JP2004165590A - Horizontal current shielding light emitting diode led and its manufacturing method - Google Patents

Horizontal current shielding light emitting diode led and its manufacturing method Download PDF

Info

Publication number
JP2004165590A
JP2004165590A JP2003016027A JP2003016027A JP2004165590A JP 2004165590 A JP2004165590 A JP 2004165590A JP 2003016027 A JP2003016027 A JP 2003016027A JP 2003016027 A JP2003016027 A JP 2003016027A JP 2004165590 A JP2004165590 A JP 2004165590A
Authority
JP
Japan
Prior art keywords
polarity
trench
electrode pad
epitaxial structure
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003016027A
Other languages
Japanese (ja)
Inventor
Shakumei Chin
錫銘 陳
Shunryo Hayashi
俊良 林
Wen-Bin Chen
文彬 陳
Yan-Kuin Su
炎坤 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epitech Technology Corp
Original Assignee
Epitech Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epitech Technology Corp filed Critical Epitech Technology Corp
Publication of JP2004165590A publication Critical patent/JP2004165590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal current shielding LED characterized to carry out the etching of a trench to be used for shielding horizontal currents simultaneously with a process to expose a semiconductor layer with first polarity, and to prevent manufacturing costs from being increased and its manufacturing method. <P>SOLUTION: This horizontal current shielding LED is provided with a substrate 110, a semiconductor layer 130 with first polarity arranged on the substrate 100 and an active layer 150 and at least one trench 180 arranged on one portion of the semiconductor layer 130 with first polarity. This horizontal current shielding LED is also provided with a semiconductor epitaxial structure in which the depth of the trench 180 reaches at least the active layer 150, a metallic electrode pad 190 with first polarity arranged on the other portion of the semiconductor layer 130 with first polarity and a metallic electrode pad 200b with second polarity arranged on the semiconductor epitaxial structure so that the metallic electrode pad 190 with first polarity and the metallic electrode pad 200b with second polarity can be arranged at the opposite sides of at least one trench 180. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は発光ダイオード(LED)の構造およびその製造方法、より詳細には横電流遮断LEDの構造およびその製造方法に関する。
【0002】
【従来の技術】
近年、GaN、AlGaN、InGaN、およびAlInGaNといった窒化ガリウム型半導体を利用した発光デバイスに大きな注目が向けられてきた。普通、上記タイプの発光デバイスの大方は電気的に絶縁されたサファイア基板上で成長され、導電性基板を利用した他の発光デバイスとは異なる。サファイア基板は絶縁体であるから、電極は基板上には直接形成できず、P型半導体層とN型半導体層に個々に直接接触してサファイア基板上に形成された発光デバイスの製造を完成しなければならない。
【0003】
図1(B)における線a−a’に沿って見た断面図を示す図1(A)と従来の窒化物LEDの上面図を示す図1(B)を参照して頂きたい。図1に示す構造は以下のステップを通じて形成できる。先ず、バッファ層20が基板10上にエピタキシャル成長され、基板10の材料は例えばサファイアであり、バッファ層20の材料は例えばAlNまたはGaNである。次に第1の極性の半導体層30(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)、第1の極性のクラッド層40(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)、ダブルへテロ構造または量子井戸を有し、(AlGal−xInl−yN(0≦x≦1;0≦y≦1)を含む活性層50、第2の極性のクラッド層60(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)、および第2の極性の高ドープコンタクト層70(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)がバッファ層20の上で引続きエピタキシャル成長される。
【0004】
その後に上記のエピタキシャル層がドライエッチング、ウェットエッチング、または機械的切断および研磨によりエッチまたは研磨され、それにより第1の極性の半導体層30の一部を露出する。次に第1の極性の金属電極パッド90が熱蒸着、電子ビーム蒸着、またはスパッタリング等により第1の極性の半導体層30の露出部に着けられ、第2の極性の透明電極100aと第2の極性の金属電極層100bが第2の極性のコンタクト層70の上に引続き着けられる。
【0005】
上記の構造の第2の極性の透明電極100aは電流拡散効果を向上できるけれども、実際には、大部分の電流は第2の極性の透明電極100aと第1の極性の金属電極パッド90との間の線に沿って流れ、活性層50の大部分を電流が流れることはなく、従ってLEDの発光効率が高くなく(発光領域がほとんど第2の極性の透明電極100aと第1の極性の金属電極層90との間に集中する)、LEDの寿命が低下する(局所域を過剰に高温にする過剰集中電流のために)。第2の極性の透明電極100aの厚さを増せば電流拡散効果を改善できるけれども、その結果、第2の極性の透明電極100aの透明度が低下する。
【0006】
さらに活性層50により生じた光子が大きな角度でLEDの表面に放射される場合に全反射損失が容易に生じ、従ってLEDの側部の近傍から大きな角度で放射される光子のみがより容易にLEDから外に放射される。
【0007】
従って上記の従来技術に関して多くの関連特許が存在する。例えば東芝は電流を閉じ込める再成長法に取り組み(特許文献1および2)、そこでは電流を縦に閉じ込める効果を達成するために絶縁層が半導体要素に着けられる。しかしながら上記のステップは複雑であり、従ってコストが増加する。LumiLedは電流分布と発光効率を向上するためにp金属電極のエッチングを用い、それにより高発光効率を達成した(特許文献3、4、5)。しかしながらエッチングの深さは十分ではなく、従って電流伝導路は確実に保証されない。米国のボストン大学はフォトニック結晶がLEDに応用できることを発表したが(特許文献6)、その欠点はエッチングの深さが深すぎて、その製造が難しいことである。
【0008】
【特許文献1】
米国特許第5,732,098号
【特許文献2】
米国特許第6,229,893号
【特許文献3】
米国特許第6,291,839号
【特許文献4】
米国特許第6,287,947号
【特許文献5】
米国特許第6,258,618号
【特許文献6】
米国特許第5,955,749号
【0009】
【発明が解決しようとする課題】
上記のように、従来の窒化物LEDに関しては欠点が存在する。
従って本発明の目的は、横電流を遮断するために用いられるトレンチのエッチングが第1の極性の半導体層を露出する(第1の極性の金属電極パッドを作るために)工程と同時に実行でき、それにより製造コストが増加しないことを特徴とする横電流遮断LEDとその製造方法を提供することである。
【0010】
本発明のもう一つの目的は電流が活性層(発光領域)を通る可能性とLEDの輝度を増加するためにトレンチが二つの金属電極の間に配置されることを特徴とする横電流遮断LEDとその製造方法を提供することである。
【0011】
本発明のさらにもう一つの目的は横電流遮断LEDおよびその製造方法であって、トレンチが、トレンチの側部から光子が放射される機会を提供するために用いられ、特に、元々は全反射されるいくつかの光子をトレンチを介してトレンチの側部から放射させる、要素の中央領域にある活性領域から光子が発生され、それによって活性層から生じる光子の出力効率が上がることを特徴とする横電流遮断LEDおよびその製造方法を提供することである。
【0012】
【課題を解決するための手段】
本発明の上記の目的によれば、本発明は、基板と、基板上に配置された第1の極性の半導体層と、第1の極性の半導体層の一つの部分の上に配置され、活性層を備え、少なくとも一つのトレンチを備え、前記少なくとも一つのトレンチの深さが少なくとも活性層に達する半導体エピタキシャル構造と、第1の極性の半導体層の他の部分の上に配置される第1の極性の金属電極パッドと、第2の極性の金属電極パッドであって、半導体エピタキシャル構造の上に配置され、第1の極性の金属電極パッドと第2の極性の金属電極パッドが少なくとも一つのトレンチの互いに反対側に配置されるような第2の極性の金属電極パッドとを備える横電流遮断LEDを提供する。
【0013】
本発明の上記の目的によれば、本発明はさらに以下のステップを含む横電流遮断LEDの製造方法を提供する。即ち、先ず基板を提供し、次に基板上に第1の極性の半導体層を形成し、次に第1の極性の半導体層上に半導体エピタキシャル構造を形成し、次に半導体エピタキシャル構造の第1の部分を除去し、それにより第1の極性の半導体層の一つの部分を露出し、次に半導体エピタキシャル構造の第2の部分を除去し、それにより半導体エピタキシャル構造に少なくとも一つのトレンチを形成し、その場合、半導体エピタキシャル構造は活性層を備え、少なくとも一つのトレンチの深さは少なくとも活性層に達し、その後に、第1の極性の金属電極パッドと第2の極性の金属電極パッドをそれぞれ第1の極性の半導体層の露出部の上と半導体エピタキシャル構造の第3の部分の上に形成し、その場合、第1の極性の金属電極パッドと第2の極性の金属電極パッドが少なくとも一つのトレンチの互いに反対側に配置される。
【0014】
添付図と関連させて以下の詳細な説明を参照することにより、本発明の以上の態様と付随する多くの利点がより容易に認識されるであろう。
【0015】
【発明の実施の形態】
III族窒化物LEDの従来構造は多くの欠点を持っているので、本発明は窒化物LEDの簡単な製造方法であって、それにより従来構造から生じる欠点を克服する製造方法を提供する。しかしながら、本発明の応用範囲は正負の電極が基板の同じ側に配置されるLEDを含み、窒化物LEDに限定されない。
【0016】
図2は、本発明の一実施例による窒化物LEDを示している。図2(B)における線b−b’に沿って見た断面図を図2(A)に示している。図2(A)と図2(B)に示す構造は以下のステップを通じて形成できる。先ず、低温のバッファ層120が基板110の上にエピタキシャル成長され、その場合、基板110の材料は例えばサファイアであり、バッファ層120の材料は例えばAlNまたはGaNである。次に第1の極性の半導体層130(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)、第1の極性のクラッド層140(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)、二重へテロ構造または量子井戸を有し、(AlGal−xInl−yN(0≦x≦1;0≦y≦1)を含む活性層150、第2の極性のクラッド層160(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)、および第2の極性の高ドープコンタクト層170(例えば(AlGal−xInl−yN(0≦x≦1;0≦y≦1)の材料で出来ている)がバッファ層120の上に引続きエピタキシャル成長される。上記の第1の極性は正または負であり、第2の極性は第1の極性と異なる。
【0017】
上記のエピタキシャル構造が完成した後に、エピタキシャル構造がドライエッチング、ウェットエッチング、または機械的切断および研磨によりエッチまたは研磨され、それにより第1の極性の半導体層130の一部を露出し、二つの電極の間に(つまり、第2の極性のコンタクト層170から下方に)トレンチ180を形成するが、その場合トレンチ180は横電流を遮断し、それにより電流が活性層150を通る可能性を増加し、従って輝度を上昇するために用いられる。トレンチ180はドライエッチングまたはウェットエッチングにより第1の極性の半導体層130を露出する(第1の極性の金属電極パッド190を作るために)工程と同時に形成でき、それにより生産コストは増加しない。あるいはトレンチ180はまたレーザ、ウォータジェット、または機械ドリル等により形成できる。
【0018】
上記のトレンチ180の深さは少なくとも活性層150に達し、トレンチ180の数は1以上である。さらに少なくとも一つのトレンチ180は個別配置、隣接配置、千鳥状配置で配置できる。さらに図2(B)の上面図に示すように、トレンチ180の形状はそれに限定されず、従って円、矩形、または楕円等でもよい。その他に絶縁誘電体材料がトレンチ180にさらに充填され、それにより回路短絡事故を減少する。さらにトレンチ180はトレンチ180の側部から光子が放射される機会を提供するために用いられ、その場合、特に、元々は全反射されるいくつかの光子をトレンチ180を介してトレンチ180の側部から放射させる活性層150から光子が発生される。
【0019】
その後に、第1の極性の金属電極パッド190が、熱蒸着、電子ビーム蒸着、またはスパッタリング等により第1の極性の半導体層130の露出部の上に着けられ、第2の極性の透明電極200aと第2の極性の金属電極パッド200bが第2の極性のコンタクト層170の上に引続き着けられる。
【0020】
図3(A)と図3(B)を参照して頂きたい。図3(A)は電極が作られた後の従来のInGaN LEDのエピタキシャル構造の上面図であり、図3(B)は本実施例によるトレンチ180のエッチング工程が実行された後の図3(A)に示すエピタキシャル構造の上面図である。電流が20mAで順電圧Vが3.5Vの条件下で光学出力の相対強度は元の20.3から21.52に増加される(6.0%増加)。
【0021】
図4(A)と図4(B)を参照して頂きたい。図4(A)は電極が作られた後の別の従来のInGaN LEDのエピタキシャル構造の上面図であり、図4(B)は本実施例によるトレンチ180のエッチング工程が実行された後の図4(A)に示すエピタキシャル構造の上面図である。電流が20mAで順電圧Vが3.5Vの条件下で光学出力の相対強度は元の24.0から24.4に増加される(1.7%増加)。
【0022】
図5(A)と図5(B)を参照して頂きたい。図5(A)は電極が作られた後のさらに別の従来のInGaN LEDのエピタキシャル構造の上面図であり、図5(B)は本実施例によるトレンチ180のエッチング工程が実行された後の図5(A)に示すエピタキシャル構造の上面図である。電流が20mAで順電圧Vが3.5Vの条件下で光学出力の相対強度は元の24.5から25.5に増加される(4.1%増加)。
【0023】
要約すれば、本発明の利点は、横電流を遮断するために用いられるトレンチのエッチングが第1の極性の半導体層を露出する(第1の極性の金属電極パッドを作るために)工程と同時に実行でき、それにより生産コストが増加しないことを特徴とする横電流遮断LEDおよびその製造方法を提供することである。
【0024】
本発明のもう一つの利点は、トレンチが二つの金属電極の間に配置され、それにより電流が活性層(発光領域)を通る可能性を増加してLEDの輝度が増加される横電流遮断LEDおよびその製造方法を提供することである。
【0025】
本発明のさらにもう一つの利点は、トレンチが、トレンチの側部から光子が放射される機会を提供するのために用いられ、光子が要素の中央領域にある活性領域から生じることを特徴とする横電流遮断LEDおよびその製造方法を提供することである。特に、元々は全反射されるいくつかの光子をトレンチを介してトレンチの側部から放射させ、それにより活性層から生じる光子の出力効率を増加できる。
【0026】
当業者には言うまでもないが、本発明の以上の好ましい実施例は本発明の限定ではなく本発明の実例である。添付された特許請求の範囲の精神と範囲内で構成される種々の変形および類似の配置を包含することを意図しており、その範囲にはそのような変形および類似の構造を包含するように最も広い解釈を与えられるべきである。
【図面の簡単な説明】
【図1】(A)は線a−a’に沿って見た断面図であり、(B)は従来の窒化物LEDを示す上面図である。
【図2】本発明の一実施例による横電流遮断窒化物LEDを示す図であって、(A)は(B)における線b−b’に沿って見た断面図であり、(B)は上面図である。
【図3】(A)は電極が作られた後の従来のInGaN LEDのエピタキシャル構造を示す上面図であり、(B)は本発明の一実施例によるトレンチエッチング工程後のエピタキシャル構造を示す上面図である。
【図4】(A)は電極が作られた後の別の従来のInGaN LEDのエピタキシャル構造を示す上面図であり、(B)は本発明の一実施例によるトレンチエッチング工程が実行された後のエピタキシャル構造を示す上面図である。
【図5】(A)は電極が作られた後のさらに別の従来のInGaN LEDのエピタキシャル構造を示す上面図であり、(B)は本発明の一実施例によるトレンチエッチング工程が実行された後のエピタキシャル構造を示す上面図である。
【符号の説明】
110 基板
120 バッファ層
130 第1の極性の半導体層
140 第1の極性のクラッド層
150 活性層
160 第2の極性のクラッド層
170 第2の極性の高ドープコンタクト層
180 トレンチ
190 第1の極性の金属電極パッド
200a 第2の極性の透明電極
200b 第2の極性の金属電極パッド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a light emitting diode (LED) and a method of manufacturing the same, and more particularly, to a structure of a lateral current blocking LED and a method of manufacturing the same.
[0002]
[Prior art]
In recent years, great attention has been focused on light emitting devices using gallium nitride type semiconductors such as GaN, AlGaN, InGaN, and AlInGaN. Typically, most of the above types of light emitting devices are grown on electrically insulated sapphire substrates and are different from other light emitting devices that utilize conductive substrates. Since the sapphire substrate is an insulator, the electrodes cannot be formed directly on the substrate, but directly contact the P-type and N-type semiconductor layers individually to complete the manufacture of the light-emitting device formed on the sapphire substrate. There must be.
[0003]
Please refer to FIG. 1 (A) showing a cross-sectional view taken along line aa ′ in FIG. 1 (B) and FIG. 1 (B) showing a top view of a conventional nitride LED. The structure shown in FIG. 1 can be formed through the following steps. First, the buffer layer 20 is epitaxially grown on the substrate 10, and the material of the substrate 10 is, for example, sapphire, and the material of the buffer layer 20 is, for example, AlN or GaN. Then first polarity semiconductor layer 30 (e.g., (Al x Ga l-x) y In l-y N (0 ≦ x ≦ 1; is made of a material 0 ≦ y ≦ 1)), the first the polarity of the cladding layer 40; (for example (Al x Ga l-x) y in l-y N (0 ≦ x ≦ 1 is made of a material 0 ≦ y ≦ 1)), heterostructure or a quantum well to double a, (Al x Ga l-x ) y in l-y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1) active layer 50 including the second polarity of the cladding layer 60 (e.g., (Al x Ga l−x ) y In 1−y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1), and a highly doped contact layer 70 of the second polarity (eg, (Al x Gal − x ) y In 1-y N (made of a material of 0 ≦ x ≦ 1; 0 ≦ y ≦ 1) continues to be epitaxially formed on the buffer layer 20. Lengthened.
[0004]
Thereafter, the epitaxial layer is etched or polished by dry etching, wet etching, or mechanical cutting and polishing, thereby exposing a part of the semiconductor layer 30 of the first polarity. Next, a first polarity metal electrode pad 90 is attached to the exposed portion of the first polarity semiconductor layer 30 by thermal evaporation, electron beam evaporation, sputtering, or the like, and the second polarity transparent electrode 100a and the second polarity A polar metal electrode layer 100b is subsequently applied over the second polar contact layer 70.
[0005]
Although the second polarity transparent electrode 100a having the above structure can improve the current spreading effect, in fact, most of the current flows between the second polarity transparent electrode 100a and the first polarity metal electrode pad 90. The current does not flow through most of the active layer 50 due to the current flowing along the line between the transparent electrodes 100a having almost the second polarity and the metal having the first polarity. Concentrating between the electrode layer 90) and the lifetime of the LED is reduced (due to the over-concentrated current that causes the local area to become too hot). Although the current spreading effect can be improved by increasing the thickness of the transparent electrode 100a of the second polarity, the transparency of the transparent electrode 100a of the second polarity is reduced as a result.
[0006]
Furthermore, if the photons generated by the active layer 50 are emitted at a large angle to the surface of the LED, total internal reflection losses readily occur, and therefore only those photons emitted at a large angle from near the sides of the LED are more easily illuminated by the LED. Radiated out of the
[0007]
Accordingly, there are many related patents relating to the above prior art. For example, Toshiba has been working on a regrowth method that confines current (US Pat. Nos. 6,059,009 and 6,087,037), where an insulating layer is applied to the semiconductor element to achieve the effect of vertically confining current. However, the above steps are complex and therefore increase costs. LumiLed used p-metal electrode etching to improve current distribution and luminous efficiency, thereby achieving high luminous efficiency (Patent Documents 3, 4, and 5). However, the etching depth is not sufficient, so that the current path is not reliably ensured. Boston University in the United States has announced that photonic crystals can be applied to LEDs (Patent Document 6), but the drawback is that the etching depth is too deep to manufacture.
[0008]
[Patent Document 1]
US Patent No. 5,732,098 [Patent Document 2]
US Patent No. 6,229,893 [Patent Document 3]
US Patent No. 6,291,839 [Patent Document 4]
US Patent No. 6,287,947 [Patent Document 5]
US Patent No. 6,258,618 [Patent Document 6]
US Patent No. 5,955,749
[Problems to be solved by the invention]
As mentioned above, there are disadvantages associated with conventional nitride LEDs.
Therefore, an object of the present invention is that the etching of the trench used to block the lateral current can be performed simultaneously with the step of exposing the semiconductor layer of the first polarity (to make the metal electrode pad of the first polarity), Accordingly, it is an object of the present invention to provide a lateral current cutoff LED and a method of manufacturing the same, characterized in that the manufacturing cost does not increase.
[0010]
Another object of the present invention is to provide a lateral current blocking LED, wherein a trench is disposed between two metal electrodes in order to increase the possibility of current passing through an active layer (light emitting region) and the brightness of the LED. And a method of manufacturing the same.
[0011]
Yet another object of the present invention is a lateral current blocking LED and a method of manufacturing the same, wherein the trench is used to provide an opportunity for photons to be emitted from the side of the trench, and in particular, was originally totally internally reflected. A photon is generated from an active region in the central region of the element, which emits some photons through the trench from the sides of the trench, thereby increasing the output efficiency of the photons generated from the active layer. An object of the present invention is to provide a current interruption LED and a manufacturing method thereof.
[0012]
[Means for Solving the Problems]
According to the above object of the present invention, the present invention comprises a substrate, a first polarity semiconductor layer disposed on the substrate, and an active layer disposed on a portion of the first polarity semiconductor layer. A semiconductor epitaxial structure comprising a layer, at least one trench, wherein the depth of the at least one trench reaches at least the active layer, and a first epitaxial layer disposed on another portion of the semiconductor layer of the first polarity. A metal electrode pad of a polarity and a metal electrode pad of a second polarity, wherein the metal electrode pad of the first polarity and the metal electrode pad of the second polarity are disposed on the semiconductor epitaxial structure and have at least one trench. And a metal electrode pad of a second polarity such that they are disposed on opposite sides of the lateral current interruption LED.
[0013]
According to the above object of the present invention, the present invention further provides a method for manufacturing a lateral current interruption LED, which includes the following steps. That is, first, a substrate is provided, then a semiconductor layer of a first polarity is formed on the substrate, then a semiconductor epitaxial structure is formed on the semiconductor layer of the first polarity, and then a first layer of the semiconductor epitaxial structure is formed. Removing a portion of the semiconductor layer of the first polarity, thereby exposing a portion of the semiconductor layer of the first polarity, and then removing a second portion of the semiconductor epitaxial structure, thereby forming at least one trench in the semiconductor epitaxial structure. In this case, the semiconductor epitaxial structure includes an active layer, and the depth of at least one trench reaches at least the active layer, and thereafter, a first polarity metal electrode pad and a second polarity metal electrode pad are respectively formed. A first polarity metal electrode pad and a second polarity gold are formed on the exposed portion of the first polarity semiconductor layer and on the third portion of the semiconductor epitaxial structure. Electrode pads are disposed on opposite sides of the at least one trench.
[0014]
BRIEF DESCRIPTION OF THE DRAWINGS The foregoing aspects of the invention and many of the attendant advantages will be more readily appreciated by reference to the following detailed description when taken in conjunction with the accompanying drawings.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the conventional structure of III-nitride LED has many drawbacks, the present invention provides a simple manufacturing method of nitride LED, thereby overcoming the drawbacks resulting from the conventional structure. However, the scope of application of the present invention includes LEDs where the positive and negative electrodes are located on the same side of the substrate, and is not limited to nitride LEDs.
[0016]
FIG. 2 shows a nitride LED according to one embodiment of the present invention. FIG. 2A is a cross-sectional view taken along line bb ′ in FIG. The structure shown in FIGS. 2A and 2B can be formed through the following steps. First, a low temperature buffer layer 120 is epitaxially grown on a substrate 110, in which case the material of the substrate 110 is, for example, sapphire, and the material of the buffer layer 120 is, for example, AlN or GaN. Then first polarity semiconductor layer 130 (e.g., (Al x Ga l-x) y In l-y N (0 ≦ x ≦ 1; is made of a material 0 ≦ y ≦ 1)), the first Polar cladding layer 140 (eg, made of a material of (Al x Gal x ) y In 1 -y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1), double heterostructure or quantum well And an active layer 150 including (Al x Gal x ) y In 1 -y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1), a second polarity cladding layer 160 (for example, (Al x Ga 1-x ) y In 1-y N (0 ≦ x ≦ 1; 0 ≦ y ≦ 1), and a highly doped contact layer 170 of the second polarity (eg, (Al x Gal 1)). −x ) y In 1−y N (made of a material of 0 ≦ x ≦ 1; 0 ≦ y ≦ 1) continues on the buffer layer 120 Be grown kishal. The first polarity is positive or negative, and the second polarity is different from the first polarity.
[0017]
After the above-mentioned epitaxial structure is completed, the epitaxial structure is etched or polished by dry etching, wet etching, or mechanical cutting and polishing, thereby exposing a part of the semiconductor layer 130 of the first polarity and forming two electrodes. Between them (ie, below the second polarity contact layer 170), where the trench 180 blocks lateral current, thereby increasing the likelihood of current passing through the active layer 150. , And thus to increase the brightness. The trench 180 can be formed simultaneously with the process of exposing the first polarity semiconductor layer 130 by dry etching or wet etching (to form the first polarity metal electrode pad 190), thereby not increasing the production cost. Alternatively, trench 180 can also be formed by laser, water jet, mechanical drill, or the like.
[0018]
The depth of the trench 180 reaches at least the active layer 150, and the number of the trenches 180 is one or more. Further, at least one trench 180 can be arranged in an individual arrangement, an adjacent arrangement, or a staggered arrangement. Further, as shown in the top view of FIG. 2B, the shape of the trench 180 is not limited thereto, and may be a circle, a rectangle, an ellipse, or the like. In addition, the insulating dielectric material is further filled into the trench 180, thereby reducing short circuit events. In addition, the trench 180 is used to provide an opportunity for photons to be emitted from the sides of the trench 180, in which case, in particular, some photons that are originally totally internally reflected may pass through the trench 180 through the sides of the trench 180. Photons are generated from the active layer 150 that emits light from the active layer.
[0019]
Thereafter, a first polarity metal electrode pad 190 is attached on the exposed portion of the first polarity semiconductor layer 130 by thermal evaporation, electron beam evaporation, sputtering, or the like, and the second polarity transparent electrode 200a is formed. Then, the second polarity metal electrode pad 200b is continuously attached on the second polarity contact layer 170.
[0020]
Please refer to FIGS. 3A and 3B. FIG. 3A is a top view of the epitaxial structure of the conventional InGaN LED after the electrodes are formed, and FIG. 3B is a view after the trench 180 is etched according to the present embodiment. It is a top view of the epitaxial structure shown to A). Under the condition that the current is 20 mA and the forward voltage Vf is 3.5 V, the relative intensity of the optical output is increased from the original 20.3 to 21.52 (6.0% increase).
[0021]
Please refer to FIGS. 4A and 4B. FIG. 4A is a top view of another conventional InGaN LED epitaxial structure after the electrodes are formed, and FIG. 4B is a view after the trench 180 is etched according to the present embodiment. FIG. 4B is a top view of the epitaxial structure shown in FIG. Under the condition that the current is 20 mA and the forward voltage Vf is 3.5 V, the relative intensity of the optical output is increased from the original 24.0 to 24.4 (1.7% increase).
[0022]
Please refer to FIGS. 5A and 5B. FIG. 5A is a top view of another conventional InGaN LED epitaxial structure after the electrodes are formed, and FIG. 5B is a view after the trench 180 is etched according to the present embodiment. FIG. 6 is a top view of the epitaxial structure shown in FIG. Under the conditions of a current of 20 mA and a forward voltage Vf of 3.5 V, the relative intensity of the optical output is increased from the original 24.5 to 25.5 (4.1% increase).
[0023]
In summary, an advantage of the present invention is that the etching of the trench used to block the lateral current exposes the semiconductor layer of the first polarity (to make the metal electrode pad of the first polarity) at the same time. It is an object of the present invention to provide a lateral current interruption LED and a method for manufacturing the same, which can be performed and thereby does not increase the production cost.
[0024]
Another advantage of the present invention is that a lateral current blocking LED in which a trench is disposed between two metal electrodes, thereby increasing the likelihood of current passing through the active layer (light emitting region) and increasing the brightness of the LED And a method for producing the same.
[0025]
Yet another advantage of the present invention is that the trench is used to provide an opportunity for photons to be emitted from the sides of the trench, wherein the photons originate from an active region in the central region of the element. An object of the present invention is to provide a lateral current interruption LED and a method of manufacturing the same. In particular, some photons that are originally totally reflected can be emitted through the trench from the sides of the trench, thereby increasing the output efficiency of the photons arising from the active layer.
[0026]
It will be appreciated by those skilled in the art that the above preferred embodiments of the present invention are illustrative of the present invention rather than limiting of the present invention. It is intended to cover various modifications and similar arrangements, which fall within the spirit and scope of the appended claims, the scope of which is to cover such modifications and similar structures. Should be given the broadest interpretation.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view taken along a line aa ′, and FIG. 1B is a top view showing a conventional nitride LED.
FIGS. 2A and 2B are diagrams illustrating a lateral current blocking nitride LED according to an embodiment of the present invention, wherein FIG. 2A is a cross-sectional view taken along line bb ′ in FIG. Is a top view.
FIG. 3A is a top view showing an epitaxial structure of a conventional InGaN LED after electrodes are formed, and FIG. 3B is a top view showing an epitaxial structure after a trench etching step according to one embodiment of the present invention. FIG.
FIG. 4A is a top view showing another conventional InGaN LED epitaxial structure after an electrode is formed, and FIG. 4B is a view after a trench etching process according to an embodiment of the present invention is performed. 3 is a top view showing the epitaxial structure of FIG.
FIG. 5A is a top view illustrating an epitaxial structure of still another conventional InGaN LED after electrodes are formed, and FIG. 5B is a diagram illustrating a trench etching process according to an embodiment of the present invention. It is a top view which shows the epitaxial structure after.
[Explanation of symbols]
110 substrate 120 buffer layer 130 first polarity semiconductor layer 140 first polarity cladding layer 150 active layer 160 second polarity cladding layer 170 second polarity highly doped contact layer 180 trench 190 first polarity Metal electrode pad 200a Transparent electrode 200b of second polarity Metal electrode pad of second polarity

Claims (2)

横電流遮断発光ダイオードであって、
基板と、
基板上に配置された第1の極性の半導体層と、
第1の極性の半導体層の一つの部分の上に配置され、活性層、ならびに少なくとも一つのトレンチを有する半導体エピタキシャル構造であって、少なくとも一つのトレンチの深さが少なくとも活性層に達するような半導体エピタキシャル構造と、
第1の極性の半導体層の他の部分の上に配置された第1の極性の金属電極パッドと、
半導体エピタキシャル構造の上に配置された第2の極性の金属電極パッドであって、第1の極性の金属電極パッドと第2の極性の金属電極パッドが少なくとも一つのトレンチの互いに反対側に配置されるような第2の極性の金属電極パッドと、
を備えることを特徴とする横電流遮断発光ダイオード。
A lateral current blocking light emitting diode,
Board and
A first polarity semiconductor layer disposed on the substrate;
A semiconductor epitaxial structure having an active layer and at least one trench disposed over a portion of the first polarity semiconductor layer, wherein the depth of the at least one trench reaches at least the active layer An epitaxial structure;
A first polarity metal electrode pad disposed on another portion of the first polarity semiconductor layer;
A second polarity metal electrode pad disposed on the semiconductor epitaxial structure, wherein the first polarity metal electrode pad and the second polarity metal electrode pad are disposed on opposite sides of at least one trench. A second polarity metal electrode pad,
A transverse current blocking light emitting diode comprising:
横電流遮断LEDの製造方法であって、
基板を提供するステップと、
基板に第1の極性の半導体層を形成するステップと、
第1の極性の半導体層の上に半導体エピタキシャル構造を形成するステップと、
半導体エピタキシャル構造の第1の部分を除去し、それにより第1の極性の半導体層の一つの部分を露出するステップと、
半導体エピタキシャル構造の第2の部分を除去し、それにより半導体エピタキシャル構造に少なくとも一つのトレンチを形成するステップであって、半導体エピタキシャル構造が活性層を有し、少なくとも一つのトレンチの深さが少なくとも活性層に達するようなステップと、
第1の極性の金属電極パッドと第2の極性の金属電極パッドをそれぞれ第1の極性の半導体層の露出部の上と半導体エピタキシャル構造の第3の部分の上に形成するステップであって、第1の極性の金属電極パッドと第2の極性の金属電極パッドが少なくとも一つのトレンチの互いに反対側に配置されるようなステップと、
を含むことを特徴とする横電流遮断発光ダイオードの製造方法。
A method of manufacturing a lateral current cutoff LED,
Providing a substrate;
Forming a semiconductor layer of a first polarity on a substrate;
Forming a semiconductor epitaxial structure on the semiconductor layer of the first polarity;
Removing a first portion of the semiconductor epitaxial structure, thereby exposing a portion of the first polarity semiconductor layer;
Removing a second portion of the semiconductor epitaxial structure, thereby forming at least one trench in the semiconductor epitaxial structure, wherein the semiconductor epitaxial structure has an active layer and the depth of the at least one trench is at least active. Steps to reach layers,
Forming a first polarity metal electrode pad and a second polarity metal electrode pad on the exposed portion of the first polarity semiconductor layer and on the third portion of the semiconductor epitaxial structure, respectively; A first polarity metal electrode pad and a second polarity metal electrode pad are disposed on opposite sides of at least one trench;
A method for manufacturing a lateral current blocking light emitting diode, comprising:
JP2003016027A 2002-11-12 2003-01-24 Horizontal current shielding light emitting diode led and its manufacturing method Pending JP2004165590A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091133203A TWI222756B (en) 2002-11-12 2002-11-12 Lateral current blocking light emitting diode and method of making the same

Publications (1)

Publication Number Publication Date
JP2004165590A true JP2004165590A (en) 2004-06-10

Family

ID=32228199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016027A Pending JP2004165590A (en) 2002-11-12 2003-01-24 Horizontal current shielding light emitting diode led and its manufacturing method

Country Status (3)

Country Link
US (1) US6781147B2 (en)
JP (1) JP2004165590A (en)
TW (1) TWI222756B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597166B1 (en) 2005-05-03 2006-07-04 삼성전기주식회사 Flip chip light emitting diode and method of manufactureing the same
JP2006310785A (en) * 2005-04-28 2006-11-09 Epitech Technology Corp Light emitting diode for suppressing lateral current and manufacturing method thereof
KR100665284B1 (en) 2005-11-07 2007-01-09 삼성전기주식회사 Semiconductor light emitting device
JP2012033953A (en) * 2011-10-07 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
WO2012020896A1 (en) * 2010-08-11 2012-02-16 Seoul Opto Device Co., Ltd. Uv light emitting diode and method of manufacturing the same
TWI422065B (en) * 2010-08-03 2014-01-01 Ind Tech Res Inst Light emitting diode chip, package structure of the same, and fabricating method thereof
JP2014175516A (en) * 2013-03-11 2014-09-22 Stanley Electric Co Ltd Light emitter
JP2015005697A (en) * 2013-06-24 2015-01-08 スタンレー電気株式会社 Light emitting element
JP2015005701A (en) * 2013-06-24 2015-01-08 スタンレー電気株式会社 Light emitting element
US9178107B2 (en) 2010-08-03 2015-11-03 Industrial Technology Research Institute Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same
JP2016219453A (en) * 2015-05-14 2016-12-22 スタンレー電気株式会社 Semiconductor light emitting element and semiconductor light emitting element array
KR101856213B1 (en) 2011-06-24 2018-05-09 엘지이노텍 주식회사 Light emitting device and method for fabricating the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614056B1 (en) * 1999-12-01 2003-09-02 Cree Lighting Company Scalable led with improved current spreading structures
KR100513923B1 (en) * 2004-08-13 2005-09-08 재단법인서울대학교산학협력재단 Growth method of nitride semiconductor layer and light emitting device using the growth method
US20090179211A1 (en) * 2005-07-14 2009-07-16 Tae-Kyung Yoo Light emitting device
JP5025932B2 (en) * 2005-09-26 2012-09-12 昭和電工株式会社 Manufacturing method of nitride semiconductor light emitting device
TWI398015B (en) * 2006-12-26 2013-06-01 Method for manufacturing light-emitting diode
FI121902B (en) * 2007-06-20 2011-05-31 Optogan Oy Light-emitting diode
KR100941616B1 (en) * 2008-05-15 2010-02-11 주식회사 에피밸리 Semiconductor light emitting device
JP2010080950A (en) * 2008-08-29 2010-04-08 Semiconductor Energy Lab Co Ltd Solid-state dye laser
US8494021B2 (en) * 2008-08-29 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Organic laser device
US8431939B2 (en) * 2009-09-30 2013-04-30 Semicon Light Co., Ltd. Semiconductor light-emitting device
TWI398965B (en) * 2009-11-25 2013-06-11 Formosa Epitaxy Inc Light emitting diode chip and package structure thereof
JP2013008818A (en) * 2011-06-24 2013-01-10 Toshiba Corp Semiconductor light-emitting element
TW201318147A (en) * 2011-10-26 2013-05-01 Phostek Inc A light emitting diode array
SG11201408080UA (en) 2012-06-20 2015-01-29 Univ Nanyang Tech A light-emitting device
FR3032064B1 (en) * 2015-01-22 2018-03-09 Aledia OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
DE102015111493B4 (en) * 2015-07-15 2021-09-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Component with improved decoupling properties
CN105742421A (en) * 2016-04-22 2016-07-06 厦门乾照光电股份有限公司 Normal LED (light emitting diode) and manufacturing process therefor
CN108565320B (en) * 2018-01-12 2019-09-27 厦门乾照光电股份有限公司 A kind of light emitting diode and preparation method thereof
TWI680601B (en) * 2018-07-16 2019-12-21 友達光電股份有限公司 Light emitting device, display apparatus and manufacturing methods of light emitting device and display apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413333A3 (en) * 1989-08-18 1991-07-24 Hitachi, Ltd. A superconductized semiconductor device
US5404373A (en) * 1991-11-08 1995-04-04 University Of New Mexico Electro-optical device
US5422904A (en) * 1991-12-31 1995-06-06 Biota Corp. Method of and means for controlling the electromagnetic output power of electro-optic semiconductor devices
US5311533A (en) * 1992-10-23 1994-05-10 Polaroid Corporation Index-guided laser array with select current paths defined by migration-enhanced dopant incorporation and dopant diffusion
JPH07226565A (en) * 1994-02-15 1995-08-22 Mitsubishi Electric Corp Semiconductor device and its manufacture
US5483085A (en) * 1994-05-09 1996-01-09 Motorola, Inc. Electro-optic integrated circuit with diode decoder
US5650641A (en) * 1994-09-01 1997-07-22 Toyoda Gosei Co., Ltd. Semiconductor device having group III nitride compound and enabling control of emission color, and flat display comprising such device
US5708280A (en) * 1996-06-21 1998-01-13 Motorola Integrated electro-optical package and method of fabrication
US5757836A (en) * 1996-07-01 1998-05-26 Motorola, Inc. Vertical cavity surface emitting laser with laterally integrated photodetector
JPH1075009A (en) * 1996-08-30 1998-03-17 Nec Corp Optical semiconductor device and its manufacture
US5798535A (en) * 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
SG74039A1 (en) * 1998-01-21 2000-07-18 Inst Materials Research & Eng A buried hetero-structure inp-based opto-electronic device with native oxidized current blocking layer
JP3941296B2 (en) * 1999-09-20 2007-07-04 三菱電機株式会社 Modulator, semiconductor laser device with modulator, and manufacturing method thereof
TW474033B (en) * 2000-11-03 2002-01-21 United Epitaxy Co Ltd LED structure and the manufacturing method thereof
KR100708107B1 (en) * 2000-12-19 2007-04-16 삼성전자주식회사 Semiconductor light-emitting device having improved electro-optical characteristics and the manufacturing method thereof
US6445007B1 (en) * 2001-03-19 2002-09-03 Uni Light Technology Inc. Light emitting diodes with spreading and improving light emitting area
US6468824B2 (en) * 2001-03-22 2002-10-22 Uni Light Technology Inc. Method for forming a semiconductor device having a metallic substrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310785A (en) * 2005-04-28 2006-11-09 Epitech Technology Corp Light emitting diode for suppressing lateral current and manufacturing method thereof
KR100597166B1 (en) 2005-05-03 2006-07-04 삼성전기주식회사 Flip chip light emitting diode and method of manufactureing the same
KR100665284B1 (en) 2005-11-07 2007-01-09 삼성전기주식회사 Semiconductor light emitting device
US9178107B2 (en) 2010-08-03 2015-11-03 Industrial Technology Research Institute Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same
TWI422065B (en) * 2010-08-03 2014-01-01 Ind Tech Res Inst Light emitting diode chip, package structure of the same, and fabricating method thereof
US8759865B2 (en) 2010-08-03 2014-06-24 Industrial Technology Research Institute Light emitting diode chip, light emitting diode package structure, and method for forming the same
WO2012020896A1 (en) * 2010-08-11 2012-02-16 Seoul Opto Device Co., Ltd. Uv light emitting diode and method of manufacturing the same
KR101856213B1 (en) 2011-06-24 2018-05-09 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
JP2012033953A (en) * 2011-10-07 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP2014175516A (en) * 2013-03-11 2014-09-22 Stanley Electric Co Ltd Light emitter
JP2015005701A (en) * 2013-06-24 2015-01-08 スタンレー電気株式会社 Light emitting element
JP2015005697A (en) * 2013-06-24 2015-01-08 スタンレー電気株式会社 Light emitting element
JP2016219453A (en) * 2015-05-14 2016-12-22 スタンレー電気株式会社 Semiconductor light emitting element and semiconductor light emitting element array

Also Published As

Publication number Publication date
US6781147B2 (en) 2004-08-24
US20040089861A1 (en) 2004-05-13
TWI222756B (en) 2004-10-21
TW200408144A (en) 2004-05-16

Similar Documents

Publication Publication Date Title
JP2004165590A (en) Horizontal current shielding light emitting diode led and its manufacturing method
US7544971B2 (en) Lateral current blocking light-emitting diode and method for manufacturing the same
KR101007130B1 (en) Light emitting device and method for fabricating the same
US9425361B2 (en) Light-emitting device
JP2828187B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2011071540A (en) Manufacturing method of nitride semiconductor light emitting element
US10811561B2 (en) Ultraviolet LED chip and manufacturing method thereof
JPH08250768A (en) Semiconductor optical element
US20130015465A1 (en) Nitride semiconductor light-emitting device
CN102117870A (en) Vertical light emitting diode and manufacturing method of the same
US11784210B2 (en) Light-emitting device and manufacturing method thereof
US20240297207A1 (en) Light emitting device
JP2007207869A (en) Nitride semiconductor light-emitting device
KR101138943B1 (en) luminescence device and Method of manufacturing the same
KR100744941B1 (en) Electrode structure, semiconductor light-emitting device provided with the same and method for manufacturing the same
KR20110091245A (en) Semiconductor light emitting device and manufacturing method of the same
KR100599055B1 (en) Semiconductor light emitting device
KR102234117B1 (en) Light emitting device and lighting system
KR101340322B1 (en) Lateral power LED
TWI786276B (en) Manufacturing method of light-emitting device
KR102462718B1 (en) Semiconductor device
KR100647017B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
KR102224127B1 (en) Light emitting device and lighting system
TWI584499B (en) Semiconductor light emitting device
KR20100074091A (en) Luminescence device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051205