JP2004167643A - 微細金属原子構造物の作製方法及び装置 - Google Patents
微細金属原子構造物の作製方法及び装置 Download PDFInfo
- Publication number
- JP2004167643A JP2004167643A JP2002337399A JP2002337399A JP2004167643A JP 2004167643 A JP2004167643 A JP 2004167643A JP 2002337399 A JP2002337399 A JP 2002337399A JP 2002337399 A JP2002337399 A JP 2002337399A JP 2004167643 A JP2004167643 A JP 2004167643A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- metal
- producing
- fine
- cantilever
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
【課題】原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる微細金属原子構造物の作製方法及び装置を提供する。
【解決手段】イオン伝導性を有する固体電解質3を形成したカンチレバー1を伝導性基板4上に設定し、前記固体電解質3と伝導性基板4間に負の印加電圧を付与することにより、前記固体電解質3内の可動金属イオンを移動させて、金属原子を前記伝導性基板4上に堆積させて、この伝導性基板4上に微細構造物5を形成する。
【選択図】 図1
【解決手段】イオン伝導性を有する固体電解質3を形成したカンチレバー1を伝導性基板4上に設定し、前記固体電解質3と伝導性基板4間に負の印加電圧を付与することにより、前記固体電解質3内の可動金属イオンを移動させて、金属原子を前記伝導性基板4上に堆積させて、この伝導性基板4上に微細構造物5を形成する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、原子間力顕微鏡におけるカンチレバーの作製方法及び微細金属原子構造物の作製方法及び装置に関するものである。
【0002】
【従来の技術】
走査型トンネル顕微鏡や原子間力顕微鏡を用いて微細構造物を作製する方法は既に数多く報告されている。これらのうち、本発明に近い方法として以下のようなものがある。
【0003】
(1)電気化学的な金属の堆積を走査型トンネル顕微鏡を用いて局所的に行なう方法。例えば、Si基板表面に直径5nm高さ2nmのPbのクラスターを4個、50×50nmの走査範囲内に分散させて堆積させる〔非特許文献1〕。
【0004】
(2)原子間力顕微鏡のカンチレバー表面に被覆させた金属原子を電界蒸着によって基板表面に堆積させる方法〔非特許文献2〕。
【0005】
(3)走査型トンネル顕微鏡の探針として電子伝導性とイオン伝導性の両方を持つ混合電極を使用し、印加電圧の正負により金属原子の堆積ならびに除去を行なう方法。すなわち、探針としてイオン伝導性と電子伝導性を兼ね備えたAg2 S単結晶を採用し、Si基板上に幅15nm、長さ150nm、厚さ0.3nm程度の銀細線を作製する〔特許文献1〕。
【0006】
【特許文献1】
国際公開番号WO00/70325、国際公開日2000年11月23日、第4−7頁 図1
【非特許文献1】
【非特許文献2】
Control of adsorption and desorption of oxygen on TiO2 surface by atomic force microscope,K.Kobayashi,Y.Tomita,and S.Yoshida,Trans.Mater.Res.Soc.Jpn.,25(1),253−256(2000).
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来の方法には、以下のような欠点があった。すなわち、
(A)上記の(1)の方法では、電気化学的な手法を基本的に採用しているので、基板を電解質溶液に浸す必要がある。そのため、金属イオンを含む電解質溶液と基板の相互作用により、基板の溶解、溶媒や金属イオンの吸着、不純物の混入など厄介な問題が起こる。
【0008】
(B)上記の(2)の方法では、カンチレバーに被覆させている金属を定常的に供給できないので、カンチレバーから基板表面に金属が電界蒸着され続けると、カンチレバー表面の金属が無くなりそれ以上基板表面に堆積ができなくなる。したがって、この方法では連続的な金属の堆積が困難である。
【0009】
(C)上記の(3)の方法は、電解質溶液からの汚染もなく、また連続的に金属を堆積できる特徴を有している。しかし、走査型トンネル顕微鏡を用いることによっていくつかの問題が発生する。すなわち、基板と探針との間のトンネル電流を測定するため、探針として電気伝導性とイオン伝導性の両方を持つ混合電極を使用する必要がある。固体電解質としては多くの材料が知られているが、電子伝導性をも有する材料はそれほど多くないので、堆積させることのできる金属が限定されるという欠点がある。また、通常、イオン伝導の伝導度は電子に比べて低いため、電気は主に電子によって運ばれる。この性質のため、混合電極の探針と基板との間に電圧を印加して電流を流した場合でも金属の堆積、あるいは除去の電流効率は低い。
【0010】
また、基板の一部に絶縁性の部分があると走査型トンネル顕微鏡は適用できない。例えば、絶縁性の基板の上に一様に金属薄膜を堆積させ、この一部を除去して電極のパターニングを行なう場合、金属の一部が探針に吸収されて下地の絶縁基板が現れると、走査型トンネル顕微鏡は制御不能になる。また、作製した金属電極のパターンを観測することもできない。
【0011】
電気で駆動するナノデバイスを作製する上で不可欠な要素はナノメータ程度の幅を持つ微細配線を形成することである。
【0012】
本発明は、上記状況に鑑みて、原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる微細金属原子構造物の作製方法及び装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕微細金属原子構造物の作製方法において、原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを伝導性基板上に設定し、前記固体電解質と伝導性基板間に負の印加電圧を付与することにより、前記固体電解質内の可動金属イオンを移動させて、金属原子を前記伝導性基板上に堆積させて、該伝導性基板上に微細構造物を形成することを特徴とする。
【0014】
〔2〕上記〔1〕記載の微細金属原子構造物の作製方法において、前記固体電解質と伝導性基板間に正の電圧を印加して、前記微細構造物からの金属原子を局所的に前記カンチレバーに移動させることにより、前記微細構造物のエッチングを行なうことを特徴とする。
【0015】
〔3〕上記〔2〕記載の微細金属原子構造物の作製方法において、前記伝導性基板上に形成される微細構造物の形状を観測することを特徴とする。
【0016】
〔4〕微細金属原子構造物の作製方法において、原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを絶縁基板の表面に金属薄膜が形成された絶縁性基板上に設定し、前記固体電解質と金属薄膜間に正の印加電圧を付与することにより、前記金属薄膜からの金属原子を局所的に前記カンチレバーに移動させることにより、前記金属薄膜のエッチングを行なうことを特徴とする。
【0017】
〔5〕上記〔4〕記載の微細金属原子構造物の作製方法において、前記絶縁性基板上に形成される金属薄膜のパターンを観測することを特徴とする。
【0018】
〔6〕微細金属原子構造物の作製装置において、伝導性基板と、この伝導性基板上の微細構造物を形成すべき位置に設定される、イオン伝導性を有する固体電解質を形成したカンチレバーと、前記固体電解質と伝導性基板間に印加電圧を付与する手段と、不活性ガス雰囲気を有する原子間力顕微鏡とを具備することを特徴とする。
【0019】
〔7〕微細金属原子構造物の作製装置において、金属薄膜が形成された絶縁性基板と、この絶縁性基板上に設定される、イオン伝導性を有する固体電解質を形成したカンチレバーと、前記固体電解質と金属薄膜間に印加電圧を付与する手段と、不活性ガス雰囲気を有する原子間力顕微鏡とを具備することを特徴とする。
【0020】
〔8〕上記〔6〕又は〔7〕記載の微細金属原子構造物の作製装置において、前記固体電解質は、Cu化合物であることを特徴とする。
【0021】
〔9〕上記〔8〕記載の微細金属原子構造物の作製装置において、前記Cu化合物は、混合伝導性を有するCu化合物としての、CuI,CuSCN,Cu2 S,Cu2 Se,CuX WO3 ,CuX Mo6 S8 ,CuX CoO2 ,CuX TiS2 ,Cu7 PSe6 であることを特徴とする。
【0022】
〔10〕上記〔8〕記載の微細金属原子構造物の作製装置において、前記Cu化合物は、イオン伝導性のみを有するCu化合物としての、CuBr,CuCl,Rb−Cu−I−Cl系化合物、Rb3 Cu7 Cl10、Cu(I)β″−アルミナのCu置換化合物、Cu−Al2 O3 −SiO2 などのイオン伝導性ガラスであることを特徴とする。
【0023】
〔11〕上記〔6〕又は〔7〕記載の微細金属原子構造物の作製装置において、前記カンチレバーは、探針上にコーティングされる固体電解質を有することを特徴とする。
【0024】
〔12〕上記〔6〕又は〔7〕記載の微細金属原子構造物の作製装置において、前記伝導性基板は、水素還元で半導体化したTiO2 単結晶(110)基板であることを特徴とする。
【0025】
〔13〕上記〔6〕記載の微細金属原子構造物の作製装置において、前記伝導性基板上の微細構造物を原子間力顕微鏡により観測することを特徴とする。
【0026】
〔14〕上記〔7〕記載の微細金属原子構造物の作製装置において、前記絶縁性基板上の金属薄膜のパターンを原子間力顕微鏡により観測することを特徴とする。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0028】
本発明においては、Cu電極を作製するために固体電解質を用いる。
【0029】
図1は本発明の実施例を示す微細金属原子構造物の作製装置の模式図、図2は固体電解質カンチレバーの作製工程図である。
【0030】
まず、その固体電解質カンチレバーの作製方法について説明する。
【0031】
(1)まず、図2(a)に示すように、カンチレバー1を用意する。ここでは、カンチレバーとしては、Si−AF01(材質Si,ばね定数0.2N/m,共振周波数 10kHz)を用いる。
【0032】
(2)次に、図2(b)に示すように、カンチレバー1の下面全面にスパッタリング法によりCu薄膜2を被覆する。
【0033】
(3)次に、図2(c)に示すように、Cu薄膜2の下面全面に固体電解質としてのCuI薄膜3を被覆する。ここで、CuI薄膜3は表1の条件で堆積させた。
【0034】
【表1】
【0035】
なお、本発明で用いる固体電解質としては
(1)混合伝導性を有するものとしては、CuI,CuSCN,Cu2 S,Cu2 Se,CuxWO3 ,CuxMo6 S8 ,CuxCoO2 ,CuxTiS2 ,Cu7 PSe6 を挙げることができる。
【0036】
(2)イオン伝導性のみを有するものとしては、CuBr、CuCl、Rb4 Cu16I7 C13(Rb−Cu−I−Cl系化合物であれば少々組成がずれてもよい)、Rb3 Cu7 Cl10、Cu(I)β″−アルミナのCu置換化合物、Cu−Al2 O3 −SiO2 などのイオン伝導性ガラスを用いることができる。
【0037】
図1において、TiO2 基板(伝導性基板)4としては水素還元で半導体化したTiO2 単結晶(110)を使用し、この上に微細構造物であるCu5を堆積させる。また、電圧源6とその電圧の正負を切り換えるための切り換えスイッチ7を備えている。また、カンチレバー1または伝導性基板4は3次元の位置決め機構を有しており、雰囲気が不活性ガスである原子間力顕微鏡の構成を有している。
【0038】
なお、原子間力顕微鏡はカンチレバーと試料表面間に働く力をカンチレバーの変位から読み取るようにしているが、本発明の場合、このカンチレバー1の表面に金属イオンが移動できる固体電解質(CuI薄膜)3を形成して、固体電解質カンチレバーを作製し、このカンチレバー1と伝導性基板4の間に電圧を印加し、カンチレバー1と伝導性基板4との間で金属原子の堆積あるいは除去を行なうものである。なお、カンチレバー1の変位は上部からのレーザ光8の反射により計測することができる。
【0039】
図3は本発明の他の実施例を示す固体電解質カンチレバーの作製工程図である。
【0040】
この実施例では、以下のような工程を施すようにしている。
【0041】
(1)まず、図3(a)に示すように、カンチレバー1を用意する。
【0042】
(2)次いで、図3(b)に示すように、カンチレバー1の根元の下面にのみスパッタリング法によりCu薄膜2′を被覆する。
【0043】
(3)次に、図3(c)に示すように、カンチレバー1及びCu薄膜2′の下面全面に固体電解質としてのCuI薄膜3′を被覆する。
【0044】
各工程における部材の材料及び処理条件は図2におけるものと同様である。
【0045】
次に、Cu堆積例について説明する。
【0046】
(1)20μm領域でのCu堆積
図1に示すように、Cu薄膜2の上に更にCuI薄膜3を堆積させたカンチレバー(探針)1を使用し、TiO2 基板4の20×20μm範囲内の中心部分(5×5μm)へCu5の堆積を行なった。実験はAr雰囲気中で、カンチレバー1とTiO2 基板4間に−10V印加して行なった。
【0047】
図4は本発明の実施例を示すTiO2 基板上の20μm範囲での電圧印加前後の表面形態図であり、図4(a)は20μm範囲での電圧印加前を、図4(b)は電圧印加後をそれぞれ示している。
【0048】
図4(b)の電圧印加後の画像では、少し中心からずれてはいるが電圧を印加した5×5μmの部分aだけ数nm盛り上がっていることが分かる。
【0049】
図5は電圧印加後のTiO2 基板表面上で、盛り上がっている部分(2,4,6)とその他の部分(1,3,5)のI/V特性を測定し、比較したものであり、図5(a)は電圧印加後のTiO2 基板表面上で、盛り上がっている部分(2,4,6)を示す図、図5(b)はその盛り上がっている部分(2,4,6)とその他の部分(1,3,5)のI/V特性を示す図である。
【0050】
このI/V特性より、盛り上がっている部分(2,4,6)では正の電圧領域でも電流は流れ、金属接触のようになっているのに対し、その他の部分(1,3,5)では正の電圧領域では電流が流れず、整流特性を示しているのが分かる。
【0051】
この結果から、負の電圧を印加したことにより、固体電解質(CuI薄膜)3を通してCu薄膜2のCu原子が移動し、TiO2 基板4表面上にCu5が堆積されたものと考えられる。
【0052】
なお、Cu5の堆積が、電圧印加によるCuの蒸着ではないことを確認するために、Cu薄膜を堆積させただけのカンチレバーを使用して同様の実験を行なったが、電圧印加後に堆積物は存在せず、Cu5の堆積はCuI3のイオン伝導のためであると確認できた。
【0053】
(2)5μm領域でのCu堆積
次いで、Cu5の堆積をTiO2 基板4の5×5μm範囲の中心部分、1×1μmへ行なった。
【0054】
図6と図7は印加電圧−10V、Ar雰囲気の条件は同じだが、図6の方はスキャン速度を最高の125Hzで繰り返しスキャンを行なったものであり、図7はスキャン速度を0.05Hzと低速で行なった時の表面画像である。
【0055】
両者とも、電圧印加後の画像では、電圧を印加した部分aだけ数nm盛り上がっており、I/V特性においてもその部分aでだけ正の電圧領域でも電流が流れるということが分かった。この結果より、5×5μm範囲内に1×1μmのCu層を堆積できたことが分かる。
【0056】
(3)堆積させたCu原子の除去
図8は最初にCu層堆積を行なったTiO2 基板表面形態図である。堆積条件は、印加電圧−10V、スキャン速度0.05Hz、Ar雰囲気中で行なった。
【0057】
次に、この範囲内で+10Vの正電圧を印加しながらスキャンした。
【0058】
この結果から、正電圧を印加したことにより、堆積させたCu原子を取り除くことができたと言える。すなわち、固体電解質3と伝導性基板4間に正の電圧を印加して、前記微細構造物5の金属原子を局所的にカンチレバー1に移動させることにより、前記微細構造物5のエッチングを行なうことができることを意味する。これは、正電圧を印加することによって、TiO2 基板4表面上に堆積していたCu原子がカンチレバー表面のCuIを通して吸引されたためであると考えられる。
【0059】
図9は本発明の実施例を示す正電圧印加後のTiO2 基板4表面に堆積されたCu層5の除去を示す図であり、正電圧印加後のTiO2 基板4表面ではCu層5の盛り上がりが消えていることが分かる。
【0060】
なお、上記実施例では伝導性基板としてTiO2 基板を用いた例で説明したが、絶縁性基板の表面側に伝導性を施すようにした基板でもよいことは言うまでもない。
【0061】
図10は本発明の他の実施例を示す微細金属原子構造物の形成方法を示す模式図である。
【0062】
この図において、11は絶縁性基板、12はその絶縁性基板11上に形成される金属薄膜であり、その他の部分は図1に示すものと同様であり、ここでの説明は省略する。
【0063】
そこで、絶縁性基板11上の金属薄膜12のエッチングを行いたい箇所にカンチレバー1の先端を位置決めし、金属薄膜12と固体電解質であるCuI薄膜3間に正電位を印加することにより、金属薄膜12中の金属原子を局所的にカンチレバー1に移動させて、絶縁性基板11上に微細な金属薄膜のパターニングを行なうことができる。つまり、原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる。
【0064】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0065】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下に示すような効果を奏することができる。
【0066】
(A)カンチレバーと伝導性基板との間に負の電圧を印加することにより、伝導性基板上に微細構造物を堆積させることができる。そして、その堆積された微細構造物はカンチレバーと伝導性基板との間に正の電圧を印加することにより、適宜エッチングすることができる。
【0067】
(B)原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを絶縁性基板の表面に金属薄膜が形成された基板上に設定し、前記固体電解質と金属薄膜間に正の印加電圧を付与することにより、前記金属薄膜からの金属原子を局所的にカンチレバーに移動させて、金属薄膜のエッチングを行なうことができる。つまり、原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる。
【0068】
(C)原子間力顕微鏡を用いているため、堆積した金属原子の堆積パターン又は微細電極を観測出来るので、所定のパターンの作製が容易である。
【図面の簡単な説明】
【図1】本発明の実施例を示す微細金属原子構造物の作製装置の模式図である。
【図2】本発明の実施例を示す微細金属原子構造物の作製のための固体電解質カンチレバーの作製工程図である。
【図3】本発明の他の実施例を示す微細金属原子構造物の作製のための固体電解質カンチレバーの作製工程図である。
【図4】本発明の実施例を示すTiO2 基板上の20μm範囲での電圧印加前後の表面形態図である。
【図5】本発明の実施例を示す電圧印加後のTiO2 基板表面上で、盛り上がっている部分(2,4,6)とその他の部分(1,3,5)のI/V特性を測定し、比較した図である。
【図6】本発明の実施例を示す印加電圧−10V、Ar雰囲気で、スキャン速度を最高の125Hzで繰り返しスキャンを行なった時の代用図面としての表面画像である。
【図7】本発明の実施例を示す印加電圧−10V、Ar雰囲気で、スキャン速度を0.05Hzと低速で行なった時の代用図面としての表面画像である。
【図8】本発明の実施例を示す最初にCu層堆積を行なったTiO2 基板表面形態図である。
【図9】本発明の実施例を示す正電圧印加後のTiO2 基板表面での堆積されたCu層の除去を示す図である。
【図10】本発明の他の実施例を示す微細金属原子構造物の形成方法を示す模式図である。
【符号の簡単な説明】
1 カンチレバー(探針)
2,2′ Cu薄膜
3,3′ CuI薄膜(固体電解質)
4 TiO2 基板(伝導性基板)
5 微細構造物(Cu:Cu層)
6 電圧源
7 切り換えスイッチ
8 レーザ光
11 絶縁性基板
12 絶縁性基板上に形成される金属薄膜
【発明の属する技術分野】
本発明は、原子間力顕微鏡におけるカンチレバーの作製方法及び微細金属原子構造物の作製方法及び装置に関するものである。
【0002】
【従来の技術】
走査型トンネル顕微鏡や原子間力顕微鏡を用いて微細構造物を作製する方法は既に数多く報告されている。これらのうち、本発明に近い方法として以下のようなものがある。
【0003】
(1)電気化学的な金属の堆積を走査型トンネル顕微鏡を用いて局所的に行なう方法。例えば、Si基板表面に直径5nm高さ2nmのPbのクラスターを4個、50×50nmの走査範囲内に分散させて堆積させる〔非特許文献1〕。
【0004】
(2)原子間力顕微鏡のカンチレバー表面に被覆させた金属原子を電界蒸着によって基板表面に堆積させる方法〔非特許文献2〕。
【0005】
(3)走査型トンネル顕微鏡の探針として電子伝導性とイオン伝導性の両方を持つ混合電極を使用し、印加電圧の正負により金属原子の堆積ならびに除去を行なう方法。すなわち、探針としてイオン伝導性と電子伝導性を兼ね備えたAg2 S単結晶を採用し、Si基板上に幅15nm、長さ150nm、厚さ0.3nm程度の銀細線を作製する〔特許文献1〕。
【0006】
【特許文献1】
国際公開番号WO00/70325、国際公開日2000年11月23日、第4−7頁 図1
【非特許文献1】
【非特許文献2】
Control of adsorption and desorption of oxygen on TiO2 surface by atomic force microscope,K.Kobayashi,Y.Tomita,and S.Yoshida,Trans.Mater.Res.Soc.Jpn.,25(1),253−256(2000).
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来の方法には、以下のような欠点があった。すなわち、
(A)上記の(1)の方法では、電気化学的な手法を基本的に採用しているので、基板を電解質溶液に浸す必要がある。そのため、金属イオンを含む電解質溶液と基板の相互作用により、基板の溶解、溶媒や金属イオンの吸着、不純物の混入など厄介な問題が起こる。
【0008】
(B)上記の(2)の方法では、カンチレバーに被覆させている金属を定常的に供給できないので、カンチレバーから基板表面に金属が電界蒸着され続けると、カンチレバー表面の金属が無くなりそれ以上基板表面に堆積ができなくなる。したがって、この方法では連続的な金属の堆積が困難である。
【0009】
(C)上記の(3)の方法は、電解質溶液からの汚染もなく、また連続的に金属を堆積できる特徴を有している。しかし、走査型トンネル顕微鏡を用いることによっていくつかの問題が発生する。すなわち、基板と探針との間のトンネル電流を測定するため、探針として電気伝導性とイオン伝導性の両方を持つ混合電極を使用する必要がある。固体電解質としては多くの材料が知られているが、電子伝導性をも有する材料はそれほど多くないので、堆積させることのできる金属が限定されるという欠点がある。また、通常、イオン伝導の伝導度は電子に比べて低いため、電気は主に電子によって運ばれる。この性質のため、混合電極の探針と基板との間に電圧を印加して電流を流した場合でも金属の堆積、あるいは除去の電流効率は低い。
【0010】
また、基板の一部に絶縁性の部分があると走査型トンネル顕微鏡は適用できない。例えば、絶縁性の基板の上に一様に金属薄膜を堆積させ、この一部を除去して電極のパターニングを行なう場合、金属の一部が探針に吸収されて下地の絶縁基板が現れると、走査型トンネル顕微鏡は制御不能になる。また、作製した金属電極のパターンを観測することもできない。
【0011】
電気で駆動するナノデバイスを作製する上で不可欠な要素はナノメータ程度の幅を持つ微細配線を形成することである。
【0012】
本発明は、上記状況に鑑みて、原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる微細金属原子構造物の作製方法及び装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕微細金属原子構造物の作製方法において、原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを伝導性基板上に設定し、前記固体電解質と伝導性基板間に負の印加電圧を付与することにより、前記固体電解質内の可動金属イオンを移動させて、金属原子を前記伝導性基板上に堆積させて、該伝導性基板上に微細構造物を形成することを特徴とする。
【0014】
〔2〕上記〔1〕記載の微細金属原子構造物の作製方法において、前記固体電解質と伝導性基板間に正の電圧を印加して、前記微細構造物からの金属原子を局所的に前記カンチレバーに移動させることにより、前記微細構造物のエッチングを行なうことを特徴とする。
【0015】
〔3〕上記〔2〕記載の微細金属原子構造物の作製方法において、前記伝導性基板上に形成される微細構造物の形状を観測することを特徴とする。
【0016】
〔4〕微細金属原子構造物の作製方法において、原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを絶縁基板の表面に金属薄膜が形成された絶縁性基板上に設定し、前記固体電解質と金属薄膜間に正の印加電圧を付与することにより、前記金属薄膜からの金属原子を局所的に前記カンチレバーに移動させることにより、前記金属薄膜のエッチングを行なうことを特徴とする。
【0017】
〔5〕上記〔4〕記載の微細金属原子構造物の作製方法において、前記絶縁性基板上に形成される金属薄膜のパターンを観測することを特徴とする。
【0018】
〔6〕微細金属原子構造物の作製装置において、伝導性基板と、この伝導性基板上の微細構造物を形成すべき位置に設定される、イオン伝導性を有する固体電解質を形成したカンチレバーと、前記固体電解質と伝導性基板間に印加電圧を付与する手段と、不活性ガス雰囲気を有する原子間力顕微鏡とを具備することを特徴とする。
【0019】
〔7〕微細金属原子構造物の作製装置において、金属薄膜が形成された絶縁性基板と、この絶縁性基板上に設定される、イオン伝導性を有する固体電解質を形成したカンチレバーと、前記固体電解質と金属薄膜間に印加電圧を付与する手段と、不活性ガス雰囲気を有する原子間力顕微鏡とを具備することを特徴とする。
【0020】
〔8〕上記〔6〕又は〔7〕記載の微細金属原子構造物の作製装置において、前記固体電解質は、Cu化合物であることを特徴とする。
【0021】
〔9〕上記〔8〕記載の微細金属原子構造物の作製装置において、前記Cu化合物は、混合伝導性を有するCu化合物としての、CuI,CuSCN,Cu2 S,Cu2 Se,CuX WO3 ,CuX Mo6 S8 ,CuX CoO2 ,CuX TiS2 ,Cu7 PSe6 であることを特徴とする。
【0022】
〔10〕上記〔8〕記載の微細金属原子構造物の作製装置において、前記Cu化合物は、イオン伝導性のみを有するCu化合物としての、CuBr,CuCl,Rb−Cu−I−Cl系化合物、Rb3 Cu7 Cl10、Cu(I)β″−アルミナのCu置換化合物、Cu−Al2 O3 −SiO2 などのイオン伝導性ガラスであることを特徴とする。
【0023】
〔11〕上記〔6〕又は〔7〕記載の微細金属原子構造物の作製装置において、前記カンチレバーは、探針上にコーティングされる固体電解質を有することを特徴とする。
【0024】
〔12〕上記〔6〕又は〔7〕記載の微細金属原子構造物の作製装置において、前記伝導性基板は、水素還元で半導体化したTiO2 単結晶(110)基板であることを特徴とする。
【0025】
〔13〕上記〔6〕記載の微細金属原子構造物の作製装置において、前記伝導性基板上の微細構造物を原子間力顕微鏡により観測することを特徴とする。
【0026】
〔14〕上記〔7〕記載の微細金属原子構造物の作製装置において、前記絶縁性基板上の金属薄膜のパターンを原子間力顕微鏡により観測することを特徴とする。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0028】
本発明においては、Cu電極を作製するために固体電解質を用いる。
【0029】
図1は本発明の実施例を示す微細金属原子構造物の作製装置の模式図、図2は固体電解質カンチレバーの作製工程図である。
【0030】
まず、その固体電解質カンチレバーの作製方法について説明する。
【0031】
(1)まず、図2(a)に示すように、カンチレバー1を用意する。ここでは、カンチレバーとしては、Si−AF01(材質Si,ばね定数0.2N/m,共振周波数 10kHz)を用いる。
【0032】
(2)次に、図2(b)に示すように、カンチレバー1の下面全面にスパッタリング法によりCu薄膜2を被覆する。
【0033】
(3)次に、図2(c)に示すように、Cu薄膜2の下面全面に固体電解質としてのCuI薄膜3を被覆する。ここで、CuI薄膜3は表1の条件で堆積させた。
【0034】
【表1】
【0035】
なお、本発明で用いる固体電解質としては
(1)混合伝導性を有するものとしては、CuI,CuSCN,Cu2 S,Cu2 Se,CuxWO3 ,CuxMo6 S8 ,CuxCoO2 ,CuxTiS2 ,Cu7 PSe6 を挙げることができる。
【0036】
(2)イオン伝導性のみを有するものとしては、CuBr、CuCl、Rb4 Cu16I7 C13(Rb−Cu−I−Cl系化合物であれば少々組成がずれてもよい)、Rb3 Cu7 Cl10、Cu(I)β″−アルミナのCu置換化合物、Cu−Al2 O3 −SiO2 などのイオン伝導性ガラスを用いることができる。
【0037】
図1において、TiO2 基板(伝導性基板)4としては水素還元で半導体化したTiO2 単結晶(110)を使用し、この上に微細構造物であるCu5を堆積させる。また、電圧源6とその電圧の正負を切り換えるための切り換えスイッチ7を備えている。また、カンチレバー1または伝導性基板4は3次元の位置決め機構を有しており、雰囲気が不活性ガスである原子間力顕微鏡の構成を有している。
【0038】
なお、原子間力顕微鏡はカンチレバーと試料表面間に働く力をカンチレバーの変位から読み取るようにしているが、本発明の場合、このカンチレバー1の表面に金属イオンが移動できる固体電解質(CuI薄膜)3を形成して、固体電解質カンチレバーを作製し、このカンチレバー1と伝導性基板4の間に電圧を印加し、カンチレバー1と伝導性基板4との間で金属原子の堆積あるいは除去を行なうものである。なお、カンチレバー1の変位は上部からのレーザ光8の反射により計測することができる。
【0039】
図3は本発明の他の実施例を示す固体電解質カンチレバーの作製工程図である。
【0040】
この実施例では、以下のような工程を施すようにしている。
【0041】
(1)まず、図3(a)に示すように、カンチレバー1を用意する。
【0042】
(2)次いで、図3(b)に示すように、カンチレバー1の根元の下面にのみスパッタリング法によりCu薄膜2′を被覆する。
【0043】
(3)次に、図3(c)に示すように、カンチレバー1及びCu薄膜2′の下面全面に固体電解質としてのCuI薄膜3′を被覆する。
【0044】
各工程における部材の材料及び処理条件は図2におけるものと同様である。
【0045】
次に、Cu堆積例について説明する。
【0046】
(1)20μm領域でのCu堆積
図1に示すように、Cu薄膜2の上に更にCuI薄膜3を堆積させたカンチレバー(探針)1を使用し、TiO2 基板4の20×20μm範囲内の中心部分(5×5μm)へCu5の堆積を行なった。実験はAr雰囲気中で、カンチレバー1とTiO2 基板4間に−10V印加して行なった。
【0047】
図4は本発明の実施例を示すTiO2 基板上の20μm範囲での電圧印加前後の表面形態図であり、図4(a)は20μm範囲での電圧印加前を、図4(b)は電圧印加後をそれぞれ示している。
【0048】
図4(b)の電圧印加後の画像では、少し中心からずれてはいるが電圧を印加した5×5μmの部分aだけ数nm盛り上がっていることが分かる。
【0049】
図5は電圧印加後のTiO2 基板表面上で、盛り上がっている部分(2,4,6)とその他の部分(1,3,5)のI/V特性を測定し、比較したものであり、図5(a)は電圧印加後のTiO2 基板表面上で、盛り上がっている部分(2,4,6)を示す図、図5(b)はその盛り上がっている部分(2,4,6)とその他の部分(1,3,5)のI/V特性を示す図である。
【0050】
このI/V特性より、盛り上がっている部分(2,4,6)では正の電圧領域でも電流は流れ、金属接触のようになっているのに対し、その他の部分(1,3,5)では正の電圧領域では電流が流れず、整流特性を示しているのが分かる。
【0051】
この結果から、負の電圧を印加したことにより、固体電解質(CuI薄膜)3を通してCu薄膜2のCu原子が移動し、TiO2 基板4表面上にCu5が堆積されたものと考えられる。
【0052】
なお、Cu5の堆積が、電圧印加によるCuの蒸着ではないことを確認するために、Cu薄膜を堆積させただけのカンチレバーを使用して同様の実験を行なったが、電圧印加後に堆積物は存在せず、Cu5の堆積はCuI3のイオン伝導のためであると確認できた。
【0053】
(2)5μm領域でのCu堆積
次いで、Cu5の堆積をTiO2 基板4の5×5μm範囲の中心部分、1×1μmへ行なった。
【0054】
図6と図7は印加電圧−10V、Ar雰囲気の条件は同じだが、図6の方はスキャン速度を最高の125Hzで繰り返しスキャンを行なったものであり、図7はスキャン速度を0.05Hzと低速で行なった時の表面画像である。
【0055】
両者とも、電圧印加後の画像では、電圧を印加した部分aだけ数nm盛り上がっており、I/V特性においてもその部分aでだけ正の電圧領域でも電流が流れるということが分かった。この結果より、5×5μm範囲内に1×1μmのCu層を堆積できたことが分かる。
【0056】
(3)堆積させたCu原子の除去
図8は最初にCu層堆積を行なったTiO2 基板表面形態図である。堆積条件は、印加電圧−10V、スキャン速度0.05Hz、Ar雰囲気中で行なった。
【0057】
次に、この範囲内で+10Vの正電圧を印加しながらスキャンした。
【0058】
この結果から、正電圧を印加したことにより、堆積させたCu原子を取り除くことができたと言える。すなわち、固体電解質3と伝導性基板4間に正の電圧を印加して、前記微細構造物5の金属原子を局所的にカンチレバー1に移動させることにより、前記微細構造物5のエッチングを行なうことができることを意味する。これは、正電圧を印加することによって、TiO2 基板4表面上に堆積していたCu原子がカンチレバー表面のCuIを通して吸引されたためであると考えられる。
【0059】
図9は本発明の実施例を示す正電圧印加後のTiO2 基板4表面に堆積されたCu層5の除去を示す図であり、正電圧印加後のTiO2 基板4表面ではCu層5の盛り上がりが消えていることが分かる。
【0060】
なお、上記実施例では伝導性基板としてTiO2 基板を用いた例で説明したが、絶縁性基板の表面側に伝導性を施すようにした基板でもよいことは言うまでもない。
【0061】
図10は本発明の他の実施例を示す微細金属原子構造物の形成方法を示す模式図である。
【0062】
この図において、11は絶縁性基板、12はその絶縁性基板11上に形成される金属薄膜であり、その他の部分は図1に示すものと同様であり、ここでの説明は省略する。
【0063】
そこで、絶縁性基板11上の金属薄膜12のエッチングを行いたい箇所にカンチレバー1の先端を位置決めし、金属薄膜12と固体電解質であるCuI薄膜3間に正電位を印加することにより、金属薄膜12中の金属原子を局所的にカンチレバー1に移動させて、絶縁性基板11上に微細な金属薄膜のパターニングを行なうことができる。つまり、原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる。
【0064】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0065】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下に示すような効果を奏することができる。
【0066】
(A)カンチレバーと伝導性基板との間に負の電圧を印加することにより、伝導性基板上に微細構造物を堆積させることができる。そして、その堆積された微細構造物はカンチレバーと伝導性基板との間に正の電圧を印加することにより、適宜エッチングすることができる。
【0067】
(B)原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを絶縁性基板の表面に金属薄膜が形成された基板上に設定し、前記固体電解質と金属薄膜間に正の印加電圧を付与することにより、前記金属薄膜からの金属原子を局所的にカンチレバーに移動させて、金属薄膜のエッチングを行なうことができる。つまり、原子間力顕微鏡を用いて、ナノメータスケールの微細電極を作製することができる。
【0068】
(C)原子間力顕微鏡を用いているため、堆積した金属原子の堆積パターン又は微細電極を観測出来るので、所定のパターンの作製が容易である。
【図面の簡単な説明】
【図1】本発明の実施例を示す微細金属原子構造物の作製装置の模式図である。
【図2】本発明の実施例を示す微細金属原子構造物の作製のための固体電解質カンチレバーの作製工程図である。
【図3】本発明の他の実施例を示す微細金属原子構造物の作製のための固体電解質カンチレバーの作製工程図である。
【図4】本発明の実施例を示すTiO2 基板上の20μm範囲での電圧印加前後の表面形態図である。
【図5】本発明の実施例を示す電圧印加後のTiO2 基板表面上で、盛り上がっている部分(2,4,6)とその他の部分(1,3,5)のI/V特性を測定し、比較した図である。
【図6】本発明の実施例を示す印加電圧−10V、Ar雰囲気で、スキャン速度を最高の125Hzで繰り返しスキャンを行なった時の代用図面としての表面画像である。
【図7】本発明の実施例を示す印加電圧−10V、Ar雰囲気で、スキャン速度を0.05Hzと低速で行なった時の代用図面としての表面画像である。
【図8】本発明の実施例を示す最初にCu層堆積を行なったTiO2 基板表面形態図である。
【図9】本発明の実施例を示す正電圧印加後のTiO2 基板表面での堆積されたCu層の除去を示す図である。
【図10】本発明の他の実施例を示す微細金属原子構造物の形成方法を示す模式図である。
【符号の簡単な説明】
1 カンチレバー(探針)
2,2′ Cu薄膜
3,3′ CuI薄膜(固体電解質)
4 TiO2 基板(伝導性基板)
5 微細構造物(Cu:Cu層)
6 電圧源
7 切り換えスイッチ
8 レーザ光
11 絶縁性基板
12 絶縁性基板上に形成される金属薄膜
Claims (14)
- 原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを伝導性基板上に設定し、前記固体電解質と伝導性基板間に負の印加電圧を付与することにより、前記固体電解質内の可動金属イオンを移動させて、金属原子を前記伝導性基板上に堆積させて、該伝導性基板上に微細構造物を形成することを特徴とする微細金属原子構造物の作製方法。
- 請求項1記載の微細金属原子構造物の作製方法において、前記固体電解質と伝導性基板間に正の電圧を印加して、前記微細構造物からの金属原子を局所的に前記カンチレバーに移動させることにより、前記微細構造物のエッチングを行なうことを特徴とする微細金属原子構造物の作製方法。
- 請求項2記載の微細金属原子構造物の作製方法において、前記伝導性基板上に形成される微細構造物の形状を観測することを特徴とする微細金属原子構造物の作製方法。
- 原子間力顕微鏡を用い、イオン伝導性を有する固体電解質を形成したカンチレバーを絶縁基板の表面に金属薄膜が形成された絶縁性基板上に設定し、前記固体電解質と金属薄膜間に正の印加電圧を付与することにより、前記金属薄膜からの金属原子を局所的に前記カンチレバーに移動させることにより、前記金属薄膜のエッチングを行なうことを特徴とする微細金属原子構造物の作製方法。
- 請求項4記載の微細金属原子構造物の作製方法において、前記絶縁性基板上に形成される金属薄膜のパターンを観測することを特徴とする微細金属原子構造物の作製方法。
- (a)伝導性基板と、
(b)該伝導性基板上の微細構造物を形成すべき位置に設定される、イオン伝導性を有する固体電解質を形成したカンチレバーと、
(c)前記固体電解質と伝導性基板間に印加電圧を付与する手段と、
(d)不活性ガス雰囲気を有する原子間力顕微鏡とを具備することを特徴とする微細金属原子構造物の作製装置。 - (a)金属薄膜が形成された絶縁性基板と、
(b)該絶縁性基板上に設定される、イオン伝導性を有する固体電解質を形成したカンチレバーと、
(c)前記固体電解質と金属薄膜間に印加電圧を付与する手段と、
(d)不活性ガス雰囲気を有する原子間力顕微鏡とを具備することを特徴とする微細金属原子構造物の作製装置。 - 請求項6又は7記載の微細金属原子構造物の作製装置において、前記固体電解質は、Cu化合物であることを特徴とする微細金属原子構造物の作製装置。
- 請求項8記載の微細金属原子構造物の作製装置において、前記Cu化合物は、混合伝導性を有するCu化合物としての、CuI,CuSCN,Cu2 S,Cu2 Se,CuX WO3 ,CuX Mo6 S8 ,CuX CoO2 ,CuX TiS2 ,Cu7 PSe6 であることを特徴とする微細金属原子構造物の作製装置。
- 請求項8記載の微細金属原子構造物の作製装置において、前記Cu化合物は、イオン伝導性のみを有するCu化合物としての、CuBr,CuCl,Rb−Cu−I−Cl系化合物、Rb3 Cu7 Cl10、Cu(I)β″−アルミナのCu置換化合物、Cu−Al2 O3 −SiO2 などのイオン伝導性ガラスであることを特徴とする微細金属原子構造物の作製装置。
- 請求項6又は7記載の微細金属原子構造物の作製装置において、前記カンチレバーは、探針上にコーティングされる固体電解質を有することを特徴とする微細金属原子構造物の作製装置。
- 請求項6又は7記載の微細金属原子構造物の作製装置において、前記伝導性基板は、水素還元で半導体化したTiO2 単結晶(110)基板であることを特徴とする微細金属原子構造物の作製装置。
- 請求項6記載の微細金属原子構造物の作製装置において、前記伝導性基板上の微細構造物を原子間力顕微鏡により観測することを特徴とする微細金属原子構造物の作製装置。
- 請求項7記載の微細金属原子構造物の作製装置において、前記絶縁性基板上の金属薄膜のパターンを原子間力顕微鏡により観測することを特徴とする微細金属原子構造物の作製装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337399A JP2004167643A (ja) | 2002-11-21 | 2002-11-21 | 微細金属原子構造物の作製方法及び装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002337399A JP2004167643A (ja) | 2002-11-21 | 2002-11-21 | 微細金属原子構造物の作製方法及び装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004167643A true JP2004167643A (ja) | 2004-06-17 |
Family
ID=32700920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002337399A Pending JP2004167643A (ja) | 2002-11-21 | 2002-11-21 | 微細金属原子構造物の作製方法及び装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004167643A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012128657A1 (ru) * | 2011-03-24 | 2012-09-27 | Общество С Ограниченной Ответственностью Центр Инновационных Технологий-Нано | Способ создания трехмерных нанометровых металлических структур и устройство для его осуществления |
JP2014502354A (ja) * | 2010-11-24 | 2014-01-30 | ユーティー−バッテル, リミテッド ライアビリティ カンパニー | エネルギー貯蔵材料及びエネルギー変換材料におけるイオン拡散及び電気化学的活性の実空間マッピング |
JP2019215187A (ja) * | 2018-06-11 | 2019-12-19 | 本田技研工業株式会社 | イオン挙動検出装置、二次電池装置及び走査型プローブ顕微鏡 |
JP2021128009A (ja) * | 2020-02-12 | 2021-09-02 | 本田技研工業株式会社 | イオン挙動検出装置、二次電池装置及び走査型プローブ顕微鏡 |
-
2002
- 2002-11-21 JP JP2002337399A patent/JP2004167643A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014502354A (ja) * | 2010-11-24 | 2014-01-30 | ユーティー−バッテル, リミテッド ライアビリティ カンパニー | エネルギー貯蔵材料及びエネルギー変換材料におけるイオン拡散及び電気化学的活性の実空間マッピング |
WO2012128657A1 (ru) * | 2011-03-24 | 2012-09-27 | Общество С Ограниченной Ответственностью Центр Инновационных Технологий-Нано | Способ создания трехмерных нанометровых металлических структур и устройство для его осуществления |
JP2019215187A (ja) * | 2018-06-11 | 2019-12-19 | 本田技研工業株式会社 | イオン挙動検出装置、二次電池装置及び走査型プローブ顕微鏡 |
JP2021128009A (ja) * | 2020-02-12 | 2021-09-02 | 本田技研工業株式会社 | イオン挙動検出装置、二次電池装置及び走査型プローブ顕微鏡 |
JP7313297B2 (ja) | 2020-02-12 | 2023-07-24 | 本田技研工業株式会社 | イオン挙動検出装置、二次電池装置及び走査型プローブ顕微鏡 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Sub-10 nm fabrication: methods and applications | |
US6476409B2 (en) | Nano-structures, process for preparing nano-structures and devices | |
US7875195B2 (en) | Thick porous anodic alumina films and nanowire arrays grown on a solid substrate | |
Rabin et al. | Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass | |
US8173335B2 (en) | Beam ablation lithography | |
US8142984B2 (en) | Lithographically patterned nanowire electrodeposition | |
US20090214851A1 (en) | Nanostructure arrays | |
JP3884887B2 (ja) | 描画用探針及びその製作方法 | |
US20070170064A1 (en) | Method of electrolytically depositing materials in a pattern directed by surfactant distribution | |
US20140048420A1 (en) | Method for fabricating one-dimensional metallic nanostructures | |
Berson et al. | Parallel-and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits | |
JP2004167643A (ja) | 微細金属原子構造物の作製方法及び装置 | |
Abadal et al. | Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems | |
US9691849B2 (en) | Ultra-long silicon nanostructures, and methods of forming and transferring the same | |
US20070034518A1 (en) | Method of patterning ultra-small structures | |
CN108557755B (zh) | 一种高频交流电驱动的局域阳极氧化加工方法 | |
JP3756470B2 (ja) | 複数の電極を有するカンチレバーおよびその製造方法 | |
CN114613844B (zh) | 一种纳米空气沟道电子器件的小型化阵列化制备方法 | |
JPH08248064A (ja) | 微細パターン形成装置及び特性測定装置 | |
Kathalingam et al. | Fabrication of arrayed metal oxide structures by electrochemical local oxidation using metallic tip with electric field and humidity | |
JP2004114273A (ja) | 走査トンネル顕微鏡による銀ナノ構造の作製方法 | |
JPH08285867A (ja) | 探針、カンチレバー及びこれ等を具備する力顕微鏡 | |
KR100645374B1 (ko) | 원자력 힘 현미경 리소그래피를 이용하여 높은 종횡비를갖는 나노 구조물을 고속으로 형성시키는 방법 | |
JP2005262428A (ja) | 微細加工方法 | |
Yin et al. | Fabrication of nanostructured thin films using porous alumina templates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041004 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080507 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080916 |