WO2022181574A1 - 発電プラントの異常要因推定方法 - Google Patents
発電プラントの異常要因推定方法 Download PDFInfo
- Publication number
- WO2022181574A1 WO2022181574A1 PCT/JP2022/007101 JP2022007101W WO2022181574A1 WO 2022181574 A1 WO2022181574 A1 WO 2022181574A1 JP 2022007101 W JP2022007101 W JP 2022007101W WO 2022181574 A1 WO2022181574 A1 WO 2022181574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power plant
- abnormality factor
- estimation method
- calculation
- parameters
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000006870 function Effects 0.000 claims abstract description 31
- 238000004364 calculation method Methods 0.000 claims description 43
- 230000014509 gene expression Effects 0.000 claims description 30
- 238000009826 distribution Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 18
- 230000002159 abnormal effect Effects 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000611 regression analysis Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000013215 result calculation Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- the present disclosure relates to an abnormality factor estimation method for a power plant.
- This application claims priority based on Japanese Patent Application No. 2021-030697 filed with the Japan Patent Office on February 26, 2021, the content of which is incorporated herein.
- Patent Document 1 describes the analysis of thermal efficiency and the evaluation of performance using measured values of input/output and state quantities of equipment that constitutes a geothermal power plant.
- Patent Literature 2 describes a technique for identifying fluctuations and deterioration factors in the unit efficiency of a plant based on measurement data.
- Abnormal factors related to failure or deterioration of the power plant are determined by evaluating performance changes of the power plant based on measurement results, as in Patent Document 2 above, for example.
- performance changes in the power plant include, in addition to those caused by abnormalities occurring in the power plant, those caused by deterioration, defects, etc. of measuring devices for acquiring measurement results. Degradation, failure, etc. of such measuring devices cause apparent changes in the performance of the power plant, making it difficult to estimate the cause of the abnormality.
- At least one embodiment of the present disclosure has been made in view of the above-described circumstances, and includes a change in apparent performance due to deterioration or failure of measuring equipment, and an abnormality factor estimation method for a power plant that can accurately estimate an abnormality factor. intended to provide
- a power plant abnormality factor estimation method capable of accurately estimating abnormality factors, including changes in apparent performance due to deterioration or failure of measuring equipment.
- FIG. 1 is a schematic configuration diagram of a power plant according to one embodiment;
- FIG. It is a block diagram which shows the structure of the abnormality factor estimation apparatus which concerns on one Embodiment.
- 3 is a flowchart showing an abnormality factor estimation method performed by the abnormality factor estimation device of FIG. 2;
- 4 is a flow chart showing an abnormality factor estimation method performed by an abnormality factor estimation device having an abnormality factor candidate determination unit;
- 4 is a flow chart showing an abnormality factor estimating method performed by an abnormality factor estimating device having an allowable range determination unit;
- FIG. 4 is an explanatory diagram relating to processing when a comparison between a calculation result and a prediction result in step S5 of FIG. 3 is performed by simple regression analysis;
- expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained.
- the shape including the part etc. shall also be represented.
- the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
- FIG. 1 is a schematic configuration diagram of a power plant 1 according to one embodiment.
- the power plant 1 includes a turbine 4 that can be driven by steam supplied from a steam supply source 2, and a condenser 6 for condensing the exhausted steam that has completed work in the turbine 4 into condensate.
- the power plant 1 is, for example, a geothermal power plant, and the steam supply source 2 is a steam well that extracts geothermal steam.
- the steam source 2 may be a so-called binary system that exchanges heat between geothermal steam and another working fluid to produce working fluid vapor.
- Steam supply 2 is connected to turbine 4 via steam supply line 8 .
- the steam supply line 8 is provided with a steam control valve 10 for adjusting the amount of steam supplied to the turbine 4 .
- a generator 12 is connected to the output shaft of the turbine 4 . The generator 12 generates power by being driven by the power output from the turbine 4, and transmits the power to an external system (not shown).
- Such a power plant 1 is provided with a measuring device for measuring process variables of the power plant 1 .
- the power plant 1 includes, as measuring devices, a flowmeter 14 for measuring the flow rate of steam flowing through the steam supply line 8 (steam flow rate G0), and an inlet of the steam control valve 10 in the steam supply line 8.
- the opening of the steam control valve 10 can be controlled based on the control signal, and the opening of the steam control valve 10 (steam control valve opening GV) can also be measured based on the control signal.
- steam flow rate, steam pressure, valve opening, and electric power are measured as process variables.
- steam temperature, voltage and current of the generator 12, vibration of the turbine 4, and contact information of each facility are measured. (ON/OFF of a switch) or the like may be measured.
- a measurement device related to a steam turbine is taken as an example, but process variables obtained from sources other than the steam turbine, such as a measurement device related to cooling water equipment, may be used.
- known characteristic values are defined.
- the opening area of the first stage nozzle of the turbine 4 (turbine first stage nozzle opening area A) and the turbine efficiency ⁇ are defined as known characteristic values.
- These characteristic values may be given as specifications (design values) of the power plant 1, for example. may be adopted.
- the opening area of the first stage nozzle and the turbine efficiency are specified as the known characteristic values, but the mechanical efficiency, the generator efficiency, the pressure loss, the temperature difference at the end of the condenser, the ejector characteristics, etc. are also specified. You may
- Expression (1-1) is a relational expression for calculating the steam flow rate G0 by inputting the turbine first stage nozzle opening area A and the turbine steam chamber pressure p1 for the function f.
- Equation (1-2) calculates power generation output Le by inputting turbine efficiency ⁇ , steam control valve inlet pressure p0, turbine steam chamber pressure p1, condenser pressure pc, and steam flow rate G0 for function g. It is a relational expression for calculation.
- Equation (1-3) can be obtained by inputting the steam control valve inlet pressure p0, the turbine steam chamber pressure p1, and the steam flow rate G0 for the function h, or by inputting the steam control valve opening GV is a relational expression for calculating the CV value of the steam control valve 10 by inputting
- relational expressions for the functions f, g, and h use generally existing theoretical expressions.
- empirical expressions represented by approximate functions may be used instead of theoretical expressions.
- the relational expression regarding the function k is not a theoretical expression but an empirical expression expressed by an approximation function.
- the function k can be provided as a CV value characteristic curve as a specification from the manufacturer of the steam control valve 10, but the manufacturing error of the steam control valve 10 and the state change due to long-term operation (wear, blockage, deterioration, etc.), it is possible to use an appropriate function obtained by inverse analysis of actual operating data.
- FIG. 2 is a block diagram showing the configuration of the abnormality factor estimation device 100 according to one embodiment
- FIG. 3 is a flowchart showing an abnormality factor estimation method performed by the abnormality factor estimation device 100 of FIG.
- the abnormality factor estimation device 100 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
- a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing. As a result, various functions are realized.
- the program is pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Forms and the like may be applied.
- Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
- the abnormality factor estimation device 100 includes a deviation function calculation unit 105, a measured value acquisition unit 110, a partial differential calculation unit 115, an allowable range determination unit 125, a prediction result calculation unit 130, an abnormality A factor candidate extraction unit 135 , an abnormality factor candidate determination unit 140 , and a display unit 150 are provided.
- Each component of these abnormality factor estimating apparatus 100 functions as described below when the abnormality factor estimating method shown in FIG. 3 is carried out.
- the abnormality factor estimation device 100 having the above configuration estimates the abnormality factors of the power plant 1 by implementing the abnormality factor estimation method shown in FIG.
- the relational expressions are represented by the above-described expressions (1-1) to (1-3), and based on these expressions, a plurality of deviation functions ⁇ i are calculated as follows.
- ⁇ 1 G0-f(A, p1) (2-1)
- ⁇ 2 Le-g ( ⁇ ; p0, p1, pc, G0) (2-2)
- ⁇ 3 h(p0,p1,G0)-k(GV) (2-3)
- xj is a parameter (explanatory variable) that generalizes the process value or characteristic value of the power plant 1 .
- the simultaneous equations shown in Equation (6) can be considered to derive the most probable combination of explanatory variable deviations ( ⁇ xj) using a statistical method such as multiple regression analysis.
- ⁇ xj the most probable combination of explanatory variable deviations
- the present inventors have found that in power plant 1, it is rare that two or more state changes occur simultaneously on the same time scale, and if the deviation function has a dominant value at a certain timing or time scale, (6 ) can be assumed to be caused by a single event with the same time scale among the m explanatory variables (xj). For example, the state of a turbine first stage nozzle blockage changes over a relatively long time scale of several days to several months. In comparison, it is conceivable that equipment failures, including instrument malfunctions, occur in relatively short time scales of seconds to minutes. Moreover, even with regard to performance changes in each piece of equipment in the power plant 1, for example, a steam turbine performance change and a cooling tower performance change often cause state changes on different time scales.
- the measured value acquisition unit 110 acquires the measurement results of the process values of the power plant 1 and the known characteristic values of the power plant 1 (step S1).
- the measurement results of the process values are the steam flow rate G0, the steam control valve inlet pressure p0, the turbine steam chamber pressure p1, the condenser pressure pc, the power generation output Le, the control valve opening degree Each GV is obtained.
- a pre-stored turbine first stage nozzle opening area A and turbine efficiency ⁇ are obtained from a storage device such as a memory.
- the relational expression used for the calculation in step S2 may be updated based on the operation data of the power plant 1 during a predetermined period. In this way, by determining a specific period and obtaining the relational expression from the operating data during that period, the characteristics of that period can be used as a reference point for subsequent evaluation. As a result, even when the state of the power plant 1 changes over time, it is possible to perform a highly accurate evaluation that takes into account the effects of aging.
- the abnormality factor candidate extraction unit 135 compares the calculation errors of the respective prediction results calculated in step S4, and extracts parameters xj of 1 or more with small calculation errors as abnormality factor candidates of the power plant 1 (step S5). In this way, by comparing the calculation result based on the actual measurement value with a plurality of prediction results, the prediction result that has a tendency close to the actual operating state of the power plant can be identified, and the parameter xj corresponding to the prediction result is determined to be abnormal. It can be extracted as a factor candidate. As a result, it is possible to accurately estimate the cause of anomalies, including changes in apparent performance due to deterioration, defects, and the like of the measuring device used to acquire the measurement results. In addition, in extracting anomaly factor candidates, it has been explained that extraction is performed by comparing the calculation errors of the respective prediction results calculated in step S4, but it is not limited to this, and elements other than measurement errors are used. Each prediction result may be compared and extracted.
- an abnormality factor candidate determination unit 140 may be provided.
- the abnormality factor candidate determination unit 140 determines whether or not the calculation error of the parameter xj extracted in step S5 is equal to or less than a preset threshold value (step 5'). As a result of the determination, if the calculation error of at least one parameter is equal to or less than the threshold (step S5': YES), the parameter may be selected as an abnormality factor candidate. In this case, by quantitatively evaluating the calculation error of the parameter using the threshold value, it is possible to suitably select a parameter having a certain or more possibility of being an abnormal factor from among the abnormal factor candidates extracted in step S5. If there are multiple parameters that are equal to or less than the threshold, multiple candidates for the cause of the abnormality may be selected.
- FIG. 4 is a flowchart showing an abnormality factor estimation method performed by the abnormality factor estimation device 100 having the abnormality factor candidate determination unit 140 .
- the threshold used as the criterion in step S5' is set as a permissible error that allows the amount of change in state over time for the parameter xj to be determined. As a result, it is possible to appropriately select an anomaly factor that exceeds the permissible effects of changes in state over time.
- the threshold may be updated based on the operation data of the power plant 1 during a predetermined period.
- an appropriate threshold can be set according to the progress of the state change of the power plant 1 over time. As a result, it is possible to select a more appropriate abnormality factor according to changes in the state of the power plant 1 over time.
- FIG. 6 is an explanatory diagram relating to the process when the calculation result and prediction result in step S5 of FIG. 3 are compared by simple regression analysis.
- the display unit 150 displays the parameters extracted as abnormal factor candidates in step S5 (step S6).
- the display unit 150 is, for example, a display device such as a display, and displays the candidate for the cause of abnormality extracted in step S5, thereby calling attention to the user who recognizes the candidate and recommending inspection based on the cause of the abnormality. can be done.
- step S6 by displaying the anomaly factor candidates together with the aforementioned calculation error, it is possible to convey to the user how reliable the anomaly factor candidates extracted in step S5 are (that is, the calculation error The smaller the error factor candidate, the higher the reliability, and the larger the calculation error, the higher the possibility that it is not an error factor). Further, when a plurality of abnormality factor candidates are extracted, the abnormality factor candidates may be compared by displaying the calculation error for each of the extracted abnormality factor candidates.
- the abnormal factor candidates when displaying a plurality of extracted abnormal factor candidates on the display unit 150, the abnormal factor candidates may be displayed in ascending order of calculation error. Also, the abnormal factor candidate with the smallest calculation error may be displayed in a manner different from that of the other abnormal factor candidates (for example, display in a different color, enlarged display, addition of marking symbols, etc.). As a result, the user's visibility of highly reliable anomaly factor candidates is improved, and the occurrence of human errors such as oversights can be suppressed.
- the calculation result based on the actual measurement value is compared with the prediction result based on the change in the deviation function that is assumed when each parameter changes independently.
- the abnormal factor candidates can be effectively estimated from the parameters.
- the calculation result is similar to By specifying the prediction result, anomaly factor candidates can be extracted. As a result, it is possible to accurately estimate the cause of anomalies, including changes in apparent performance due to deterioration, defects, etc., of the measuring device used to acquire the measurement results.
- the computation result and the prediction result are compared by pattern matching between the computation result pattern corresponding to the computation result and the prediction result pattern corresponding to the prediction result. Accordingly, it is possible to suitably select a parameter, which is an abnormality factor candidate, according to the similarity between both patterns.
- the calculated values based on a plurality of deviation functions are monitored, and when the calculated values exceed the allowable range, the parameter is selected as the abnormality factor candidate.
- an abnormality factor candidate can be estimated at an early stage.
- the threshold is set as a tolerance that allows an amount of state change over time for the calculated value.
- the threshold used as the determination criterion is set as a permissible error that allows the amount of state change over time with respect to the calculated value to be determined.
- the relational expression used for the calculation is updated based on the operating data in the predetermined period.
- the method further includes a step of displaying the abnormality factor candidates on display means (for example, the display unit 150 of the above embodiment).
- the power plant is a geothermal power plant.
- Geothermal power plants are expected to operate under severe conditions, for example, steam contains more geothermal-derived impurities than other power plants (thermal power plants, hydroelectric power plants, etc.).
- steam contains more geothermal-derived impurities than other power plants (thermal power plants, hydroelectric power plants, etc.).
- deterioration or failure of the measuring device for obtaining the measurement results tends to cause changes in the apparent performance.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
発電プラントの異常要因推定方法は、発電プラントのプロセス値の計測結果及び発電プラントの既知の特性値を用いて、プロセス値又は前記特性値である複数のパラメータ間の相関を示す複数種の関係式の各々からのずれを示す複数の偏差関数を演算する。そして、複数のパラメータの実測値に基づく複数の偏差関数の演算結果と、複数のパラメータのいずれか1つの変化を想定した場合における複数の偏差関数の予測結果との比較に基づいて、発電プラントの異常要因候補である1以上のパラメータを抽出する。
Description
本開示は、発電プラントの異常要因推定方法に関する。
本願は、2021年2月26日に日本国特許庁に出願された特願2021-030697号に基づき優先権を主張し、その内容をここに援用する。
本願は、2021年2月26日に日本国特許庁に出願された特願2021-030697号に基づき優先権を主張し、その内容をここに援用する。
多数の機器や計器から構成される発電プラントでは、例えば圧力、温度、流量、発電出力等のプロセス値の計測結果や、発電プラントの効率や寸法等の既知の特性値を用いたプラント評価が行われる。この種のプラント評価の一例として、特許文献1では、地熱発電プラントを構成する機器の入出力及び状態量の計測値を用いて熱効率の解析や性能の評価を行うことが記載されている。また特許文献2では、計測データに基づいてプラントのユニット効率の変動や劣化要因を特定する技術が記載されている。
発電プラントの故障や劣化に関する異常要因は、例えば上記特許文献2のように、計測結果に基づいて発電プラントの性能変化を評価することにより行われる。しかしながら実際には、発電プラントの性能変化には、発電プラントに発生した異常に起因するものに加えて、計測結果を取得するための計測装置の劣化や不良等によるものも含まれる。このような計測装置の劣化や不良等は、発電プラントの性能に見かけ上の変化をもたらすため、異常要因の推定を困難にしてしまう。
本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、計測機器の劣化や不良等による見かけ性能の変化を含めて、異常要因を精度よく推定可能な発電プラントの異常要因推定方法を提供することを目的とする。
本開示の少なくとも一実施形態によれば、計測機器の劣化や不良等による見かけ性能の変化を含めて、異常要因を精度よく推定可能な発電プラントの異常要因推定方法を提供できる。
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
まず図1を参照して、本開示の少なくとも一実施形態に係る異常要因推定方法の実施対象である発電プラント1について説明する。図1は一実施形態に係る発電プラント1の概略構成図である。
発電プラント1は、蒸気供給源2から供給される蒸気によって駆動可能なタービン4と、タービン4で仕事を終えて排出された蒸気を凝縮して復水とするための復水器6とを備える。発電プラント1は、例えば地熱発電プラントであり、蒸気供給源2は、地熱蒸気を採取する蒸気井である。蒸気供給源2は、地熱蒸気と別の作動流体との熱交換を行うことで作動流体の蒸気を生成する、いわゆるバイナリシステムであってもよい。蒸気供給源2は蒸気供給ライン8を介してタービン4に接続される。蒸気供給ライン8には、タービン4に対する蒸気の供給量を調整するための蒸気加減弁10が設けられる。またタービン4の出力軸には、発電機12が連結されている。発電機12は、タービン4から出力される動力によって駆動されることで発電を行い、電力を外部系統(不図示)に送電する。
このような発電プラント1には、発電プラント1のプロセス量を計測するための計測装置が設けられる。具体的には、発電プラント1は、計測装置として、蒸気供給ライン8を流れる蒸気の流量(蒸気流量G0)を計測するための流量計14と、蒸気供給ライン8のうち蒸気加減弁10の入口側における蒸気圧力(蒸気加減弁入口圧力p0)を計測するための圧力計16と、タービン4のタービン蒸気室における圧力(タービン蒸気室圧力p1)を計測するための圧力計18と、復水器6の圧力(復水器圧力pc)を計測するための圧力計20と、発電機12による発電出力Leを計測するための電力計22と、を備える。また蒸気加減弁10は制御信号に基づいて開度を制御可能であり、当該制御信号に基づいて蒸気加減弁10の開度(蒸気加減弁開度GV)もまた計測可能である。
尚、この例ではプロセス量としては蒸気流量、蒸気圧力、弁開度、電力を計測しているが、他に蒸気温度や発電機12の電圧、電流、タービン4の振動、各設備の接点情報(スイッチのON/OFF)などを計測してもよい。また、ここでは蒸気タービンに関連する計測装置を例に挙げているが、例えば、冷却水設備に関する計測装置など蒸気タービン以外から得られるプロセス量を用いてもよい。
尚、この例ではプロセス量としては蒸気流量、蒸気圧力、弁開度、電力を計測しているが、他に蒸気温度や発電機12の電圧、電流、タービン4の振動、各設備の接点情報(スイッチのON/OFF)などを計測してもよい。また、ここでは蒸気タービンに関連する計測装置を例に挙げているが、例えば、冷却水設備に関する計測装置など蒸気タービン以外から得られるプロセス量を用いてもよい。
また発電プラント1では、既知の特性値が規定される。具体的には、発電プラント1には、既知の特性値として、タービン4の初段ノズルの開口面積(タービン初段ノズル開口面積A)と、タービン効率ηが規定される。尚、これらの特性値は、例えば発電プラント1の仕様(設計値)として与えられたものを採用してもよいが、実際の発電プラント1の運転データを逆解析することで求められたものを採用してもよい。
尚、この例では既知の特性値としては初段ノズルの開口面積、タービン効率を規定しているが、他に機械効率や発電機効率、圧力損失、復水器末端温度差、エジェクタ特性などを規定してもよい。
尚、この例では既知の特性値としては初段ノズルの開口面積、タービン効率を規定しているが、他に機械効率や発電機効率、圧力損失、復水器末端温度差、エジェクタ特性などを規定してもよい。
上述の発電プラント1のプロセス値又は特性値について、これらのパラメータの相関を示す複数種の関係式が成立する。関係式は理論式であってもよいし、経験式であってもよい。具体的な関係式を以下に示す。
タービン主蒸気流量:G0=f(A,p1) (1-1)
発電電力:Le=g(η;p0,p1,pc,G0) (1-2)
蒸気加減弁のCV値:h(p0,p1,G0)=k(GV) (1-3)
タービン主蒸気流量:G0=f(A,p1) (1-1)
発電電力:Le=g(η;p0,p1,pc,G0) (1-2)
蒸気加減弁のCV値:h(p0,p1,G0)=k(GV) (1-3)
式(1-1)は、関数fに対して、タービン初段ノズル開口面積Aとタービン蒸気室圧力p1を入力することにより、蒸気流量G0を算出するための関係式である。式(1-2)は、関数gに対して、タービン効率η、蒸気加減弁入口圧力p0、タービン蒸気室圧力p1、復水器圧力pc、蒸気流量G0を入力することにより、発電出力Leを算出するための関係式である。式(1-3)は、関数hに対して、蒸気加減弁入口圧力p0、タービン蒸気室圧力p1、蒸気流量G0を入力することにより、又は、関数kに対して、蒸気加減弁開度GVを入力することにより、蒸気加減弁10のCV値を算出するための関係式である。
尚、関数f、g、hに関する関係式は一般的に存在する理論式を用いる。尚、関数f、g、hに関する関係式として、理論式ではなく、近似関数で表現された経験式を用いてもよい。一方で、関数kに関する関係式は理論式ではなく、近似関数で表現された経験式を用いる。例えば関数kは蒸気加減弁10の製造者から仕様としてCV値特性曲線として提供されるものを用いることもできるが、蒸気加減弁10の制作誤差や長期間の運転による状態変化(摩耗や閉塞、劣化等)により必ずしも正確ではない場合があるため、実際の運転データの逆解析から適切な関数形を求めたものを用いることもできる。
続いて上述の発電プラント1について異常要因を推定するための異常要因推定装置100及び異常要因推定方法について説明する。図2は一実施形態に係る異常要因推定装置100の構成を示すブロック図であり、図3は図2の異常要因推定装置100によって実施される異常要因推定方法を示すフローチャートである。
異常要因推定装置100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータが読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。尚、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータが読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータが読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
図2に示すように、異常要因推定装置100は、偏差関数演算部105と、実測値取得部110と、偏微分計算部115と、許容範囲判定部125と、予測結果算出部130と、異常要因候補抽出部135、異常要因候補判定部140と、表示部150と、を備える。これらの異常要因推定装置100の各構成要素は、図3に示す異常要因推定方法を実施する際に、それぞれ以下に説明するように機能する。
上記構成を有する異常要因推定装置100は、図3に示す異常要因推定方法を実施することで、発電プラント1の異常要因の推定を行う。
本実施形態では、関係式は上述したように式(1-1)~(1-3)で表され、これらの式に基づいて複数の偏差関数φiが次式のように演算される。
φ1=G0-f(A,p1) (2-1)
φ2=Le-g(η;p0,p1,pc,G0) (2-2)
φ3=h(p0,p1,G0)-k(GV) (2-3)
φ1=G0-f(A,p1) (2-1)
φ2=Le-g(η;p0,p1,pc,G0) (2-2)
φ3=h(p0,p1,G0)-k(GV) (2-3)
ここでxjは、発電プラント1のプロセス値又は特性値を一般化したパラメータ(説明変数)である。一般的に、式(6)に示す連立方程式は重回帰分析のような統計的手法を用いて最も確からしい説明変数の偏差(Δxj)の組み合わせを導出することが考えられる。しかしながら、通常の発電プラント1では、偏差関数φiの数nに比べて説明変数xjの数mが多い(n<m)ため有意な解を求めることができない。
本発明者らは、発電プラント1では、通常、同じ時間スケールで同時に2つ以上の状態変化が生じることは稀であり、あるタイミングもしくは時間スケールで偏差関数が優位な値を持つ場合、(6)式で与えられる偏差関数のずれはm個ある説明変数(xj)のうち、同じ時間スケールを持つ単一の事象により引き起こされたものであると仮定できることを見出した。
例えば、タービン初段ノズル閉塞は数日から数か月の比較的長い時間スケールで状態が変化する。それに比べて、計器異常を含む機器故障は数秒から数分の比較的短い時間スケールで状態が発生することが考えられる。また発電プラント1における各設備の性能変化であっても、例えば、蒸気タービンの性能変化と冷却塔の性能変化とでは、原因となる状態変化が異なるタイムスケールを持つ場合が多い。ただし、これらの状態変化に係る時間スケールは発電プラントの運転状態に依存するものであるため、予め特定することは困難である。
上記の考え方によれば、比較的短い時間スケールの事象が発生する際には、ほかの比較的長い時間スケールの事象による影響は無視できるものといえる。
また比較的短い時間スケールを持つと思われる計器異常を含む機器故障が同時に二つ以上発生することは稀である。例えば、流量計と圧力計が同時に異常値を出力することや、流量計が異常値を出力するのと同時にポンプが故障するということは稀である。
本発明者らは、発電プラント1では、通常、同じ時間スケールで同時に2つ以上の状態変化が生じることは稀であり、あるタイミングもしくは時間スケールで偏差関数が優位な値を持つ場合、(6)式で与えられる偏差関数のずれはm個ある説明変数(xj)のうち、同じ時間スケールを持つ単一の事象により引き起こされたものであると仮定できることを見出した。
例えば、タービン初段ノズル閉塞は数日から数か月の比較的長い時間スケールで状態が変化する。それに比べて、計器異常を含む機器故障は数秒から数分の比較的短い時間スケールで状態が発生することが考えられる。また発電プラント1における各設備の性能変化であっても、例えば、蒸気タービンの性能変化と冷却塔の性能変化とでは、原因となる状態変化が異なるタイムスケールを持つ場合が多い。ただし、これらの状態変化に係る時間スケールは発電プラントの運転状態に依存するものであるため、予め特定することは困難である。
上記の考え方によれば、比較的短い時間スケールの事象が発生する際には、ほかの比較的長い時間スケールの事象による影響は無視できるものといえる。
また比較的短い時間スケールを持つと思われる計器異常を含む機器故障が同時に二つ以上発生することは稀である。例えば、流量計と圧力計が同時に異常値を出力することや、流量計が異常値を出力するのと同時にポンプが故障するということは稀である。
まず実測値取得部110は、発電プラント1のプロセス値の計測結果及び発電プラント1の既知の特性値を取得する(ステップS1)。本実施形態では、プロセス値の計測結果として、前述の各計測装置によって、蒸気流量G0、蒸気加減弁入口圧力p0、タービン蒸気室圧力p1、復水器圧力pc、発電出力Le、加減弁開度GVがそれぞれ取得される。また、既知の特性値として、例えばメモリのような記憶装置から、予め記憶されたタービン初段ノズル開口面積A、タービン効率ηが取得される。
尚、ステップS2で演算に用いられる関係式は、発電プラント1の所定期間における運転データに基づいて更新されてもよい。このように、ある特定の期間を定めてその期間中の運転データから関係式を求めることで、その期間の特性をそれ以降の評価の基準点とすることができる。その結果、経年的に発電プラント1の状態が変化する場合においても、経年的な影響を加味した精度のよい評価が可能となる。
そして異常要因候補抽出部135は、ステップS4で算出された各予測結果の計算誤差を比較し、計算誤差の小さい1以上のパラメータxjを発電プラント1の異常要因候補として抽出する(ステップS5)。このように実測値に基づく演算結果と複数の予測結果と比較することにより、実際の発電プラントの運転状態に近い傾向を有する予測結果を特定することで、当該予測結果に対応するパラメータxjを異常要因候補として抽出することができる。これにより、計測結果を取得するための計測装置の劣化や不良等による見かけ性能の変化を含めて、異常要因を精度よく推定することが可能である。なお、異常要因候補の抽出にあたり、ここではステップS4で算出された各予測結果の計算誤差の比較によって抽出することを説明したが、これに限定するものでは無く、計測誤差以外の要素を用いて各予測結果を比較して抽出してもよい。
更に、異常要因候補判定部140を備えてもよい。異常要因候補判定部140は、ステップS5で抽出されたパラメータxjの計算誤差が予め設定した所定の閾値以下であるか否かを判定する(ステップ5´)。判定の結果、少なくとも1つのパラメータの計算誤差が閾値以下である場合(ステップS5´:YES)、当該パラメータを異常要因候補として選定してもよい。この場合、閾値によってパラメータの計算誤差を定量的に評価することで、ステップS5で抽出された異常要因候補の内より異常要因である可能性が一定以上あるパラメータを好適に選定できる。尚、閾値以下であるパラメータが複数ある場合には、複数の異常要因候補が選定されてもよい。
尚、閾値以下であるパラメータがない場合(ステップS5´:NO)、実測値取得部110で発電プラント1のプロセス値の計測結果及び発電プラント1の既知の特性値を再度取得する(ステップS1)。図4は異常要因候補判定部140を備えた異常要因推定装置100によって実施される異常要因推定方法を示すフローチャートである。
尚、閾値以下であるパラメータがない場合(ステップS5´:NO)、実測値取得部110で発電プラント1のプロセス値の計測結果及び発電プラント1の既知の特性値を再度取得する(ステップS1)。図4は異常要因候補判定部140を備えた異常要因推定装置100によって実施される異常要因推定方法を示すフローチャートである。
尚、ステップS5´で判定基準として用いられる閾値は、判定対象であるパラメータxjに対して経年的な状態変化の量を許容する許容誤差として設定される。これにより、許容される経年的な状態変化の影響を超えた異常要因を適切に選定することができる。
また当該閾値は、発電プラント1の所定期間における運転データに基づいて更新されてもよい。この場合、発電プラント1の経年的な状態変化の進み具合に応じて適切な閾値を設定できる。これにより、発電プラント1の経年的な状態変化に応じて、より適切な異常要因の選定を行うことが可能である。
図6は図3のステップS5における演算結果と予測結果との比較を単回帰分析により行う場合の処理に関する説明図である。
続いて表示部150は、ステップS5で異常要因候補として抽出されたパラメータを表示する(ステップS6)。表示部150は例えばディスプレイ等の表示装置であり、ステップS5で抽出された異常要因候補を表示することにより、これを認識するユーザに対して、異常要因に基づく注意喚起や点検の推奨を行うことができる。
またステップS6では、異常要因候補が前述の計算誤差とともに表示することで、ステップS5で抽出された異常要因候補がどの程度の信頼性を有するのかをユーザに伝達することができる(すなわち、計算誤差が小さい異常要因候補ほど信頼性が高く、計算誤差が大きいほど異常要因ではない可能性が高くなる)。また複数の異常要因候補が抽出された場合には、抽出された異常要因候補ごとに計算誤差を表示することで、異常要因候補同士を比較可能としてもよい。
更に、抽出された複数の異常要因候補を表示部150へ表示する際、計算誤差の小さい順に異常要因候補を表示してもよい。また、計算誤差が最も小さい異常要因候補は、他の異常要因候補と異なる表示態様(例えば、他と異なる色による表示、拡大表示、目印となる記号の付与など)としてもよい。これにより、信頼性の高い異常要因候補に対するユーザの視認性が向上し、見落としなどのヒューマンエラーの発生を抑制できる。
以上説明したように本実施形態に係る異常要因推定方法によれば、実測値に基づく演算結果と、各パラメータが単独で変化した場合に想定される偏差関数の変化に基づく予測結果とを比較することにより、パラメータから異常要因候補を効果的に推定することができる。
上記各実施形態に記載の内容は、例えば以下のように把握される。
上記(1)の態様によれば、実測値に基づく複数の偏差関数の演算結果と、いずれか1つのパラメータの変化を想定した偏差関数の予測結果とを比較することにより、演算結果に類似する予測結果を特定することで、異常要因候補を抽出することができる。これにより、計測結果を取得するための計測装置の劣化や不良等による見かけ性能の変化を含めて、異常要因を精度よく推定できる。
(2)他の態様では、上記(1)の態様において、
前記1以上のパラメータを抽出する工程では、
前記演算結果と前記予測結果との計算誤差を算出し、
前記計算誤差が閾値以下である前記演算結果及び前記予測結果に対応する前記1以上のパラメータを前記異常要因候補として選定する。
前記1以上のパラメータを抽出する工程では、
前記演算結果と前記予測結果との計算誤差を算出し、
前記計算誤差が閾値以下である前記演算結果及び前記予測結果に対応する前記1以上のパラメータを前記異常要因候補として選定する。
上記(2)の態様によれば、演算結果と予測結果との計算誤差を閾値によって定量的に評価することで、計算誤差から異常要因候補であるパラメータを好適に選定できる。
(3)他の態様では、上記(2)の態様において、
前記1以上のパラメータを抽出する工程では、
前記演算結果として、前記複数の偏差関数の各々における前記実測値に基づく演算値の分布として規定される演算結果パターン(例えば上記実施形態の演算結果パターンP1)を求め、
前記予測結果として、前記複数の偏差関数の各々における前記複数のパラメータのいずれか1つの変化に基づく演算値の分布として規定される予測結果パターン(例えば上記実施形態の予測結果パターンP2)を求め、
前記演算結果パターンと前記予測結果パターンとを比較することにより、前記計算誤差を算出する。
前記1以上のパラメータを抽出する工程では、
前記演算結果として、前記複数の偏差関数の各々における前記実測値に基づく演算値の分布として規定される演算結果パターン(例えば上記実施形態の演算結果パターンP1)を求め、
前記予測結果として、前記複数の偏差関数の各々における前記複数のパラメータのいずれか1つの変化に基づく演算値の分布として規定される予測結果パターン(例えば上記実施形態の予測結果パターンP2)を求め、
前記演算結果パターンと前記予測結果パターンとを比較することにより、前記計算誤差を算出する。
上記(3)の態様によれば、演算結果と予測結果との比較が、演算結果に対応する演算結果パターンと予測結果に対応する予測結果パターンとをパターンマッチング法によって行われる。これにより、両パターンの類似性に応じて異常要因候補であるパラメータを好適に選定できる。
上記(4)の態様によれば、複数の偏差関数に基づく演算値を監視し、当該演算値が許容範囲を超えた場合に、異常要因候補としてパラメータの選定が行われる。これにより、正常運転していた発電プラントにおいて異常発生のおそれが生じた場合に、早期に異常要因候補の推定を行うことができる。
(5)他の態様では、上記(2)の態様において、
前記閾値は、前記演算値に対して経年的な状態変化の量を許容する許容誤差として設定される。
前記閾値は、前記演算値に対して経年的な状態変化の量を許容する許容誤差として設定される。
上記(5)の態様によれば、判定基準として用いられる閾値は、判定対象である演算値に対して経年的な状態変化の量を許容する許容誤差として設定される。これにより、許容される経年的な状態変化の影響を超えた異常発生が検出された場合に、その要因を早期に推定することが可能となる。
(6)他の態様では、上記(1)から(5)のいずれか一態様において、
前記複数種の関係式は、前記発電プラントの所定期間における運転データに基づいて更新される。
前記複数種の関係式は、前記発電プラントの所定期間における運転データに基づいて更新される。
上記(6)の態様によれば、演算に用いられる関係式が所定期間における運転データに基づいて更新される。これにより、経年的に発電プラントの状態が変化する場合においても、経年的な影響を加味した精度のよい推定が可能となる。
(7)他の態様では、上記(1)から(6)のいずれか一態様において、
前記異常要因候補を表示手段(例えば上記実施形態の表示部150)に表示する工程を更に備える。
前記異常要因候補を表示手段(例えば上記実施形態の表示部150)に表示する工程を更に備える。
上記(7)の態様によれば、異常要因候補として抽出されたパラメータを表示手段に表示することで、これを認識するユーザに対して、異常要因に基づく注意喚起や点検の推奨を行うことができる。
(8)他の態様では、上記(1)のから(7)のいずれか一態様において、
前記発電プラントは地熱発電プラントである。
前記発電プラントは地熱発電プラントである。
地熱発電プラントでは、例えば、他の発電プラント(火力発電プラントや水力発電プラント等)に比べて蒸気中に地熱由来の不純物が多く含まれる等、苛酷な状況での運用が想定されるため、設備の性能劣化に加えて計測結果を取得するための計測装置の劣化や不良等による見かけ性能の変化が生じやすい。上記(8)の態様によれば、このような事情がある地熱発電プラントにおいても、計測装置の劣化や不良等による見かけ性能の変化を含めて、異常要因を精度よく推定できる。
1 発電プラント
2 蒸気供給源
4 タービン
6 復水器
8 蒸気供給ライン
10 蒸気加減弁
12 発電機
14 流量計
16,18,20 圧力計
22 電力計
100 異常要因推定装置
105 偏差関数演算部
110 実測値取得部
115 偏微分計算部
125 許容範囲判定部
130 予測結果算出部
135 異常要因候補抽出部
140 異常要因候補判定部
150 表示部
2 蒸気供給源
4 タービン
6 復水器
8 蒸気供給ライン
10 蒸気加減弁
12 発電機
14 流量計
16,18,20 圧力計
22 電力計
100 異常要因推定装置
105 偏差関数演算部
110 実測値取得部
115 偏微分計算部
125 許容範囲判定部
130 予測結果算出部
135 異常要因候補抽出部
140 異常要因候補判定部
150 表示部
Claims (8)
- 前記1以上のパラメータを抽出する工程では、
前記演算結果と前記予測結果との計算誤差を算出し、
前記計算誤差が閾値以下である前記演算結果及び前記予測結果に対応する前記1以上のパラメータを前記異常要因候補として選定する、請求項1に記載の発電プラントの異常要因推定方法。 - 前記1以上のパラメータを抽出する工程では、
前記演算結果として、前記複数の偏差関数の各々における前記実測値に基づく演算値の分布として規定される演算結果パターンを求め、
前記予測結果として、前記複数の偏差関数の各々における前記複数のパラメータのいずれか1つの変化に基づく演算値の分布として規定される予測結果パターンを求め、
前記演算結果パターンと前記予測結果パターンとを比較することにより、前記計算誤差を算出する、請求項2に記載の発電プラントの異常要因推定方法。 - 前記閾値は、前記演算値に対して経年的な状態変化の量を許容する許容誤差として設定される、請求項2に記載の発電プラントの異常要因推定方法。
- 前記複数種の関係式は、前記発電プラントの所定期間における運転データに基づいて更新される、請求項1から5のいずれか一項に記載の発電プラントの異常要因推定方法。
- 前記異常要因候補を表示手段に表示する工程を更に備える、請求項1から6のいずれか一項に記載の発電プラントの異常要因推定方法。
- 前記発電プラントは地熱発電プラントである、請求項1から7のいずれか一項に記載の発電プラントの異常要因推定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2023009651A MX2023009651A (es) | 2021-02-26 | 2022-02-22 | Metodo de estimacion de factor de anormalidad para una planta de energia. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021030697A JP2022131653A (ja) | 2021-02-26 | 2021-02-26 | 発電プラントの異常要因推定方法 |
JP2021-030697 | 2021-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181574A1 true WO2022181574A1 (ja) | 2022-09-01 |
Family
ID=83048089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/007101 WO2022181574A1 (ja) | 2021-02-26 | 2022-02-22 | 発電プラントの異常要因推定方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022131653A (ja) |
MX (1) | MX2023009651A (ja) |
WO (1) | WO2022181574A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06331507A (ja) * | 1993-05-21 | 1994-12-02 | Hitachi Ltd | プラントの監視診断方法及び監視診断システム並びにこれを備えたプラント |
WO2016195092A1 (ja) * | 2015-06-05 | 2016-12-08 | 株式会社日立製作所 | 異常検知装置 |
JP2018190245A (ja) * | 2017-05-09 | 2018-11-29 | 株式会社日立製作所 | 設備機器の異常診断システム |
-
2021
- 2021-02-26 JP JP2021030697A patent/JP2022131653A/ja active Pending
-
2022
- 2022-02-22 MX MX2023009651A patent/MX2023009651A/es unknown
- 2022-02-22 WO PCT/JP2022/007101 patent/WO2022181574A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06331507A (ja) * | 1993-05-21 | 1994-12-02 | Hitachi Ltd | プラントの監視診断方法及び監視診断システム並びにこれを備えたプラント |
WO2016195092A1 (ja) * | 2015-06-05 | 2016-12-08 | 株式会社日立製作所 | 異常検知装置 |
JP2018190245A (ja) * | 2017-05-09 | 2018-11-29 | 株式会社日立製作所 | 設備機器の異常診断システム |
Also Published As
Publication number | Publication date |
---|---|
MX2023009651A (es) | 2023-08-24 |
JP2022131653A (ja) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6878256B2 (ja) | 水質診断システム、発電プラント、及び水質診断方法 | |
JP6116466B2 (ja) | プラントの診断装置及び診断方法 | |
EP2400118B1 (en) | Turbomachine airfoil life management system and method | |
US20080183425A1 (en) | Robust distance measures for on-line monitoring | |
WO2016208315A1 (ja) | プラント診断装置及びプラント診断方法 | |
JP2011090382A (ja) | 監視システム | |
JP5164954B2 (ja) | 機器診断方法及び機器診断装置 | |
CN110320334A (zh) | 水质监测系统、具备该水质监测系统的蒸汽轮机系统以及水质监测方法 | |
WO2018055808A1 (ja) | センサ診断装置、センサ診断方法、およびプログラム | |
JP2018041326A (ja) | 異常検知装置、異常検知方法、およびプログラム | |
WO2022181574A1 (ja) | 発電プラントの異常要因推定方法 | |
Zhang et al. | Development of online validation and monitoring system for the thermal performance of nuclear power plant in service | |
JP2005248848A (ja) | ガスタービン診断方法及び装置 | |
US20220074817A1 (en) | Gas turbine swirl detection | |
CN112328590B (zh) | 一种热力设备运行数据深度清洗方法 | |
JP7487412B2 (ja) | プラント監視方法、プラント監視装置及びプラント監視プログラム | |
JPS624526B2 (ja) | ||
Hafaifa et al. | Reliability modeling based on incomplete data: oil pump application | |
Loboda | Gas turbine diagnostics | |
Hartner et al. | Model-based data reconciliation to improve accuracy and reliability of performance evaluation of thermal power plants | |
CN112639644B (zh) | 用于分析用于产生单位质量或体积的压缩气体的能量(比能耗)的方法 | |
US20230392514A1 (en) | Steam-turbine damage-evaluation apparatus, steam-turbine damage-evaluation method, and steam-turbine damage-evaluation program | |
JP2004171425A (ja) | プラント信頼性評価方法及び性能評価システム | |
Bercovich et al. | On-line Heat Rate Monitoring as a Basis for an On-Line Turbine Diagnostic System | |
WO2024025630A1 (en) | Methods and systems for evaluating heat exchangers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759610 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/009651 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22759610 Country of ref document: EP Kind code of ref document: A1 |