JP2004171425A - プラント信頼性評価方法及び性能評価システム - Google Patents

プラント信頼性評価方法及び性能評価システム Download PDF

Info

Publication number
JP2004171425A
JP2004171425A JP2002338734A JP2002338734A JP2004171425A JP 2004171425 A JP2004171425 A JP 2004171425A JP 2002338734 A JP2002338734 A JP 2002338734A JP 2002338734 A JP2002338734 A JP 2002338734A JP 2004171425 A JP2004171425 A JP 2004171425A
Authority
JP
Japan
Prior art keywords
plant
change
output
parameter
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002338734A
Other languages
English (en)
Inventor
Toshiaki Niihara
俊明 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002338734A priority Critical patent/JP2004171425A/ja
Publication of JP2004171425A publication Critical patent/JP2004171425A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】原子力プラントの信頼性評価及び運転フォローにおいて、信頼性評価のために監視される主要なパラメータ(原子炉出入口温度差、タービン調速段後圧力など)の挙動に対して、他の補助的なパラメータ(復水器真空度、主蒸気圧力など)が及ぼす影響を低減する。
【解決手段】プラントの運転データから主要パラメータの挙動が安定している時間のデータを抽出する。抽出されたデータの中の補助パラメータの変動と、主要パラメータの各々の変動との相関を取り、相関の良い主要パラメータを選択する。補助パラメータの変動と選択された主要パラメータの変動との相関グラフを作成する。プラントの信頼性評価及び運転フォローを行う際、その相関グラフを用いて主要パラメータを補助パラメータが所定の基準値のときの値に修正し、修正された主要パラメータを用いて信頼性評価及び運転フォローを行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、原子力プラントに例示されるプラントにおいて、計測された物理量を用いてプラントの信頼性を評価するシステム及び方法に関する。
【0002】
【従来の技術】
原子力プラントに例示されるプラントにおいて、プラントの運転状態を示すパラメータが計測され、それらのパラメータにもとづいてプラントの信頼性が評価される。更に、計測されたパラメータの挙動をフォローすることで、プラントが安定的に運転されていることが確認される。
【0003】
プラントの評価は、プラントの運転状態を示すパラメータの計測値から一定の規則に基づいてプラントの状態を推定することで行なわれる。あるいはプラントの評価は、プラントの各機器とその相互関係を計算機上でモデル化して数値シミュレーションを行い、プラントの運転状態を示すパラメータの計測値と比較することで行なわれる。
【0004】
運転状態が連続量で表される機器において、機器の定常状態を表す変数の関係式を微分して得られる変数の増分についての線形の関係式と運転監視用の測定点における変数の変動量を用いて、他の変数の変動量を計算する方法に基づいて、機器の異常個所を推定する技術が知られている(特許文献1参照)。
【0005】
【特許文献1】特開平7−36538号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、精度が高いプラント信頼性評価システム、評価方法及びプラント性能評価システムを提供することである。
【0007】
本発明の他の目的は、精度が高く処理時間が短いプラント信頼性評価システム、評価方法及びプラント性能評価システムを提供することである。
【0008】
本発明の他の目的は、プラントの信頼性評価において機器の計測誤差や製作誤差等の不確定要因による影響を低減するプラント信頼性評価システム、評価方法及びプラント性能評価システムを提供することである。
【0009】
【課題を解決するための手段】
以下に、[発明の実施の形態]で使用される番号を括弧付きで用いて、課題を解決するための手段を説明する。これらの番号は、[特許請求の範囲]の記載と[発明の実施の形態]との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
【0010】
本発明におけるプラント信頼性評価システム(11)は、プラントの信頼性を評価するために監視される主要パラメータ(Fw、ΔT、P1st)をプラント(1)の運転データから時系列的に取得する主要パラメータ取得部(16、28、29)と、プラント(1)の運転データ(18)から補助パラメータ(F、F、P、P、G)を時系列的に取得する補助パラメータ取得部(14、15、17、30)を具備している。補助パラメータ(F、F、P、P、G)が変化することによるプラント(1)の出力の変化は主要パラメータ(Fw、ΔT、P1st)が変化することによるプラント(1)の出力の変化よりも小さい。プラント信頼性評価システム(11)は更に、主要パラメータ(Fw、ΔT、P1st)と補助パラメータ(F、F、P、P、G)との関係を表す修正関数(50、51、52、53)を生成する修正関数作成部(20)を具備している。こうしたプラント信頼性評価システム(11)は、プラント(1)の信頼性を評価するときに修正関数(50、51、52、53)を用いて修正された主要パラメータ(Fw´、ΔT´、P1st´)を監視対象として用いる。
【0011】
プラント信頼性評価システム(11)は更に、プラント(1)の運転データを用いて主要パラメータ(Fw、ΔT、P1st)と出力との相関式(K(Fw)、K(ΔT)、K(P1st))を生成する相関式生成部(101)と、補助パラメータ(F、F、P、P、G)の変化に伴う主要パラメータ(Fw、ΔT、P1st)の変化を計算し、その変化を相関式(K(Fw)、K(ΔT)、K(P1st))を用いて出力の変化に換算し、補助パラメータ(F、F、P、P、G)の変化と出力の変化とを対応づける修正関数(50、51、52、53)を作成する修正関数作成部(20)とを具備している。こうしたプラント信頼性評価システム(11)は、修正関数(50、51、52、53)を用いて修正された主要パラメータ(Fw、ΔT、P1st)を監視対象とすることでプラント(1)の信頼性の評価を行う。
【0012】
プラント信頼性評価システム(11)は更に、修正関数(50、51、52、53)において補助パラメータ(F、F、P、P、G)が運転データから得られた値を取る時の出力の変化と、補助パラメータ(F、F、P、P、G)がプラント固有値あるいは所定時間内での平均値を取る時の出力の変化との差を修正係数として得、その修正係数を用いて主要パラメータ(Fw、ΔT、P1st)に対応する修正主要パラメータ(Fw´、ΔT´、P1st´)を算出する修正主要パラメータ演算部(109)を具備している。
【0013】
プラント信頼性評価システムは更に、補助パラメータ(F、F、P、P、G)の変化に伴う複数の主要パラメータ(Fw、ΔT、P1st)の各々の変化を計算し、主要パラメータ(Fw、ΔT、P1st)の各々の変化を相関式(K(Fw)、K(ΔT)、K(P1st))を用いて出力の変化に換算した結果を複数の出力修正量候補として得る出力修正量候補演算部(107)と、それら複数の出力修正量候補のうちで補助パラメータ(F、F、P、P、G)と統計的に最も相関が良いものを出力修正量として選び、補助パラメータ(F、F、P、P、G)と選ばれた出力修正量とを対応づけた修正関数(50、51、52、53)を作成する修正関数選択部(108)とを具備している。プラント信頼性評価システム(11)は更に、修正関数(50、51、52、53)と所定の時間内における補助パラメータの時間平均値(<F>、<F>、<P>、<P>)とを用いて出力の修正係数を得、修正係数を用いて複数の主要パラメータ(Fw、ΔT、P1st)の各々に対応する複数の修正主要パラメータ(Fw´、ΔT´、P1st´)を算出する修正主要パラメータ演算部(109)を具備している。
【0014】
複数の修正主要パラメータ(Fw´、ΔT´、P1st´)は、相関式(K(Fw)、K(ΔT)、K(P1st))を用いて出力の単位で表されている。プラント信頼性評価システム(11)は更に、複数の修正主要パラメータ(Fw´、ΔT´、P1st´)から任意の2つを取り出してその差(a、b、c)を計算し、その差(a、b、c)を時系列的に記録した偏差関数を作成し、その偏差関数において差(a、b、c)の最大値あるいは偏差値が予め設定された閾値以下となる時間範囲を安定サイクルとして取り出す安定サイクル抽出部(103)を具備している。こうしたプラント信頼性評価システム(11)は、プラント(1)が安定した運転状態にあるときのプラント状態の監視をするために、前記安定サイクルを前記信頼性監視の対象として取り出す。
【0015】
該閾値としては、標準偏差に例示される統計確率的な手法を用いて決められた値か、あるいは任意に設定された値が用いられる。本明細書の[発明の詳細な説明]において使用される閾値という表現は、すべてこの意味で用いられる。
【0016】
プラント信頼性評価システム(11)は、原子力発電プラント(1)の信頼性評価に用いられることがある。そのとき、主要パラメータ(Fw、ΔT、P1st)は冷却水の給水流量(Fw)、原子炉出入口温度差(ΔT)、タービン調速段後圧力(P1st)のうちの少なくとも1つを含んでいる。補助パラメータ(F、F、P、P、G)は、電気出力(G)、復水器真空度(P)、主蒸気圧力(P)、補助蒸気圧力(F)、水質管理水流量(F)のうちの少なくとも1つを含んでいる。
【0017】
補助パラメータ(F、F、P、P、G)は、第1種補助パラメータ(P)と第2種補助パラメータ(F、F、P)とにグループ化される。第1種補助パラメータ(P)が変化することによるプラント(1)の出力の変化は、第2種補助パラメータ(F、F、P)が変化することによる変化よりも大きい。プラント信頼性評価システム(11)は更に、プラント(1)の時系列的な運転データのうちで、第1種補助パラメータ(P)の値が、第1種補助パラメータ(P)の変化による出力の変化が予め決められた閾値よりも小さい値であるような時間範囲を抽出する第1種補助パラメータ選択部(104)を具備している。こうしたプラント信頼性評価システム(11)は、プラント(1)の信頼性評価において第2種補助パラメータ(F、F、P)の影響を取り入れるために、第1種補助パラメータ選択部(104)によって抽出された時間範囲を信頼性評価の対象として取り出す。
【0018】
第1種補助パラメータ(P)の変化によるプラントの出力の変化は10パーセント程度であり、第2種補助パラメータ(F、F、P)の変化による出力の変化は1パーセント程度である。好ましくは、第1種補助パラメータ(P)の変化によるプラントの出力の変化は10パーセント未満であり、第2種補助パラメータ(F、F、P)の変化による出力の変化は1パーセント未満である。
【0019】
こうしたプラント信頼性評価システム(11)が原子力発電プラント(1)の信頼性評価に用いられるとき、第1種補助パラメータ(P)は復水器真空度(P)であり、第2種補助パラメータ(F、F、P)は、電気出力(G)、主蒸気圧力(P)、補助蒸気圧力(F)、水質管理水流量(F)のうちの少なくとも1つを含んでいる。
【0020】
本発明によるプラント性能評価システムは、修正関数(50、51、52、53)を用いて、任意の時刻における運転データに示される補助パラメータ(F、F、P、P、G)の値に対応する修正関数(50、51、52、53)の値を用いて修正された主要パラメータ(Fw´、ΔT´、P1st´)と、所定の時間内における補助パラメータの時間平均値(<F>、<F>、<P>、<P>)に対応する修正関数(50、51、52、53)の値あるいはプラント固有値(図示せず)における補助パラメータの値に対応する修正関数(50、51、52、53)の値を用いて修正された主要パラメータ(Fw´、ΔT´、P1st´)との差を、予め設定された閾値(図示せず)と比較することにより運転フォローを行う。
【0021】
本発明によるプラント性能評価システムは、修正関数(50、51、52、53)を用いて修正された主要パラメータ(Fw´、ΔT´、P1st´)を用いてプラント(1)の性能予測解析を行う性能予測部(112)と、性能予測解析の結果を用いてヒートバランス解析を行うヒートバランス解析部(113)とを具備している。プラント性能評価システムは、性能予測解析の結果とヒートバランス解析の結果とを用いてプラント(1)の性能を評価する。
【0022】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。本実施の形態において、プラント信頼性評価システム及びプラント信頼性評価方法は、原子力プラントの信頼性を評価するために用いられる。
【0023】
図1を参照して、プラント信頼性評価システム11は、原子力プラント1に接続されている。原子力プラント1は、加圧水型の原子力発電プラントである。本発明におけるプラント信頼性評価システム、評価方法及びプラント性能評価システムは、沸騰水型の原子力発電プラントあるいは新型の原子力発電プラントにも好適に用いられる。
【0024】
原子力プラント1は、炉心Rを格納する原子炉2を備えている。原子炉2は1次系ループ9に接続されており、1次系ループ9の往路と復路の間に温度差計23を備えている。1次系ループ9は蒸気発生器3を備えている。蒸気発生器3は水質管理用配管36を備えており、水質管理用配管36には流量計8が設置されている。蒸気発生器3は2次系ループ10に接続されている。2次系ループ10は、蒸気発生器3の下流側に圧力計4を備えている。
【0025】
2次系ループ10は更に、圧力計4の下流側にタービン5を備えている。タービン5の第1段(調速段)の後には圧力計22が設けられている。タービン5は発電機33に接続され、発電機33には電力計34が設置されている。
【0026】
2次系ループ10は更に、タービン5より下流側に補助蒸気抽出配管32を接続されており、補助蒸気抽出配管32には流量計31が設置されている。2次系ループ10は更に、補助蒸気抽出配管32の接続部よりも下流側に復水器6を備えている。復水器6の下流側には流量計7が設けられている。
【0027】
プラント信頼性評価システム11は、原子力プラント1の運転条件の設定値を取得する運転条件データ取得部12を備えている。プラント信頼性評価システム11は、温度計23からのデータを取得する炉心温度差データ取得部28と、蒸気発生器のデータを取得する蒸気発生性能データ取得部13と、流量計8からのデータを取得する水質管理用水流量取得部14と、圧力計4からのデータを取得する主蒸気圧力データ取得部15と、流量計7からのデータを取得する流量データ取得部16と、復水器6からのデータを取得する真空度データ取得部17と、圧力計22からのデータを取得するタービン第1段後圧力データ取得部29と、流量計31からのデータを取得する補助蒸気抽出量取得部30と、電力計34からのデータを取得する電気出力取得部35とを備えている。
【0028】
プラント信頼性評価システム11は更に、データ蓄積部18を備えている。データ蓄積部18は、運転条件データ取得部12、炉心温度差データ取得部28、蒸気発生性能データ取得部13、水質管理用水流量取得部14、主蒸気圧力データ取得部15、流量データ取得部16、真空度データ取得部17、タービン第1段後圧力データ取得部29、補助蒸気抽出量取得部30及び電気出力取得部35からデータを受け取り蓄積する。プラント信頼性評価システム11は更に、安定サイクル選択部19と、修正曲線作成部20と、信頼性評価部21とを備えている。
【0029】
図2を参照して、安定サイクル選択部19は、相関式生成部101と、修正主要パラメータ相関計算部102と安定サイクル抽出部103とを備えている。
【0030】
図3を参照して、修正曲線作成部20は、第1種補助パラメータ選択部104と、修正曲線生成部105と、修正曲線保存部106とを備えている。図4を参照して、修正曲線生成部105は、出力修正量候補演算部107と、修正曲線選択部108とを備えている。
【0031】
図5を参照して、信頼性評価部31は、修正主要パラメータ演算部109と、偏差演算評価部110及び信頼性評価データ保存部111を備えている。
【0032】
以上のような構成を備えたプラント信頼性評価システム11は、次のように動作する。
【0033】
図6は、安定サイクル選択部19の動作を示している。プラントの運転は、サイクルに分けて行なわれる。プラント信頼性評価システム11が動作するとき、データ蓄積部18に蓄積された運転データがサイクル毎に区別されて安定サイクル選択部19に読み込まれる(ステップS1)。
【0034】
読み込まれるデータは、主要パラメータと補助パラメータと出力と運転条件データである。実施の形態においては出力として熱出力が用いられる。出力としては、熱出力に代えて電気出力を用いても、それ以外の構成と動作とは同一である。主要パラメータはプラントの出力に顕著に相関を示すパラメータであり、熱出力P、流量データ取得部16が取得する2次系ループ10の給水流量Fw、炉心温度差データ取得部28が取得する炉心温度差ΔT、タービン第1段後圧力データ取得部29が取得するタービン第1段後圧力P1stが例示される。補助パラメータは、その値が変化したことによるプラントの出力の変動が小さく、例えばプラントの定格出力の1パーセント程度、好ましくは1パーセント以下であるようなパラメータである。補助パラメータとしては、電気出力取得部35が取得する発電機33の電気出力G、主蒸気圧力データ取得部15が取得する主蒸気圧力P、復水器真空度データ取得部17が取得する復水器真空度P、水質管理水流量取得部14が取得する水質管理水流量F、補助蒸気抽出量取得部30が取得する補助蒸気抽出量Fが例示される。運転条件データ取得部12が取得する運転条件データは、サイクルの開始と終了の時期、定期検査を行なった時期、機器の修理または交換の実施記録などを含んでいる。
【0035】
ステップS1において読み込まれたデータから給水流量Fwが変化し炉心温度差ΔTとタービン第1段後圧力P1stが実質的に一定である時間範囲のデータを抽出し統計的な処理を施すことで、給水流量Fwと出力Pとの近似的な相関式P=K(Fw)が得られる。同様の手続きによって、炉心温度差ΔTと出力Pとの相関式P=K(ΔT)と、タービン第1段後圧力P1stと出力Pとの相関式P=K(P1st)が得られる(ステップS2)。
【0036】
安定サイクル選択部19は、処理中のデータが属するサイクルが過去に修正曲線50、51、52、53を計算したサイクルであるか否かを判定する(ステップS3)。
【0037】
過去に修正曲線50、51、52、53を計算したサイクルであったとき(ステップS3Yes)、安定サイクル選択部19は、修正曲線作成部20から修正曲線50、51、52、53を読み込む(ステップS4)。
【0038】
修正曲線50、51、52、53の詳細な説明は、ステップS20からステップS27までを説明する際に与えられる。修正曲線50、51、52、53は、順に図9、図10、図11、図12に示されている。
【0039】
修正曲線50、51、52、53は、CF1=CF1(F)、CF2=CF2(F)、…、という式で表される。CF1、CF2、CP1、CP2は補助パラメータの各々に対応する出力修正量である。
【0040】
給水流量Fwを、相関式P=K(Fw)を用いて出力の単位の量に換算し、補助パラメータの変動による影響を補正する修正係数1+CF1+CF2+CP1+CP2を掛けることで、出力の単位を持つ量である修正給水流量Fw´が得られる。修正炉心出入口温度差ΔT´、修正タービン第1段後圧力P1st´も同様の手続で得られる。式で表せば、
Fw´=(1+CF1+CF2+CP1+CP2)K(Fw)、
ΔT´=(1+CF1+CF2+CP1+CP2)K(ΔT)、
P1st´=(1+CF1+CF2+CP1+CP2)K(P1st)
である(ステップS5)。
【0041】
ステップS3において、処理中のデータが属するサイクルが過去に修正曲線50、51、52、53を計算したサイクルではないとき(ステップS3No)、主要パラメータFw、ΔT、P1stを相関式で出力の単位に換算した量を修正主要パラメータFw´、ΔT´、P1st´とする。式で表せば、
Fw´=K(Fw)、
ΔT´=K(ΔT)、
P1st´=K(P1st)
である(ステップS6)。
【0042】
修正主要パラメータの任意の2つの差、
a=Fw´−ΔT´、
b=Fw´−P1st´、
c=ΔT´−P1st´
が計算される(ステップS7)。
【0043】
a、b、cの各々の標準偏差と、|a|、|b|、|c|の各々の最大値が計算される(ステップS8)。
【0044】
プラントは、低圧タービンのロータ取り換えに例示されるプラントの各機器の交換あるいは調整、あるいは定期検査によって挙動が異なったものになる。そうしたプラントの状態の変化があった場合、サイクルはプラント状態ごとに分けらる(ステップS9)。以下で説明される安定サイクルの摘出および修正曲線50、51、52、53の導出は、例えば低圧タービンのロータの取り換えの前後など異なるプラント状態ごとに別々に行われる。
【0045】
安定サイクルを摘出するために、標準偏差に対する閾値T1と、最大値に対する閾値T2が設定される。a、b、cの標準偏差の全てがT1を下回り、あるいは|a|、|b|、|c|の最大値の全てがT2を下回るサイクルが安定サイクルとして摘出される。
【0046】
閾値T1、T2としては、標準偏差に例示される統計確率的な手法を用いて決められた値か、あるいは任意に設定された値が用いられる。本明細書の[発明の詳細な説明]において使用される閾値という表現は、すべてこの意味で用いられる。
【0047】
a、b、cの絶対値が小さく標準偏差が小さいサイクルは、プラント1の各部でハンチングやドリフト等の不規則な挙動が起きていないサイクルである。このような安定サイクルの運転データは、プラント1の運転データから信頼性を評価しあるいは運転フォローを行なう上で、そのプラント1の基準となる運転データとして用いられる。
【0048】
プラント1の信頼性評価を行うための基準となる運転データとして、設計値あるいはシミュレーションによって得られる仮想データではなく、運転データから摘出された安定サイクルを用いることで、機器の計測誤差や製作誤差、あるいは定期検査での調整誤差などの不確定要因による信頼性評価への影響が低減され、精度が良い信頼性評価が行われる。
【0049】
安定サイクルの摘出が機器の交換の前後など異なるプラント状態ごとに行われることで、複数の運転状態の各々に対応して信頼性評価あるいは運転フォローの基準となる運転データが選択されることになる。このようなプラント信頼性評価システム11は精度が高い。
【0050】
図7は、修正曲線52を作成するときの修正曲線作成部20の動作を示している。修正曲線作成部20は、安定サイクル抽出部103によって抽出された安定サイクルに含まれる運転データを読み込む(ステップS20)。
【0051】
補助蒸気抽出量Fが変化することによるプラントの出力の変化は0.1パーセント程度であるのに対して復水器真空度Pが変化することによるプラントの出力の変化は3パーセント程度の大きさに達することがある。そのため補助蒸気抽出量Fの修正曲線52を求めるとき、第1種補助パラメータ選択部104はステップS20で読み込まれた運転データの中から、復水器真空度Pによる出力修正量が小さい時間範囲のデータを抽出する(ステップS21)。
【0052】
出力に与える影響の桁が異なる複数のパラメータが混在している場合、出力に対する影響が比較的大きくなることがあるパラメータの影響が小さい時間範囲の運転データを抽出した上で、出力に対する影響が比較的小さいパラメータの修正曲線を求めることで、出力に対する影響が比較的小さいパラメータに関しても修正曲線を得ることができ、高い精度でプラントの信頼性評価が行われる。
【0053】
修正曲線候補演算部107は、ステップS21で抽出されたデータの中から補助蒸気抽出量F実質的に変化している個所を探し、補助蒸気抽出量Fが変化する前後における主要パラメータFw、ΔT、P1stの値を摘出する(ステップS22)。
【0054】
補助蒸気抽出量Fが実質的に変化している個所は、補助蒸気抽出量Fが所定の時間内に所定の閾値よりも大きく変化しているという条件を満たす個所が選ばれる。所定の時間内における補助蒸気抽出量Fの変化が所定の閾値よりも大きくなることが少ないとき、所定の閾値は段階的により小さい値に再設定される。
【0055】
プラントの各部のパラメータの値はさまざまな要因からの影響によって変動するため、補助パラメータの変化が小さい部分の運転データにおいては、補助パラメータと主要パラメータの相関は、さまざまな要因からの影響によるノイズに隠される。そのため、上述のように補助パラメータが閾値よりも大きく変化する部分の運転データを摘出することは、ノイズの影響を低減して補助パラメータと主要パラメータとの相関を調べる上で好ましい。
【0056】
更に、補助パラメータが閾値よりも大きく変化する部分の運転データを摘出することで、修正曲線を得るための処理にかかる時間が短くなる。
【0057】
修正曲線候補演算部107は、ステップS21で摘出された補助蒸気抽出量Fの変化の前後における主要パラメータの値の変化を、式
ΔPFw=|変化前Fw−変化後Fw|×K
ΔPΔT=|変化前ΔT−変化後ΔT|×K
ΔPP1st=|変化前P1st−変化後P1st|×K
に従って出力の単位をもつ量ΔPFw、ΔPΔT、ΔPP1stに換算する(ステップS23)。ここでK、K、Kは、相関式K(Fw)、K(ΔT)、K(P1st)から得られる係数である(ステップS23)。
【0058】
修正曲線選択部108は、補助蒸気抽出量Fの変化量とΔPFw、ΔPΔT、ΔPP1stの各々との相関を取り(ステップS24)、それらの中から統計的に最も相関が良いものを選択する(ステップS25)。相関としては、標準偏差が好適に用いられる。
【0059】
ステップS25において例えばΔPFwが選択されたとすると、補助蒸気抽出量Fを横軸に取り、ΔPFwを出力修正量として縦軸に取って描かれる曲線が、補助蒸気抽出量Fの修正曲線52として修正曲線保存部106に保存される(ステップS26)。
【0060】
このように動作するプラント信頼性評価システムは、以下に説明する効果を有する。プラントは複雑なシステムであり、プラントの状態を示す各種のパラメータは相互に複雑に関係している。あるパラメータの変化は、他のあるパラメータの変化と高い相関を示す場合があり、他のパラメータの変化とは相関が無い場合がある。こうした相関は、プラント状態が変わるのに伴って変わることがある。主要パラメータによる信頼性評価において補助パラメータの変化による影響を取り入れるためには、補助パラメータと、該補助パラメータに最も相関が高い主要パラメータとの相関が用いられることが好ましい。上述の方法によって得られる修正曲線は、このような条件を満たしている。このような修正曲線を用いたプラント信頼性評価システムは精度が高く、特にプラント状態の変化に伴って複数のパラメータの間の相関関係が変化したときに高い精度を保つ。
【0061】
更に、上述の方法は、複雑に関係している各種のパラメータのなかで相関が高い組を運転データから発見法的に見出す方法であり、処理時間が短い。こうした方法を用いたプラント信頼性評価システムは、処理時間が短い。
【0062】
図8は、信頼性評価部21の動作を示している。プラントの信頼性を評価するとき、信頼性評価部21はデータ蓄積部18から運転データを読み込む(ステップS30)。
【0063】
運転データには、主要パラメータFw、ΔT、P1st、補助パラメータF、F、P、Pが含まれる。以下、主要パラメータとして給水流量Fwの修正主要パラメータFw´を求める場合を例として説明する。
【0064】
修正主要パラメータ演算部109は、出力修正量ΔCF1、ΔCF2、ΔCP1、ΔCP2を求めるために用いられる基準値として、補助パラメータF、F、P、Pの時間平均値<F>、<F>、<P>、<P>を計算する(ステップS31)。
【0065】
このような基準値としては、時間平均値に替えてプラント固有値を用いることが可能である。
【0066】
修正主要パラメータ演算部109は修正曲線保存部106から修正曲線を読み込む(ステップS32)。
【0067】
修正主要パラメータ演算部109は、出力修正量ΔCF1、ΔCF2、ΔCP1、ΔCP2を計算する。計算は、式
ΔCF1=CF1(F)−CF1(<F>)
ΔCF2=CF2(F)−CF2(<F>)
ΔCP1=CP1(P)−CP1(<P>)
ΔCP2=CP2(P)−CP2(<P>)
によって行われる(ステップS33)。
【0068】
主要パラメータの一つである給水流量Fwを、相関式P=K(Fw)を用いて出力の単位の量に換算し、補助パラメータの変動による影響を補正する修正係数1+ΔCF1+ΔCF2+ΔCP1+ΔCP2を掛けることで、出力の単位を持つ量である修正給水流量Fw´が得られる。式で表せば、
Fw´=(1+ΔCF1+ΔCF2+ΔCP1+ΔCP2)K(Fw)
である(ステップS34)。
【0069】
同様にして、出力Pから修正出力
P´=(1+ΔCF1+ΔCF2+ΔCP1+ΔCP2)P
が求められる。
【0070】
偏差演算評価部110は、修正給水流量Fw´の平均値<Fw´>と標準偏差D(Fw´)とを求める(ステップS35)。
【0071】
偏差演算評価部110は、修正主要パラメータFw´、ΔT´、P1st´の各々に対して評価用の閾値を求め(ステップS36)、修正主要パラメータFw´、ΔT´、P1st´と合わせて出力する(ステップS37)。
【0072】
本発明によるプラント信頼性評価システムは処理時間が短いため、実質的にリアルタイムでプラントの運転フォローを行うことができる。
【0073】
修正主要パラメータFw´、ΔT´、P1st´と評価用の閾値とは、後からさまざまな分析を加えることが可能なように信頼性評価データ保存部111に保存される(ステップS38)。
【0074】
偏差演算評価部110は、修正給水流量Fw´の各々に対して評価用の閾値を作成する(ステップS36)。
【0075】
評価用の閾値は、平均値<Fw´>を中心として標準偏差D(Fw´)に比例した幅で決められることが好ましい。このような閾値を設定することで、プラントの信頼性評価を行うときに、修正主要パラメータFw´、ΔT´、P1st´の変動が統計的なばらつきなのかドリフトを示しているのかを判断するための指標が得られる。このような閾値が設定されることで、プラントの信頼性評価のために修正主要パラメータが閾値から外側に外れている部分の運転データを自動的に抽出することができる。こうしたプラント信頼性評価システムは、処理時間が短い。
【0076】
図13は、運転データから得られた出力Pと、出力Pを修正して得られた修正出力P´の図である。補正前の出力は出力Pを、補正後の出力は修正出力P´を示している。図13においてはP´がほぼ一定の値であることから、出力Pの値が波打っているのは補助パラメータによる影響であることが分かる。値が安定している修正出力P´を用いることで、プラントの信頼性評価が精度良く行われる。
【0077】
図14は、修正給水流量Fw´を用いた運転フォローの例を示している。給水流量Fw´はばらつきが少ないため、補助パラメータによる通常の影響以外の要因で給水流量が変動したときに、少ない変動でも気付くことが容易である。
【0078】
図15は、プラント信頼性評価システムを組み込んだプラント性能評価システムの一例を示している。原子力プラント1より供給される運転データは、プラント信頼性評価システム11に送られて修正主要パラメータFw´、ΔT´、P1st´が求められる。求められた修正主要パラメータFw´、ΔT´、P1st´は、性能予測部112に送られ性能予測解析が行われる。性能予測に修正主要パラメータFw´、ΔT´、P1st´が用いられることによって性能予測が精度良く行われる。
【0079】
性能予測の結果はヒートバランス解析部113に送られ、ヒートバランス解析が実施される。性能予測部112での予測結果が用いられることにより最確的な解析を行うことができる。
【0080】
プラント信頼性評価システム11、性能予測部112及びヒートバランス解析部113における評価の結果は運転データ診断部114に集められ、運転データの評価が高い信頼性で行われる。
【0081】
【発明の効果】
本発明によれば、精度が高いプラント信頼性評価システム、評価方法及びプラント性能評価システムが提供される。
【0082】
更に本発明によれば、精度が高く処理時間が短いプラント信頼性評価システム、評価方法及びプラント性能評価システムが提供される。
【0083】
更に本発明によれば、プラントの信頼性評価において機器の計測誤差や製作誤差等の不確定要因による影響を低減するプラント信頼性評価システム、評価方法及びプラント性能評価システムが提供される。
【図面の簡単な説明】
【図1】図1は、プラント信頼性評価システムの構成を表す。
【図2】図2は、安定サイクル選択部の構成を示す。
【図3】図3は、修正曲線作成部の構成を示す。
【図4】図4は、修正曲線生成部の構成を示す。
【図5】図5は、信頼性評価部の構成を示す。
【図6】図6は、安定サイクル選択部の動作を示すフローチャートである。
【図7】図7は、修正曲線作成部の動作を示すフローチャートである。
【図8】図8は、信頼性評価部の動作を示すフローチャートである。
【図9】図9は、復水器真空度の修正曲線である。
【図10】図10は、蒸気圧力の修正曲線である。
【図11】図11は、補助蒸気使用量の修正曲線である。
【図12】図12は、水質管理用水流量の修正曲線である。
【図13】図13は、補正前と補正後の熱出力の比較図である。
【図14】図14は、修正給水流量を用いた運転フォロー図である。
【図15】図15は、プラント信頼性評価システムを用いたプラント性能評価システムを示す。
【符号の説明】
1…原子力プラント
2…原子炉
3…蒸気発生器
4…圧力計
5…タービン
6…復水器
7…流量計
8…流量計
9…1次系ループ
10…2次系ループ
11…プラント信頼性評価システム
12…運転条件データ取得部
13…蒸気発生性能データ取得部
14…水質管理用水流量取得部
15…主蒸気圧力データ取得部
16…流量データ取得部
17…真空度データ取得部
18…データ蓄積部
19…安定サイクル選択部
20…修正曲線作成部
21…信頼性評価部
22…圧力計
23…温度計
28…炉心温度差データ取得部
29…タービン第1段後圧力データ取得部
30…補助蒸気抽出量取得部
31…流量計
32…補助蒸気配管
33…発電機
34…電力計
35…電気出力取得部
101…相関式生成部
102…修正主要パラメータ相関計算部
103…安定サイクル抽出部
104…第1種補助パラメータ選択部
105…修正曲線生成部
106…修正曲線保存部
107…出力修正量候補演算部
108…修正曲線選択部
109…修正主要パラメータ演算部
110…偏差演算評価部
111…信頼性評価データ保存部
112…性能予測部
113…ヒートバランス解析部
114…運転データ診断部

Claims (20)

  1. プラントの信頼性を評価するために監視される主要パラメータを前記プラントの運転データから時系列的に取得する主要パラメータ取得部と、
    前記運転データから補助パラメータを時系列的に取得する補助パラメータ取得部と、前記補助パラメータが変化することによる前記プラントの出力の変化は前記主要パラメータが変化することによる前記出力の変化よりも小さく、
    前記主要パラメータと前記補助パラメータとの関係を表す修正関数を生成する修正関数作成部とを具備し、
    前記プラントの信頼性を評価するときに、前記修正関数を用いて修正された前記主要パラメータを監視対象として用いる、
    プラント信頼性評価システム。
  2. プラントの信頼性を評価するために監視される主要パラメータを前記プラントの運転データから時系列的に取得する主要パラメータ取得部と、
    前記プラントの運転データから補助パラメータを時系列的に取得する補助パラメータ取得部と、前記補助パラメータが変化することによる前記プラントの出力の変化は前記主要パラメータが変化することによる前記出力の変化よりも小さく、
    前記運転データを用いて前記主要パラメータと前記プラントの出力との相関式を生成する相関式生成部と、
    前記補助パラメータの変化に伴う前記主要パラメータの変化を計算し、前記主要パラメータの変化を前記相関式を用いて前記出力の変化に換算し、前記補助パラメータと前記出力の変化とを対応づける修正関数を作成する修正関数作成部とを具備し、
    前記プラントの信頼性を評価するときに、前記修正関数を用いて修正された前記主要パラメータを監視対象として用いる、
    プラント信頼性評価システム。
  3. 請求項2において、
    更に、前記修正関数において、前記補助パラメータが前記運転データから得られた値を取るときの前記出力の変化と、前記補助パラメータが所定時間内での平均値あるいは前記プラントのプラント固有値を取るときの前記出力の変化との差を修正係数として得、前記修正係数を用いて前記主要パラメータに対応する修正主要パラメータを算出する修正主要パラメータ演算部を具備し、
    前記修正主要パラメータを用いて前記プラントの信頼性を評価する、
    プラント信頼性評価システム。
  4. プラントの信頼性を評価するために監視される複数の主要パラメータを前記プラントの運転データから時系列的に取得する主要パラメータ取得部と、
    前記プラントの運転データから補助パラメータを時系列的に取得する補助パラメータ取得部と、前記補助パラメータが変化することによる前記プラントの出力の変化は前記複数の主要パラメータのうちの任意の1つが変化することによる前記出力の変化よりも小さく、
    前記複数の主要パラメータの各々に対応して、前記プラントの出力の測定値との複数の相関式を導出する相関式生成部と、
    前記補助パラメータの変化に伴う前記複数の主要パラメータの各々の変化を計算し、前記主要パラメータの各々の変化を前記相関式を用いて前記出力の変化に換算した結果を複数の出力修正量候補として得る出力修正量候補演算部と、
    前記複数の出力修正量候補のうちで前記補助パラメータと統計的に最も相関が良いものを出力修正量として選び、前記補助パラメータと選ばれた前記出力修正量とを対応づけた修正関数を作成する修正関数選択部とを具備し、
    前記プラントの信頼性を評価するときに、前記修正関数を用いて修正された前記主要パラメータを監視対象として用いる、
    プラント信頼性評価システム。
  5. 請求項4において、
    更に、前記修正関数において、前記運転データから読み込まれた前記補助パラメータの値に対応する前記出力の変化と前記プラントのプラント固有値あるいは所定時間内における前記補助パラメータの平均値に対応する前記出力の変化との差を修正係数として得、前記修正係数を用いて前記複数の主要パラメータの各々に対応する複数の修正主要パラメータを算出する修正主要パラメータ演算部を具備し、
    前記修正主要パラメータを用いて前記プラントの信頼性を評価する、
    プラント信頼性評価システム。
  6. 請求項5において、
    前記複数の修正主要パラメータは、前記相関式を用いて出力の単位で表されており、
    更に、前記複数の修正主要パラメータから任意の2つを取り出してその差を計算し、前記差を時系列的に記録した偏差関数を作成し、前記偏差関数において前記差の最大値あるいは標準偏差が予め設定された閾値以下となる時間範囲を安定サイクルとして取り出す安定サイクル抽出部を具備し、
    前記プラントが安定した運転状態にあるときのプラント状態の監視をするために、前記安定サイクルを前記プラントの信頼性監視の対象として取り出す、
    プラント信頼性評価システム。
  7. 請求項1から6のうちのいずれか一項において、
    前記プラントは原子力発電プラントであり、
    前記主要パラメータは、冷却水の給水流量、原子炉出入口温度差、タービン調速段後圧力のうちの少なくとも一つを含み、
    前記補助パラメータは、電気出力、復水器真空度、主蒸気圧力、補助蒸気抽出量、水質管理水流量のうちの少なくとも一つを含む、
    プラント信頼性評価システム。
  8. 請求項1から6のうちのいずれか一項において、
    前記補助パラメータは第1種補助パラメータと第2種補助パラメータとにグループ化され、
    前記第1種補助パラメータが変化することによる前記出力の変化は、前記第2種補助パラメータが変化することによる前記出力の変化よりも大きく、
    更に、前記プラントの時系列的な運転データのうちで、前記第1種補助パラメータの値が、前記第1種補助パラメータの変化による前記出力の変化が予め決められた閾値よりも小さい値であるような時間範囲を抽出する、第1種補助パラメータ選択部とを具備し、
    前記プラントの信頼性評価において前記第2種補助パラメータの影響を取り入れるために、前記第1種補助パラメータ選択部によって抽出された時間範囲を前記信頼性評価の対象として取り出す、
    プラント信頼性評価システム。
  9. 請求項8において、
    前記第1種補助パラメータの変化による前記出力の変化は10パーセント程度であり、
    前記第2種補助パラメータの変化による前記出力の変化は1パーセント程度である、
    プラント信頼性評価システム。
  10. 請求項8または9において、
    前記プラントは原子力発電プラントであり、
    前記主要パラメータは、冷却水の給水流量、原子炉出入口温度差、タービン調速段後圧力のうちの少なくとも一つを含み、
    前記第1種補助パラメータは復水器真空度を含み、
    前記第2種補助パラメータは、電気出力、主蒸気圧力、補助蒸気抽出量、水質管理水流量のうちの少なくとも一つを含む、
    プラント信頼性評価システム。
  11. 補助パラメータとプラントの信頼性を評価するために監視される主要パラメータとの関係を表す修正関数を生成するステップと、前記補助パラメータが変化することによる前記プラントの出力の変化は前記主要パラメータが変化することによる前記出力の変化よりも小さく、
    前記修正関数を用いて前記主要パラメータを修正して修正主要パラメータを得るステップと、
    前記修正主要パラメータを用いて前記プラントの信頼性を評価するステップとを具備する、
    プラント信頼性評価方法。
  12. プラントの運転データから主要パラメータと補助パラメータとを時系列的に抽出するステップと、前記補助パラメータが変化することによる前記プラントの出力の変化は前記主要パラメータが変化することによる前記出力の変化よりも小さく、
    前記主要パラメータと前記プラントの出力との相関式を導出するステップと、
    前記補助パラメータの変化に伴う前記主要パラメータの変化を計算するステップと、
    前記計算の結果を前記相関式を用いて前記出力の変化に換算するステップと、
    前記補助パラメータの変化と前記出力の変化とを対応づける修正関数を作成するステップと、
    前記修正関数において、前記補助パラメータが前記運転データから得られた値を取るときの前記出力の変化と前記補助パラメータが所定の時間内での平均値あるいは前記プラントのプラント固有値を取る時の出力の変化との差を修正係数として得るステップと、
    前記修正係数を用いて前記主要パラメータに対応する修正主要パラメータを算出するステップと、
    前記修正主要パラメータを用いて前記プラントの信頼性を評価するステップとを具備する、
    プラント信頼性評価方法。
  13. プラントの運転データから複数の主要パラメータと少なくとも1つの補助パラメータとを時系列的に抽出するステップと、前記補助パラメータが変化することによる前記プラントの出力の変化は前記主要パラメータのうちの任意の1つが変化することによる前記出力の変化よりも小さく、
    前記補助パラメータの変化に伴う前記複数の主要パラメータの各々の変化を計算するステップと、
    前記複数の主要パラメータの各々に対応して、前記プラントの出力の測定値との複数の相関式を導出するステップと、
    前記複数の相関式を用いて前記計算の結果を前記出力の変化に換算した結果を複数の出力修正両候補として得るステップと、
    前記複数の出力修正量候補のうちで前記補助パラメータと統計的に最も相関が良いものを出力修正量として選び、前記補助パラメータの変化と前記出力修正量の変化とを対応づけた修正関数を作成するステップと、
    前記修正係数において、前記運転データから読み込まれた前記補助パラメータの値に対応する前記出力の変化と、前記プラントのプラント固有値あるいは所定時間内における前記補助パラメータの平均値に対応する前記出力の変化との差を修正係数として得るステップと、
    前記修正係数に基づいて前記複数の主要パラメータの各々に対応する複数の修正主要パラメータを算出するステップと、
    前記修正主要パラメータを用いて前記プラントの信頼性を評価するステップとを含む、
    プラント信頼性評価方法。
  14. 請求項13において、
    前記複数の修正主要パラメータは、前記相関式を用いて出力の単位で表されており、
    更に、前記複数の修正主要パラメータから任意の2つを取り出してその差を計算し、前記差を時系列的に記録した偏差関数を作成するステップと、
    前記偏差関数において前記差の最大値あるいは標準偏差が予め設定された閾値以下となる時間範囲を、前記プラントが安定した運転状態にあるときの信頼性評価の対象となる時間として取り出すステップとを具備する、
    プラント信頼性評価方法。
  15. 請求項11から14のうちのいずれか一項において、
    前記プラントは原子力発電プラントであり、
    前記主要パラメータは、冷却水の給水流量、原子炉出入口温度差、タービン調速段後圧力のうちの少なくとも一つを含み、
    前記補助パラメータは、電気出力、復水器真空度、主蒸気圧力、補助蒸気抽出量、水質管理水流量のうちの少なくとも一つを含む、
    プラント信頼性評価方法。
  16. 請求項11から14のうちのいずれか一項において、
    更に、前記補助パラメータを第1補助パラメータと第2補助パラメータとにグループ化するステップと、前記第1種補助パラメータが変化することによる前記出力の変化は、前記第2種補助パラメータが変化することによる前記出力の変化よりも大きく、
    前記プラントの時系列的な運転データのうちで、前記第1種補助パラメータの値が、設計値の上で前記第1種補助パラメータの変化による前記主要パラメータの変化が予め決められた閾値よりも小さくなるような値である時間範囲に含まれる前記運転データを前記プラントの信頼性評価の対象として抽出するステップとを具備する、
    プラント信頼性評価方法。
  17. 請求項16において、
    前記第1種補助パラメータの変化による前記出力の変化は10パーセント程度であり、
    前記第2種補助パラメータの変化による前記出力の変化は1パーセント程度である、
    プラント信頼性評価方法。
  18. 請求項16または17において、
    前記プラントは原子力発電プラントであり、
    前記主要パラメータは、冷却水の給水流量、原子炉出入口温度差、タービン調速段後圧力のうちの少なくとも一つを含み、
    前記第1種補助パラメータは復水器真空度であり、
    前記補助パラメータは、電気出力、主蒸気圧力、補助蒸気抽出量、水質管理水流量のうちの少なくとも一つを含む、
    プラント信頼性評価方法。
  19. 請求項1から18のうちのいずれか一項における修正関数を用いて、任意の時刻における前記運転データに示される前記補助パラメータの値に対応する前記修正関数の値を用いて修正された前記主要パラメータと、所定の時間内における前記補助パラメータの平均値に対応する前記修正関数の値あるいはプラント固有値における前記補助パラメータの値に対応する前記修正関数の値を用いて修正された前記主要パラメータとの差を、予め設定された閾値と比較することにより、オンラインとオフラインとのうち少なくとも一方の手段を用いて運転フォローを行う、
    プラント性能評価システム。
  20. 請求項1から18のうちのいずれか一項における前記修正関数を用いて修正された前記主要パラメータを用いて前記プラントの性能予測解析を行う性能予測部と、
    前記性能予測解析の結果を用いてヒートバランス解析を行うヒートバランス解析部とを具備し、
    前記性能予測解析の結果と前記ヒートバランス解析の結果とを用いて前記プラントの性能を評価する、
    プラント性能評価システム。
JP2002338734A 2002-11-22 2002-11-22 プラント信頼性評価方法及び性能評価システム Withdrawn JP2004171425A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338734A JP2004171425A (ja) 2002-11-22 2002-11-22 プラント信頼性評価方法及び性能評価システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338734A JP2004171425A (ja) 2002-11-22 2002-11-22 プラント信頼性評価方法及び性能評価システム

Publications (1)

Publication Number Publication Date
JP2004171425A true JP2004171425A (ja) 2004-06-17

Family

ID=32701863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338734A Withdrawn JP2004171425A (ja) 2002-11-22 2002-11-22 プラント信頼性評価方法及び性能評価システム

Country Status (1)

Country Link
JP (1) JP2004171425A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083993A (ja) * 2010-10-13 2012-04-26 Jfe Steel Corp 操業条件管理装置
KR20200020925A (ko) * 2017-10-24 2020-02-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 플랜트의 상태 표시 장치 및 플랜트의 상태 표시 방법
CN113310715A (zh) * 2021-04-28 2021-08-27 国网河北能源技术服务有限公司 一种风机非额定频率下空冷凝汽器的性能测算方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083993A (ja) * 2010-10-13 2012-04-26 Jfe Steel Corp 操業条件管理装置
KR20200020925A (ko) * 2017-10-24 2020-02-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 플랜트의 상태 표시 장치 및 플랜트의 상태 표시 방법
CN111033409A (zh) * 2017-10-24 2020-04-17 三菱日立电力系统株式会社 成套设备的状态显示装置以及成套设备的状态显示方法
KR102364544B1 (ko) * 2017-10-24 2022-02-17 미츠비시 파워 가부시키가이샤 플랜트의 상태 표시 장치 및 플랜트의 상태 표시 방법
US11507073B2 (en) 2017-10-24 2022-11-22 Mitsubishi Heavy Industries, Ltd. State display device for plant and state display method for plant
CN111033409B (zh) * 2017-10-24 2023-05-02 三菱重工业株式会社 成套设备的状态显示装置以及成套设备的状态显示方法
CN113310715A (zh) * 2021-04-28 2021-08-27 国网河北能源技术服务有限公司 一种风机非额定频率下空冷凝汽器的性能测算方法及装置

Similar Documents

Publication Publication Date Title
KR102153924B1 (ko) 모델 파라미터값 추정 장치 및 추정 방법, 프로그램, 프로그램을 기록한 기록 매체, 모델 파라미터값 추정 시스템
US9194758B2 (en) Virtual sensor systems and methods for estimation of steam turbine sectional efficiencies
JP6511702B2 (ja) 監視装置、対象装置の監視方法、およびプログラム
US7890296B2 (en) Method of analyzing the performance of gas turbine engines
CN113011010A (zh) 基于结构机理和运行数据的锅炉故障诊断方法及诊断系统
JP3965275B2 (ja) 火力発電プラントの熱効率診断方法および装置
KR102366120B1 (ko) 발전 설비 성능 감시 장치
WO2016208315A1 (ja) プラント診断装置及びプラント診断方法
JP2012008782A (ja) プラントの機能を診断する方法、及びプラント監視装置
CN104536290A (zh) 基于核主元分析与径向基神经网络的软测量方法及系统
CN108334674A (zh) 一种基于参数关联性智能分析的汽轮机高压缸运行状态监测方法
US20160365735A1 (en) Systems and Methods for Power Plant Data Reconciliation
US20190271464A1 (en) Systems and methods for real-time steam quality estimation
JP6554162B2 (ja) 発電プラント性能評価方法及び発電プラント性能評価プログラム
JP2004171425A (ja) プラント信頼性評価方法及び性能評価システム
CN117113108A (zh) 一种基于数据融合的电厂锅炉运行故障调节方法及系统
JP6302755B2 (ja) プラント診断用データ作成システム
KR102077865B1 (ko) 저압터빈의 경년열화평가방법
CN116384526A (zh) 一种核电厂系统或设备的重要参数故障预警方法及系统
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
US20040230541A1 (en) Process for estimating and reducing cost of cycling
Jiang et al. Bayesian calibration for power splitting in single shaft combined cycle plant diagnostics
Zhang et al. Preliminary research on digital twin of main thermodynamic systems in nuclear power plant for thermal performance monitoring
WO2022181574A1 (ja) 発電プラントの異常要因推定方法
JP2019173654A (ja) タービンシステム、タービン管理システム、タービンシステムプログラム、およびタービン管理システムプログラム

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207