出データD3が与えられる。
【0121】
かくして減算器182は、目標電流値Iから駆動電流検出データD3に基づき得られるそのときの実際のDCモータ121、141、142のコイル電流の検出値を減算し、得られた目標電流値Iに対する差分を表す差分電流値データD4を電流比例ゲイン乗算器183に送出する。
【0122】
電流比例ゲイン乗算器183は、差分電流値データD4に対し、かかる差分を「0」に収束させるための所定の電流比例ゲインGpを乗算し、かくして得られた実際にDCモータ121、141、142に印加すべき駆動電流の目標値(以下、これを印加電流目標値と呼ぶ)IをPWM変換ブロック184に送出する。
【0123】
PWM変換ブロック184は、供給される印加電流目標値IをPWM変調し、得られたPWM信号S3を上述のようにモータ駆動回路171に送出する。このときPWM変換ブロック184及びモータ駆動回路171間は、第1及び第2の信号ラインにより接続されており、PWM変換ブロック184は、対応するDCモータ121、141、142を正転駆動するときにはPWM信号S3を第1の信号ラインを介してモータ駆動回路171に送出すると共に、PWM信号S3における論理「1」レベルの信号(以下、これを基準信号と呼ぶ)S4を他方の第2の信号ラインを介してモータ駆動回路171に送出する。
【0124】
またPWM変換ブロック184は、対応するDCモータ121、141、142を逆転駆動するときにはPWM信号S3を第2の信号ラインを介してモータ駆動回路171に送出すると共に、基準信号を第1の信号ラインを介してモータ駆動回路171に送出する。
【0125】
モータ駆動回路171においては、図27に示すように、2個の増幅器190A、190Bからなるゲートドライブ回路191と、2個のMOS(Metal Oxide Semiconductor)型NチャンネルFET(Field Effect Transistor)192、192及び2個のMOS型PチャンネルFET192、192がブリッジ状に接続されてなるインバータ回路193とから構成されている。
【0126】
そしてモータ駆動回路171では、第1の信号ラインが第2のMOS型PチャンネルFET192のゲートと、ゲートドライブ回路191の第1の増幅器190Aを介してインバータ回路193の第1のMOS型NチャンネルFET192のゲートとにそれぞれ接続されると共に、第2の信号ラインが第1のMOS型PチャンネルFET192のゲートと、ゲートドライブ回路191の第2の増幅器190Bを介してインバータ回路193の第2のMOS型NチャンネルFET192のゲートとにそれぞれ接続されている。
【0127】
またこのモータ駆動回路171では、第1のMOS型NチャンネルFET192及び第1のMOS型PチャンネルFET192の接続中点と、第2のMOS型NチャンネルFET192及び第2のMOS型PチャンネルFET192の接続中点とがそれぞれ対応するDCモータ121、141、142内のコイルと接続されている。
【0128】
これによりモータ駆動回路171においては、第1又は第2の信号ラインを介してPWM変換ブロックから与えられるPWM信号S3をインバータ回路193においてアナログ波形の駆動電流に変換し、これをかかる対応するDCモータ121、141、142のコイルに駆動電流として供給することができるようになされている。
【0129】
またモータ駆動回路171においては、第1のMOS型PチャンネルFET192のソース及びグランド間と、第2のMOS型PチャンネルFET192のソース及びグランド間とにそれぞれ第1及び第2の電流検出用チップ抵抗R、Rが接続されている。
【0130】
そして、この第1の電流検出用チップ抵抗R及び第1のMOS型PチャンネルFET192の接続中点と、第2の電流検出用チップ抵抗R及び第2のMOS型PチャンネルFET192の接続中点とがそれぞれ差動増幅器194を介してモータ制御用LSI170(図26)と接続されており、これによりモータ駆動回路171により検出された対応するDCモータ121、141、142のコイル電流の検出結果を上述のように駆動電流検出信号S2としてモータ制御用LSI170に供給し得るようになされている。
【0131】
(3−5)モータ制御用LSI170の各処理ブロックの具体的構成
次に、モータ制御用LSI170の演算処理ブロック180、位置検出ブロック185、PWM変換ブロック184について、それぞれその構成を詳細に説明する。
【0132】
(3−5−1)演算処理ブロック180の詳細構成
演算処理ブロック180においては、図26に示すように、CPU200と、各種プログラムが格納されたROM201と、CPU200のワークメモリとしてのRAM202と、汎用のパラレル通信に対応したパラレル通信用入出力回路203と、ディジーチェーン接続された他の第1〜第7の制御装置100〜103、104、104(図22)等との間の入出力インターフェース回路でなるシリアル通信用入出力回路204と、サーボ割込みのための1〔ms〕周期のサーボ割込信号S10及びPWM周期である50〔μs〕周期のパルス信号S11を発生するカウンタ・タイマ・コントロール回路205と、カウンタ・タイマ・コンロトール回路205からサーボ割込信号S10が正しく発生されているかをCPU200が判断するための1〔ms〕周期以上の所定周期の基準信号でなるウォッチドッグ信号S12を発生するウォッチドッグ信号発生回路206とがCPUバス207を介して相互に接続されることにより構成されている。
【0133】
そしてCPU200は、シリアル通信用入出力回路204を介してディジーチェーン接続された他の第1〜第7の制御装置100〜103、104、104(図22)等から電源電圧Vcc(図27)が供給されると、まずROM201に格納された初期プログラムに基づいて、各種制御ゲインの初期設定処理等の立上り処理を実行する。
【0134】
またCPU200は、この後、この結果としてカウンタ・タイマ・コントロール回路205から与えられるサーボ割込み信号S10に基づいて、対応するDCモータ121、141、142の回転を制御するためのモータ回転制御処理を1〔ms〕毎に実行する。
【0135】
(3−5−2)位置検出ブロック185の詳細構成
次に、位置検出ブロック185の構成を詳細に説明する。なおその前提として、先に第1〜第5のアクチュエータ部100〜100における位置検出センサ130(図23)及び第6のアクチュエータ部102における各位置検出センサ161、167(図24)の構成について説明する。
【0136】
各位置検出センサ130、161、167においては、図28に示すように、樹脂マグネット131、162、165がその周方向に沿って磁束密度φ(θm)が次式
【0137】
【数1】
Figure 2004174625
【0138】
のように変化するように着磁されている。なお、この(1)式において、φは最大磁束密度を表し、θは磁束密度が0となる基準位置Pからの回転角度を示す。
【0139】
一方、位置検出センサ130、161、167の第1及び第2のホール素子133A、133B、164A、164B、168A、168B(図23、図24)は、それぞれ図29に示すように、樹脂マグネット131、162、165と対向し、かつ当該樹脂マグネット131、162、165と同心円上のπ/2だけ回転角度がずれた位置に位置するように制御基板132、163、166(図23、図24)に搭載されている。
【0140】
そして、このように配置された第1及び第2のホール素子133A、133B、164A、164B、168A、168Bから出力される上述の第1及び第2の位置検出信号S1A、S1Bは、図30に示すように、センサゲインをG、第1及び第2のホール素子133A、133B、164A、164B、168A、168Bの位置における最大磁束密度をφとし、上述のθを用いて、それぞれ次式
【0141】
【数2】
Figure 2004174625
【0142】
【数3】
Figure 2004174625
【0143】
のように表すことができる。
【0144】
従って、これら第1及び第2の位置検出信号S1A、S1Bに基づいて、以下の手順により樹脂マグネット131、162、165の回転角度θを求めることができる。
【0145】
すなわち、まずその初期値を0として回転角度演算値θを設定し、次式
【0146】
【数4】
Figure 2004174625
【0147】
を演算する。
【0148】
そしてEθ=0とならない場合には、θを次式
【0149】
【数5】
Figure 2004174625
【0150】
により算出する。ここで、Kpは比例ゲイン、Kiは積分ゲインをそれぞれ示し、共に正の定数である。
【0151】
この算出したθを用いて(4)式を再び演算し、この後Eθ=0となるまでこれを繰り返す。この結果Eθはゼロ値に収束してゆき、このときθが次式
【0152】
【数6】
Figure 2004174625
【0153】
として与えられる。
【0154】
従って、この(6)式と、(5)式により算出されるθとに基づいて、次式
【0155】
【数7】
Figure 2004174625
【0156】
のように樹脂マグネットの回転角度θを求めることができる。なお(6)式及び(7)式において、Nは0以上の整数を表す。
【0157】
かかる原理に基づいて位置検出ブロック185は、図31に示すように構成されており、位置検出センサ130、161、167の第1及び第2のホール素子133A、133B、164A、164B、168A、168Bから出力される第1及び第2の位置検出信号S1A、S1Bを第2のアナログ/ディジタル変換回路187によりディジタル変換してなる第1及び第2の位置検出データD1A、D1Bをそれぞれ第1及び第2の乗算器210A、210Bに入力する。
【0158】
このとき第1及び第2の乗算器210A、210Bには、それぞれ後述のように先行して算出した回転角度演算値θの余弦値(cosθ)又は正弦値(sinθ)が第1及び第2の関数変換部214A、214Bから与えられる。
【0159】
かくして第1の乗算器210Aは、第1の位置検出データD1A及び回転角度演算値θの余弦値(cosθ)を乗算し、乗算結果を減算器211に送出する。また第2の乗算器210Bは、第2の位置検出データD1B及び回転角度演算値θの及び正弦値(sinθ)を乗算し、乗算結果を減算器211に送出する。
【0160】
減算器211は、供給される第1の乗算器210Aの乗算結果から第2の乗算器210Bの乗算結果を減算することにより(4)式で与えられる演算結果を得、これを第3の乗算器212に送出する。
【0161】
そしてこの乗算結果には、この後第3の乗算器212において、Sをラプラス演算子として、次式
【0162】
【数8】
Figure 2004174625
【0163】
で与えられる積分ゲイン及び比例ゲインKrが順次乗算され、その後第4の乗算器213において1/S(Sはラプラス演算子)が乗算される。
【0164】
この結果、第4の乗算器213における乗算結果として回転角度演算値θが得られ、これが第1及び第2の関数演算器214A、214Bに与えられる。そして第1及び第2の関数演算器214A、214Bは、供給される回転角度演算値θの正弦値(sinθ)及び余弦値(cosθ)をそれぞれ演算し、演算結果を上述のように第2又は第1の乗算器210A、210Bに与える。
【0165】
一方、第4の乗算器213から出力される回転角度演算値θは、レジスタ181(図26)に格納される。そしてこの回転角度演算値θは、この後演算処理ブロック180により読み出され、上述のように対応するDCモータ121、141、142の現在位置を表す現在位置データ(P1(k)〜P7(k))として当該DCモータ121、141、142の制御に利用される。
【0166】
なお位置検出ブロック185における上述のような回転角度演算値θの演算処理は、演算処理ブロック180のカウンタ・タイマ・コントロール回路205から与えられるパルス信号S11に基づいて行われる。従って、この位置検出ブロック185から出力される回転角度演算値θは、パルス信号S11の周期である50〔μs〕毎に更新されることとなる。
【0167】
(3−5−3)PWM変換ブロック184の詳細構成
PWM変換ブロック184においては、電流比例ゲイン乗算器183から供給される乗算結果に基づいて、50〔μs〕周期のパルスのパルス幅を制御することにより、PWM変調信号S3及び基準信号S4を生成し、これらをモータ駆動回路171(図25)に送出する。
【0168】
実際上、PWM変換ブロック184は、図31に示すように、電流比例ゲイン乗算器183から供給される印加電流目標値I(図26)を図示しない内部レジスタにセットし、印加電流目標値Iが正のときには、当該印加電流目標値Iを演算処理ブロック180(図26)のカウンタ・タイマ・コントロール回路205から与えられる、50〔μs〕周期のPWMパルス信号S11の立上りエッジ毎に第1のPWMパルス信号発生回路220A内のダウンカウンタ(図示せず)にセットする。
【0169】
そしてこのダウンカウンタは、演算処理ブロック180のCPUクロック(0.1〔μs〕)の立上りエッジ毎にカウンタ値を減少させてゼロ値で停止する。従って、第1のPWMパルス信号発生回路220Aの出力は、ダウンカウンタのカウント値がゼロ値になるまで出力が論理「1」レベル、カウンタ値がゼロ値となってからは論理「0」レベルとなる。
【0170】
また次のPWMパルス信号S11の立上りエッジで再びレジスタに格納された印加電流目標値Iが第1のPWMパルス信号発生回路220Aのダウンカウンタに再びセットされて上述の処理が繰り返される。
【0171】
従って、第1のPWMパルス信号発生回路220Aからは、レジスタに格納される印加電流目標値Iが更新されるまで、当該印加電流目標値Iに比例した一定のパルス幅TonのPWM信号S3が出力され、第2のPWMパルス信号発生回路220Bからは、論理「0」レベルの基準信号S4が出力される。
【0172】
一方、PWM変換ブロック184においては、印加電流目標値Iが負であった場合にはその絶対値を演算して正の整数に変換した後、この印加電流目標値Iを第2のPWMパルス信号発生回路220B内のダウンカウンタ(図示せず)にセットする。
【0173】
この結果このときには、第2のPWMパルス信号発生回路220Bからは、上述の第1のPWMパルス信号発生回路220Aと同様にして、レジスタに格納される印加電流目標値Iが更新されるまで、当該印加電流目標値Iに比例した一定のパルス幅TonのPWM信号S3が出力される。またこのとき第1のPWM信号発生回路220Aからは、論理「1」レベルの基準信号S4が出力される。
【0174】
このようにしてPWM変換ブロック184においては、電流比例ゲイン乗算器183から供給される演算結果の印加電流目標値Iに応じたパルス幅のPWM信号S3及び基準信号S4を生成し、これをモータ駆動回路171に送出し得るようになされている。
【0175】
(4)演算処理ブロック180におけるソフトウェア制御
(4−1)ソフトウェア制御の一連の流れ
次に、演算処理ブロック180におけるソフトウェア制御について説明する。
【0176】
演算処理ブロック180のCPU200(図26)は、図33に示すデータ処理手順に従って、対応するDCモータ121、141、142を駆動制御するための各種処理を実行する。
【0177】
すなわちCPU200は、カウンタ・タイマ・コンロトール回路205(図26)からサーボ割込信号S10が与えられるごとにこのデータ処理手順を実行し、まずシリアル通信用入出力回路204(図26)を制御することにより、上位コントローラからインテリジェントHUB105(図22)等を介して与えられる上述のサーボ指令(Ref1(k)〜Ref7(k))(図22)やこれ以外の各種コマンドを受信させ、これをRAM202(図26)に格納する(ステップSP1)。
【0178】
次いでCPU200は、このRAM202に格納したサーボ指令や各種コマンドに対し、例えばデータフォーマット変換処理等の所定のデータ受信処理を施す(ステップSP2)。因みに、上位コントローラからのサーボ指令等は2〔ms〕ごとに与えられるのに対し、カウンタ・タイマ・コンロトール回路205からのサーボ割込信号S10は1〔ms〕ごとに与えられるため、上述のようなステップSP1及びステップSP2における受信処理はこのデータ処理手順の実行の2回に1回の割合で行われることとなる。
【0179】
続いてCPU200は、かかるデータ受信処理により得られた2〔ms〕ごとのサーボ指令(Ref1(k)〜Ref7(k))と、このときRAM202に格納されている先行して得られた対応するDCモータ121、141、142の現在位置データ(P1(k)〜P7(k))(図22)とに基づいて、当該DCモータ121、141、142の1〔ms〕ごとの目標位置を表すサーボ指令(Ref1(k)´〜Ref7(k)´)を生成する(ステップSP3)。
【0180】
なお、CPU200は、電源投入時等の上位コントローラから未だサーボ指令等が与えられていない初期時には、当該サーボ指令に代えて、予めROM201(図26)に格納されたシステム初期設定値を読み出し、当該システム設定値に基づいて同様の処理を実行する。
【0181】
またCPU200は、かかるサーボ指令に代えて、例えば上位コントローラから電流比例ゲイン乗算器183(図26)について上述した電流比例ゲインGや、位置検出ブロック185(図26)の(2)式について上述したセンサゲインG、後述するコンプライアンス制御に関するコンプライアンスゲインKcmp等の制御ゲインを変更すべきコマンドが与えられたときには、当該コマンドに応じてRAM202に格納されている対応する制御ゲインを変更する。
【0182】
一方、CPU200は、上述のようにして1〔ms〕ごとのサーボ指令(Ref1(k)´〜Ref7(k)´)を生成すると、当該サーボ指令(Ref1(k)´〜Ref7(k)´)と、このとき位置検出ブロック185から与えられる現在位置データ(P1(k)〜P7(k))とに基づいて、対応するDCモータ121、141、142の回転を制御するための回転制御処理を実行する。具体的には、CPU200は、かかる回転制御処理として、サーボ指令(Ref1(k)´〜Ref7(k)´)と、現在位置データ(P1(k)〜P7(k))とに基づいて、図26について上述した電流指令値Iを算出し、これをレジスタ181に格納する(ステップSP4)。
【0183】
またCPU200は、これと共にかかる位置検出ブロック185からの現在位置データや、後述のようなコンプライアンス制御処理において得られた誤差e(図34)等の内部変数のデータ(以下、モータ内部変数データと呼ぶ)をRAM202(図26)に格納する。
【0184】
そしてCPU200は、この後このRAM202に格納された対応するDCモータ121、141、142の現在位置データ及びモータ内部変数データ等を外部に送信するためのデータ変換処理等の所定のデータ送信処理を実行し、得られたデータ送信処理後の現在位置データやモータ内部変数データをRAM202に格納する(ステップSP5)。
【0185】
そしてCPU200は、この後シリアル通信入出力回路204(図26)を制御することにより、かかるRAM202に格納されたデータ送信処理後の現在位置データやモータ内部変数データをディジーチェーン接続された他の第2〜第7の制御装置103〜103、104、104又はインテリジェントHUB105に送信する(ステップSP6)。
【0186】
このようにして演算処理ブロック180においては、上位コントローラからの指令やコマンドに基づいて、対応する各種処理を実行するようになされている。
【0187】
(4−2)回転制御処理の具体的内容
ここで、図33について上述したデータ処理手順のステップSP4での回転制御処理時におけるCPU200の具体的な処理内容について説明する。
【0188】
CPU200は、かかる回転制御処理時、上位コントローラからのサーボ指令(Ref1(k)〜Ref7(k))に基づき生成した1〔ms〕ごとのサーボ指令(Ref1(k)´〜Ref7(k)´)と、位置検出ブロック185からの現在位置データ(P1(k)〜P7(k))とに基づいて、位置制御処理とコンプライアンス制御処理とを並列的に同時に実行することにより電流目標値Iを生成する。
【0189】
因みに、位置制御とは、1〔ms〕ごとのサーボ指令(Ref1(k)´〜Ref7(k)´)である目標とする回転角度と、現在位置データ(P1(k)〜P7(k))に基づき得られる実際の回転角度とを比較して、その誤差に基づき対応するDCモータ121、141、142に印加する駆動電流を制御することにより、かかる誤差を「0」に収束させる制御をいう。
【0190】
またコンプライアンス制御とは、アクチュエータに外力が与えられたときに、当該外力の大きさと、アクチュエータの変位量とが比例関係となるようにアクチュエータの変位量を制御することをいう。そしてこのときの比例定数をコンプライアンスゲインといい、当該コンプライアンスゲインが「0」であるとき外力があっても変位量が「0」、つまり高剛性となる。またコンプライアンスゲインが「1」であるとき外力と変位量が一致し、外力で容易に変化させられる低剛性となる。このようにコンプライアンスゲインを調整することにより外力に応じた変位量が制御され、例えばロボット1が対象物を把持する際の柔らかさを制御することができる。こうした柔らかさを制御する方法がコンプライアンス制御である。
【0191】
そしてCPU200は、かかる位置制御処理及びコンプライアンス制御処理を同時並列的に実行することにより、予め設定されたコンプライアンスゲインに応じた剛性で手部23の容姿制御を行う。
【0192】
実際上、CPU200は、対応するDCモータ121、141、142の回転制御処理時、図34に示すように、1〔ms〕ごとのサーボ指令(Ref1(k)´〜Ref7(k)´)と、このとき位置検出ブロック185から与えられるDCモータ121、141、142の現在位置データ(P1(k)〜P7(k))との差分を計算し(ステップSP10)、その差分に位置比例ゲインKa(本実施の形態においては「4000」)を乗算することにより対応するDCモータ121、141、142を実際に駆動制御するための電流目標値I´を算出する(ステップSP11)。
【0193】
またCPU200は、これと同時並列的にそのDCモータ121、141、142と同じ特性の数学モデルによるモータのそのときの回転位置を演算し(ステップSP12)、これら実際のDCモータ121、141、142の現在位置と数学モデルによるモータの回転位置との誤差eを計算する(ステップSP13)。なお、本実施の形態においては、ラプラス演算子をSとして、サーボ指令(Ref1(k)´〜Ref7(k)´)に次式
【0194】
【数9】
Figure 2004174625
【0195】
を乗算することにより数学モデルによるモータのそのときの回転位置を算出する。
【0196】
そしてこのようにして得られた上述の誤差eは、そのとき対応する第1〜第5のアクチュエータ部103〜103、104、104における対応するDCモータ121、141、142の出力軸に与えられる外力Fdの大きさと比例するため、この誤差eに基づいて外力を推定することができる。
【0197】
そこでCPU200は、かかる誤差eに外力推定値Fd′を算出するための所定の推定ゲインKtlと、予め設定されたコンプライアンスゲインKcmpとを乗算することにより外力に比例したコンプライアンス制御のための電流調整値I″を算出する(ステップSP14)。
【0198】
そしてCPU200は、この後実モデルにおける上述の電流目標値I´と、かかる演算により得られた電流調整値I″とを加算することにより最終的な電流目標値Iを得(ステップSP15)、これを上述のようにレジスタ181(図26)に格納する。
【0199】
このようにしてCPU200は、予め設定されたコンプライアンスゲインKcmpに応じた剛性で手部23の回転を制御し得るようになされ、これによりコンプライアンスゲインKcmpを調整することで、例えば対象物を把持する際に第1〜第5の指部60〜60を適切な圧力で当該対象物に接触させ得るようになされている。
【0200】
(5)本実施の形態の動作及び効果
以上の構成において、このロボット1では、手部23における第1〜第5の指部60〜60が高い硬度を有する骨格層70、70、80〜80、低い硬度を有する柔軟層74、85及びこれらの間の硬度を有する表面層75、86の3層構造となっているため、対象物を把持等する際に、柔軟層74、85及び表面層75、86の硬度に応じて第1〜第5の指部60〜60の内側面をその対象物の表面形状に応じて凹む方向に弾力的かつ柔軟に変位させて当該対象物に密着させることができ、その分対象物を確実に把持等することができる。
【0201】
またこのように第1の指部60が第1及び第2の骨格層70、70、柔軟層74及び表面層75の3層構造となっているため、第1の指部60の表面に柔軟性をもたせながらも当該表面が損傷し難く、長期使用にも実用上十分に耐えることができる。
【0202】
さらにこのロボット1では、第1〜第5の指部60〜60の動力源であるDCモータ121、141、142の回転位置を検出する位置検出センサ130、161、167を設け、当該位置検出センサ130、161、167の検出結果に基づいて対応するDCモータ121、141、142の回転をコンプライアンス制御するようにしているため、コンプライアンスゲインKcmpを調整することで、対象物を把持する際に第1〜第5の指部60〜60を適切な圧力で当該対象物に接触させることができる。
【0203】
従って、このロボット1では、かかる制御を行うに際して第1〜第5の指部60〜60に対する圧力センサの配設や、当該圧力センサからの配線は不要であり、その分手部23の構成の煩雑化及び大型化を回避しながら、対象物を確実かつ適切に把持することができる。
【0204】
以上の構成によれば、手部23における第1〜第5の指部60〜60を高い硬度を有する骨格層70、70、80〜80、低い硬度を有する柔軟層74、85及びこれらの間の硬度を有する表面層75、86の3層構造とするようにしたことにより、対象物を把持等する際に、柔軟層74、85及び表面層75、86の硬度に応じて第1〜第5の指部60〜60の内側面をその対象物の表面形状に応じて凹む方向に弾力的かつ柔軟に変位させて当該対象物に密着させて、対象物を確実に把持等することができると共に、第1の指部60が第1及び第2の骨格層70、70、柔軟層74及び表面層75の3層構造となっているため、第1の指部60の表面に柔軟性をもたせながらも当該表面が損傷し難く、長期使用にも実用上十分に耐えることができ、かくして対象物を確実かつ適切に把持し得るロボットを実現できる。
【0205】
また第1〜第5の指部60〜60の動力源であるDCモータ121、141、142の回転位置を検出する位置検出センサ130、161、167を設け、当該位置検出センサ130、161、167の検出結果に基づいて対応するDCモータ121、141、142の回転をコンプライアンス制御するようにしたことにより、コンプライアンスゲインKcmpを調整することで、対象物を把持する際に第1〜第5の指部60〜60を適切な圧力で当該対象物に接触させることができ、かくして手部23の構成の煩雑化及び大型化を回避しながら、対象物を確実かつ適切に把持し得るロボットを実現できる。
【0206】
(6)他の実施の形態
なお上述の実施の形態においては、本発明を図1のように構成された2足歩行型のロボット1に適用するようにした場合について述べたが、本発明はこれに限らず、この他種々の構成のロボット装置に広く適用することができる。
【0207】
また上述の実施の形態においては、第1〜第5の指部60〜60において、αゲル、ソルボセイン又は発泡ウレタン等の硬度がHs0の柔軟材により柔軟層85を形成し、硬度がHs40〜60程度の例えばゴム、PCV又はパリウレタン等の屈曲性のある材料を用いて表面層86を形成するようにした場合について述べたが、本発明はこれに限らず、要は、骨格層70、70、80〜80、表面層75、86及び柔軟層74、85の順番で硬度が順次高くなり、かつ表面層75、86がある程度の耐磨耗性を有するようにするのであれば、骨格層70、70、80〜80、表面層75、86及び柔軟層74、85の硬度や材料としては、これ以外の硬度や材料を選択するようにしても良い。
【0208】
さらに上述の実施の形態においては、第1〜第5の指部60〜60を骨格層70、70、80〜80、柔軟層74、85及び表面層75、86の3層構造とするようにした場合について述べたが、本発明はこれに限らず、すくなくともこれら3層を有するのであれば、全体として4層以上の構造とするようにしても良い。
【0209】
さらに上述の実施の形態においては、指紋部87の凹凸パターンを、同心円状の複数の凹凸とするようにした場合について述べたが、本発明はこれに限らず、この他種々の形態の凹凸パターンを広く適用することができる。
【0210】
さらに上述の実施の形態においては、ロボット1の手部23を第1〜第5の指部60〜60を有する5指構造とするようにした場合について述べたが、本発明はこれに限らず、5本以外の数の指部を有するようにしても良い。
【0211】
さらに上述の実施の形態においては、第1〜第5の指部60〜60のうち、第2〜第5の指部60〜60を指先部62、中指部62及び指元部62の3つの部位により構成するようにした場合について述べたが、本発明はこれに限らず、第2〜第5の指部60〜60についても例えば第1の指部60のように、指先部及び指元部の2つの部位により構成するようにしても良い。
【0212】
さらに上述の実施の形態においては、第1〜第6のアクチュエータ部100〜100、102において、DCモータ121、141、142の回転位置を検出するセンサ手段としての位置検出センサ130、161、167を図28について上述したような着磁パターンで着磁された樹脂マグネット131、162、165と、第1及び第2のホール素子133A、133B、164A、164B、168A、168Bとにより構成するようにした場合について述べたが、本発明はこれに限らず、この他種々の構成を広く適用することができる。
【0213】
さらに上述の実施の形態においては、第1〜第6のアクチュエータ部100〜100、102において、外部(上位コントローラ)からの指令に応じてDCモータ121、141、142の回転を制御する制御手段としての第1〜第7の制御装置103〜103、104、104(図22)を図25〜図34について上述したように構成するようにした場合について述べたが、本発明はこれに限らず、この他種々の構成を広く適用することができる。
【0214】
さらに上述の実施の形態においては、図34について上述したように、CPU200が位置検出ブロック185により検出されたDCモータ121、141、142の現在の回転位置を表す現在位置データ(P1(k)〜P7(k))に基づいて第1〜第5の指部60〜60に与えられる外力Fdの大きさと、当該外力FdによるDCモータ121、141、142の回転位置の変位量とが比例関係となるように、DCモータ121、141、142の回転を制御するようにした場合について述べたが、本発明はこれに限らず、回転位置以外の例えば速度や加速度等の現在のDCモータ121、141、142の回転状態に基づいて第1〜第5の指部60〜60に与えられる外力Fdの大きさと、当該外力FdによるDCモータ121、141、142の回転状態の変位量とが比例関係となるように、DCモータ121、141、142の回転を制御するようにしても良い。
【0215】
【発明の効果】
上述のように本発明によれば、ロボット装置の指部が、第1の硬度を有する骨格層と、骨格層を覆うように設けられた第1の硬度よりも低い第2の硬度を有する柔軟層と、柔軟層を覆うように設けられた、第1の硬度よりも低くかつ第2の硬度よりも高い硬度を有する表面層とを有するようにしたことにより、対象物を把持する際の指部の密着性を向上させながら、当該指部の耐久性を向上させることができ、かくして対象物を確実かつ適切に把持し得るロボット装置の手構造を実現できる。
【0216】
また本発明によれば、ロボット装置において、その指部が、第1の硬度を有する骨格層と、骨格層を覆うように設けられた第1の硬度よりも低い第2の硬度を有する柔軟層と、柔軟層を覆うように設けられた、第1の硬度よりも低くかつ第2の硬度よりも高い硬度を有する表面層とを有するようにしたことにより、対象物を把持する際の指部の密着性を向上させながら、当該指部の耐久性を向上させることができ、かくして対象物を確実かつ適切に把持し得るロボット装置を実現できる。
【0217】
さらに本発明によれば、ロボットの手の駆動装置において、指部を駆動する動力源としてのモータと、外部からの指令に応じてモータの回転を制御する制御手段と、モータの回転状態を検出するセンサ手段とを設け、制御手段が、センサ手段の検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御するようにしたことにより、各指部における対象物との接触位置からの配線や、指部における当該接触位置の大きさに応じた圧力センサを必要とすることなく、把持時における指部の適切な動作制御を行うことができ、かくして対象物を確実かつ適切に把持し得る駆動装置を実現できる。
【0218】
さらに本発明によれば、ロボットの当該手の駆動方法において、指部を駆動する駆動源としてのモータの回転状態を検出する第1のステップと、当該検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御する第2のステップとを設けるようにしたことにより、各指部における対象物との接触位置からの配線や、指部における当該接触位置の大きさに応じた圧力センサを必要とすることなく、把持時における指部の適切な動作制御を行うことができ、かくして対象物を確実かつ適切に把持し得る駆動方法を実現できる。
【0219】
さらに本発明によれば、ロボット装置において、指部を駆動する動力源としてのモータと、外部からの指令に応じてモータの回転を制御する制御手段と、モータの回転状態を検出するセンサ手段とを設け、制御手段が、センサ手段の検出結果に基づいて、指部に与えられる外力の大きさと、当該外力によるモータの回転状態の変位量とが比例関係となるように、モータの回転を制御するようにしたことにより、各指部における対象物との接触位置からの配線や、指部における当該接触位置の大きさに応じた圧力センサを必要とすることなく、把持時における指部の適切な動作制御を行うことができ、かくして対象物を確実かつ適切に把持し得るロボット装置を実現できる。
【図面の簡単な説明】
【図1】本実施の形態によるロボットの外観構成を示す斜視図である。
【図2】本実施の形態によるロボットの外観構成を示す斜視図である。
【図3】本実施の形態によるロボットの外観構成の説明に供する斜視図である。
【図4】ロボットの内部構造の説明に供するブロック図である。
【図5】ロボットの内部構成の説明に供するブロック図である。
【図6】ロボットの手部の外観構成を示す略線的な正面図及び側面図である。
【図7】手部の構成の説明に供する略線的な正面図及び側面図である。
【図8】手部の構成の説明に供する略線的な正面図及び側面図である。
【図9】手部の構成の説明に供する略線的な正面図及び側面図である。
【図10】手部の構成の説明に供する略線的な正面図及び側面図である。
【図11】手部の構成の説明に供する略線的な正面図及び側面図である。
【図12】手本体部の説明に供する略線的な正面図、A−A´断面図、A−A´断面図である。
【図13】第1の指部の構成を示す略線的な側面図、背面図及び断面図である。
【図14】第2〜第5の指部の構成を示す略線的な側面図、背面図及び断面図である。
【図15】指先の構造の説明に供する断面図である。
【図16】指先の形状の説明に供する略線的な側面図及び正面図である。
【図17】紙を掴む動作の説明に供する略線的な側面図である。
【図18】指紋部の説明に供する略線的な側面図である。
【図19】把持及び摘みの動作の説明に供する略線的な側面図である。
【図20】2次元バーコードを示す略線図である。
【図21】手部の駆動制御系のシステム構成の説明に供する略線的な正面図及び側面図である。
【図22】インテリジェントHUB並びに第1〜第7の制御装置の接続関係の説明に供するブロック図である。
【図23】第1〜第5のアクチュエータ部の構成を略線的に示す正面図及び側面図である。
【図24】第6のアクチュエータ部の構成を略線的に示す正面図及び側面図である。
【図25】第1〜第7の制御装置の構成を示すブロック図である。
【図26】モータ制御用LSIの構成を示すブロック図である。
【図27】モータ駆動回路の構成を示す回路図である。
【図28】樹脂マグネットの着磁パターンの説明に供する概念図である。
【図29】樹脂マグネットと第1及び第2のホール素子との位置関係を示す略線図である。
【図30】第1及び第2の位置検出信号の説明に供する波形図である。
【図31】位置検出ブロックの構成を示すブロック図である。
【図32】PMW変換ブロックの説明に供する概念図である。
【図33】演算処理ブロックにおけるソフトウェア制御の説明に供する概念図である。
【図34】演算処理ブロックにおけるDCモータの回転制御の説明に供するブロック図である。
【符号の説明】
1……ロボット、60〜60……指部、62……手本体部、62A……手の平面、70、70、80〜80……骨格層、74、85……柔軟層、75、86……表面層、87……指紋部、87A……窪み部、92……爪、100〜100、102……アクチュエータ部、103〜103、104、104……制御装置、105……インテリジェントHUB、121、141、142……DCモータ、130、161、167……位置検出センサ、170……モータ制御用LSI、180……演算処理ブロック、185……位置検出ブロック、189……電流制御部、200……CPU、S1A、S1B……位置検出信号、S3……PWM信号、U1(N)〜U7(N)……位置指令、Ref1(k)〜Ref7(k)、Ref1(k)´〜Ref7(k)´……サーボ指令、P1(k)〜P7(k)……現在位置データ。

Claims (22)

  1. 屈曲自在の指部が設けられたロボット装置の手構造において、
    上記指部は、
    第1の硬度を有する骨格層と、
    上記骨格層を覆うように設けられた上記第1の硬度よりも低い第2の硬度を有する柔軟層と、
    上記柔軟層を覆うように設けられた、上記第1の硬度よりも低くかつ上記第2の硬度よりも高い硬度を有する表面層と
    を具えることを特徴とするロボット装置の手構造。
  2. 上記骨格層の先端部は、
    上記指部の先端に行くにつれて当該指部の背面側に近づくテーパ状に形成された
    ことを特徴とする請求項1に記載のロボット装置の手構造。
  3. 上記表面層は、ゴム材からなる
    ことを特徴とする請求項1に記載のロボット装置の手構造。
  4. 上記表面層における上記指部の腹面先端部に、所定形状の凹凸パターンでなる指紋部が設けられた
    ことを特徴とする請求項1に記載のロボット装置の手構造。
  5. 上記指紋部の中心部に設けられた窪み部を具える
    ことを特徴とする請求項4に記載のロボット装置の手構造。
  6. 複数の上記指部を有し、各上記指部が、それぞれ所定位置を中心として放射方向に伸びるように設けられた
    ことを特徴とする請求項1に記載のロボット装置の手構造。
  7. 上記指部の先端部背面側に、その一部が当該指部の先端部から突出するように設けられた、上記第3の硬度よりも高い第4の硬度を有する爪を具える
    ことを特徴とする請求項1に記載のロボット装置の手構造。
  8. 上記爪は、上記指部の先端から突出する先端部が円弧状に形成された
    ことを特徴とする請求項7に記載のロボット装置の手構造。
  9. 上記爪は、交換自在に上記表面層に固着された
    ことを特徴とする請求項7に記載のロボット装置の手構造。
  10. 手に屈曲自在の指部が設けられたロボット装置において、
    上記指部は、
    第1の硬度を有する骨格層と、
    上記骨格層を覆うように設けられた上記第1の硬度よりも低い第2の硬度を有する柔軟層と、
    上記柔軟層を覆うように設けられた、上記第1の硬度よりも低くかつ上記第2の硬度よりも高い硬度を有する表面層と
    を具えることを特徴とするロボット装置。
  11. 上記骨格層の先端部は、
    上記指部の先端に行くにつれて当該指部の背面側に近づくテーパ状に形成された
    ことを特徴とする請求項10に記載のロボット装置。
  12. 上記表面層は、ゴム材からなる
    ことを特徴とする請求項10に記載のロボット装置。
  13. 上記表面層における上記指部の腹面先端部に所定形状の凹凸パターンでなる指紋部が設けられた
    ことを特徴とする請求項10に記載のロボット装置。
  14. 上記指紋部の中心部に設けられた窪み部を具える
    ことを特徴とする請求項13に記載のロボット装置。
  15. 複数の上記指部を有し、各上記指部が、それぞれ所定位置を中心として放射方向に伸びるように設けられた
    ことを特徴とする請求項10に記載のロボット装置。
  16. 上記指部の先端部背面側に、その一部が当該指部の先端部から突出するように設けられた、上記第3の硬度よりも高い第4の硬度を有する爪を具える
    ことを特徴とする請求項10に記載のロボット装置。
  17. 上記爪は、上記指部の先端から突出する先端部が円弧状に形成された
    ことを特徴とする請求項16に記載のロボット装置。
  18. 上記爪は、交換自在に上記表面層に固着された
    ことを特徴とする請求項16に記載のロボット装置。
  19. 上記指部を駆動する動力源としてのモータと、
    外部からの指令に応じて上記モータの回転を制御する制御手段と、
    上記モータの回転状態を検出するセンサ手段と
    を具え、
    上記制御手段は、
    上記センサ手段の検出結果に基づいて、上記指部に与えられる外力の大きさと、当該外力による上記モータの上記回転状態の変位量とが比例関係となるように、上記モータの回転を制御する
    ことを特徴とする請求項10に記載のロボット装置。
  20. 手に屈曲自在に指部が設けられたロボットの当該手の駆動装置において、
    上記指部を駆動する動力源としてのモータと、
    外部からの指令に応じて上記モータの回転を制御する制御手段と、
    上記モータの回転状態を検出するセンサ手段と
    を具え、
    上記制御手段は、
    上記センサ手段の検出結果に基づいて、上記指部に与えられる外力の大きさと、当該外力による上記モータの上記回転状態の変位量とが比例関係となるように、上記モータの回転を制御する
    ことを特徴とする駆動装置。
  21. 手に屈曲自在に指部が設けられると共に、当該指部を駆動する駆動源としてのモータとを有するロボットの当該手の駆動方法において、
    上記モータの回転状態を検出する第1のステップと、
    上記検出結果に基づいて、上記指部に与えられる外力の大きさと、当該外力による上記モータの上記回転状態の変位量とが比例関係となるように、上記モータの回転を制御する第2のステップと
    を具えることを特徴とする駆動方法。
  22. 手に屈曲自在に指部が設けられたロボット装置において、
    上記指部を駆動する動力源としてのモータと、
    外部からの指令に応じて上記モータの回転を制御する制御手段と、
    上記モータの回転状態を検出するセンサ手段と
    を具え、
    上記制御手段は、
    上記センサ手段の検出結果に基づいて、上記指部に与えられる外力の大きさと、当該外力による上記モータの上記回転状態の変位量とが比例関係となるように、上記モータの回転を制御する
    ことを特徴とするロボット装置。
JP2002341047A 2002-11-25 2002-11-25 ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法 Pending JP2004174625A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341047A JP2004174625A (ja) 2002-11-25 2002-11-25 ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341047A JP2004174625A (ja) 2002-11-25 2002-11-25 ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法

Publications (1)

Publication Number Publication Date
JP2004174625A true JP2004174625A (ja) 2004-06-24

Family

ID=32703522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341047A Pending JP2004174625A (ja) 2002-11-25 2002-11-25 ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法

Country Status (1)

Country Link
JP (1) JP2004174625A (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000966A (ja) * 2004-06-17 2006-01-05 Sony Corp ロボット装置及びその制御方法
WO2006064603A1 (ja) * 2004-12-14 2006-06-22 Honda Motor Co., Ltd. ロボットハンド装置
JP2007144547A (ja) * 2005-11-28 2007-06-14 Yaskawa Electric Corp グリッパ装置およびロボット
JP2007160484A (ja) * 2005-12-16 2007-06-28 Yaskawa Electric Corp 多指ハンドシステムおよびそれを用いたロボット
JP2008149444A (ja) * 2006-08-28 2008-07-03 Yaskawa Electric Corp ロボットおよび制御方法
JP2009101424A (ja) * 2006-12-14 2009-05-14 Yaskawa Electric Corp ロボット
JP2009125883A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp ロボットハンド
JP2010036328A (ja) * 2008-08-07 2010-02-18 Toyota Motor Corp ロボットハンド
JP2010221357A (ja) * 2009-03-24 2010-10-07 Toyota Industries Corp ロボットハンド用フィンガ
JP2010247321A (ja) * 2009-03-27 2010-11-04 Honda Motor Co Ltd ロボットハンド装置
JP2013212570A (ja) * 2012-03-05 2013-10-17 Toyota Industries Corp ロボットハンド
JP2013233626A (ja) * 2012-05-10 2013-11-21 Toyota Industries Corp 吸着装置
JP2014076522A (ja) * 2012-10-11 2014-05-01 Seiko Epson Corp ロボットハンド及びロボット装置
JP2014083637A (ja) * 2012-10-24 2014-05-12 Toyota Industries Corp ロボットハンド
JP2015112660A (ja) * 2013-12-10 2015-06-22 Nok株式会社 被覆材及びロボット把持部の被覆構造
JP2015112662A (ja) * 2013-12-10 2015-06-22 Nok株式会社 被覆材及びロボット把持部の被覆構造
DE102007053485B4 (de) * 2006-11-09 2015-09-17 Honda Motor Co., Ltd. Roboterhand und Roboter
JP2015533669A (ja) * 2012-11-09 2015-11-26 アイロボット コーポレイション 柔軟劣駆動把持具
JP2019198939A (ja) * 2018-05-18 2019-11-21 Telexistence株式会社 触覚センサ
WO2020071147A1 (ja) * 2018-10-05 2020-04-09 ソニー株式会社 調理アーム用アタッチメント
JP2020151362A (ja) * 2019-03-22 2020-09-24 国立大学法人電気通信大学 グリッパ構造、人工アーム、及びグリッパ装置
WO2021030675A1 (en) * 2019-08-15 2021-02-18 Chromatic 3D Materials, Inc. Three-dimensional printing of a functionally graded robotic end effector

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000966A (ja) * 2004-06-17 2006-01-05 Sony Corp ロボット装置及びその制御方法
WO2006064603A1 (ja) * 2004-12-14 2006-06-22 Honda Motor Co., Ltd. ロボットハンド装置
US7735887B2 (en) 2004-12-14 2010-06-15 Honda Motor Co., Ltd. Robot hand apparatus
JP2007144547A (ja) * 2005-11-28 2007-06-14 Yaskawa Electric Corp グリッパ装置およびロボット
JP4692824B2 (ja) * 2005-12-16 2011-06-01 株式会社安川電機 多指ハンドシステムおよびそれを用いたロボット
JP2007160484A (ja) * 2005-12-16 2007-06-28 Yaskawa Electric Corp 多指ハンドシステムおよびそれを用いたロボット
JP2008149444A (ja) * 2006-08-28 2008-07-03 Yaskawa Electric Corp ロボットおよび制御方法
DE102007053485B4 (de) * 2006-11-09 2015-09-17 Honda Motor Co., Ltd. Roboterhand und Roboter
JP2009101424A (ja) * 2006-12-14 2009-05-14 Yaskawa Electric Corp ロボット
JP2009125883A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp ロボットハンド
JP2010036328A (ja) * 2008-08-07 2010-02-18 Toyota Motor Corp ロボットハンド
JP2010221357A (ja) * 2009-03-24 2010-10-07 Toyota Industries Corp ロボットハンド用フィンガ
JP2010247321A (ja) * 2009-03-27 2010-11-04 Honda Motor Co Ltd ロボットハンド装置
JP2013212570A (ja) * 2012-03-05 2013-10-17 Toyota Industries Corp ロボットハンド
JP2013233626A (ja) * 2012-05-10 2013-11-21 Toyota Industries Corp 吸着装置
JP2014076522A (ja) * 2012-10-11 2014-05-01 Seiko Epson Corp ロボットハンド及びロボット装置
US9539728B2 (en) 2012-10-11 2017-01-10 Seiko Epson Corporation Robot hand and robot device
JP2014083637A (ja) * 2012-10-24 2014-05-12 Toyota Industries Corp ロボットハンド
JP2015533669A (ja) * 2012-11-09 2015-11-26 アイロボット コーポレイション 柔軟劣駆動把持具
JP2015112662A (ja) * 2013-12-10 2015-06-22 Nok株式会社 被覆材及びロボット把持部の被覆構造
JP2015112660A (ja) * 2013-12-10 2015-06-22 Nok株式会社 被覆材及びロボット把持部の被覆構造
JP2019198939A (ja) * 2018-05-18 2019-11-21 Telexistence株式会社 触覚センサ
WO2020071147A1 (ja) * 2018-10-05 2020-04-09 ソニー株式会社 調理アーム用アタッチメント
JP2020151362A (ja) * 2019-03-22 2020-09-24 国立大学法人電気通信大学 グリッパ構造、人工アーム、及びグリッパ装置
WO2021030675A1 (en) * 2019-08-15 2021-02-18 Chromatic 3D Materials, Inc. Three-dimensional printing of a functionally graded robotic end effector

Similar Documents

Publication Publication Date Title
JP2004174625A (ja) ロボット装置の手構造及びロボット装置並びに駆動装置及び駆動方法
JP5383607B2 (ja) 回転絶対位置センサを較正するためのシステム、較正モジュール、および方法
Mattar A survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation
Deshpande et al. Mechanisms of the anatomically correct testbed hand
Kappassov et al. Semi-anthropomorphic 3D printed multigrasp hand for industrial and service robots
WO2014068509A2 (en) Hand exoskeleton
Canizares et al. On the use of 3D printing technology towards the development of a low-cost robotic prosthetic arm
Wang et al. Biomechatronic approach to a multi-fingered hand prosthesis
Cunningham et al. The supernumerary robotic 3 rd thumb for skilled music tasks
Bahari et al. Design and development of a multifingered prosthetic hand
Liu et al. HIT prosthetic hand based on tendon-driven mechanism
Zhang et al. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic applications
Liu et al. Bioinspired embodiment for intelligent sensing and dexterity in fine manipulation: A survey
Falck et al. DE VITO: A dual-arm, high degree-of-freedom, lightweight, inexpensive, passive upper-limb exoskeleton for robot teleoperation
JP2006000966A (ja) ロボット装置及びその制御方法
Wang et al. Progress in the biomechatronic design and control of a hand prosthesis
Natale et al. Icub
Park et al. Wearable robotic glove design using surface-mounted actuators
JP3884249B2 (ja) 人間型ハンドロボット用教示システム
Karam et al. Design and implementation of a wireless robotic human hand motion-controlled using arduino
Rai et al. An IoT based wireless robotic-hand actuation system for mimicking human hand movement
Sandesh et al. Novel approach to control of robotic hand using flex sensors
Khanna et al. Design analysis and development of low cost underactuated robotic hand
JP4206305B2 (ja) 多指ロボットハンドの制御方法及び装置
Fajardo et al. A robust control strategy for sensorless under-tendon-driven prosthetic hands