JP2004163585A - 波長変換素子 - Google Patents
波長変換素子 Download PDFInfo
- Publication number
- JP2004163585A JP2004163585A JP2002328092A JP2002328092A JP2004163585A JP 2004163585 A JP2004163585 A JP 2004163585A JP 2002328092 A JP2002328092 A JP 2002328092A JP 2002328092 A JP2002328092 A JP 2002328092A JP 2004163585 A JP2004163585 A JP 2004163585A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical waveguide
- semiconductor
- wavelength conversion
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
【解決手段】波長変換素子30は、第1及び第2の光導波路27、28と、前記第1及び第2の光導波路の両端でそれぞれ結合され、該結合部からそれぞれ互いに反対方向に延在する第3及び第4の光導波路24b、26bと、前記第1及び第2の光導波路にそれぞれ挿入されている第1及び第2の半導体光増幅部20a、20bと、前記第4の光導波路と前記第1の半導体光増幅器との間の前記第1の光導波路に結合されている第5の光導波路26aと、光を出力する光源22と、一方の端部が前記光源に接続され、もう一方の端部が前記第1の半導体光増幅部を挟んで前記第5の光導波路と反対側の前記第1の光導波路に結合された第6の光導波路24aとを備えることを特徴とする。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、光通信に使用される波長変換素子、特に光位相変調通信用の波長変換素子に関する。
【0002】
【従来の技術】
コヒーレント光通信や光クロスコネクト等の光位相変調通信に用いられる波長変換素子には、光電変換方式、光制御光ゲート方式等の種々の方式が用いられる。特に半導体光増幅器(Semiconductor Optical Amplifier:SOA)を用いた波長変換方法が研究されており、マッハツエンダ干渉計を構成する2本のアーム(光導波路)に半導体光増幅器がそれぞれ挿入された相互位相変調型の波長変換素子がある(例えば、特許文献1及び非特許文献1参照。)。その構造は、マッハツェンダ干渉計を基本としており、同一の光学長さを有する2本のアームが並列に延在し、両端でそれぞれ1本の光導波路に結合されている。2本のアームには上述のように半導体光増幅器がそれぞれ挿入されている。また、波長λ1の入力光がもう一本の光導波路から一方のアームを介して半導体光増幅器に入力される。さらに、2本のアームの一端側の一本の光導波路から波長λ1とは異なる波長λ2の連続光が注入され、2本のアームの他端側の1本の光導波路から波長λ2の出力光が出力される。
【0003】
上記波長変換素子において波長変換が行われるしくみについて説明する。この波長変換素子では、強度変調された波長λ1の入力光の強度変化を、波長λ1とは異なる波長λ2の連続光の位相変化に変換し、次いで、変換前の波長λ2の連続光との位相差による干渉効果を用いて強度変化に変換して波長λ2の出力光を得る。
(1)まず、2つの半導体光増幅器のうち、一方の半導体光増幅器に外部から波長λ1の強度変調された信号光が入力される。
(2)同時に、2つの半導体光増幅器のそれぞれに波長λ2の連続光(CW光)が入力される。
(3)半導体光増幅器には外部からの電流注入によってキャリアが注入される。一方、入力光の強度変化に応じて誘導放出によりキャリア密度が減少し、半導体光増幅器の内部の屈折率がプラズマ効果で増大する。このため、マッハツェンダ干渉計を構成する2本のアームのうち一方のアームの実効的な光路長が長くなり、強度変化が波長λ2の連続光における位相変化へと変換される。その結果、両方のアームを通過する波長λ2の連続光の間に位相差を生じる。
(4)2本のアームが一本の光導波路に結合される際、干渉効果によって位相差が強度変化に変換されて波長λ2の出力光が得られる。
【0004】
【特許文献1】
米国特許第6069732号
【非特許文献1】
IEEE PTL,Vol.7,No.9(1995),pp995−997
【0005】
【発明が解決しようとする課題】
従来の波長変換素子では、入力光の強度が弱いとき、すなわち、強度変化が小さい場合に応答速度が遅くなるという問題があった。応答速度は入力光の強度変化に対する半導体光増幅器の内部のキャリア密度の変化の速さで決まり、キャリア寿命に反比例する。キャリア密度が1×1018cm−3程度の場合には、キャリア寿命は数nsであり、波長変換素子の応答速度は数十GHzである。これに対して、キャリア密度が1×1019cm−3の場合には、キャリア寿命は数十psとなり、応答速度は100GHz以上となる。そこで、応答速度を100GHz以上にするにはキャリア密度を1×1019cm−3以上に保つ必要があり、このためには半導体光増幅器の長さが1mm程度の場合には注入電流を数百mA以上にする必要があった。このように100GHz以上で高速動作させるには省電力化することができないという問題があった。
【0006】
そこで、本発明の目的は、入力光の強度が弱い場合にも、半導体光増幅器への注入電流を少なくして省電力化を実現すると共に、100GHz以上の高速動作を実現する波長変換素子を提供することである。
【0007】
【課題を解決するための手段】
本発明に係る波長変換素子は、第1及び第2の光導波路と、
前記第1及び第2の光導波路の両端でそれぞれ結合され、該結合部からそれぞれ互いに反対方向に延在する第3及び第4の光導波路と、
前記第1及び第2の光導波路にそれぞれ挿入されている第1及び第2の半導体光増幅部と、
前記第4の光導波路と前記第1の半導体光増幅器との間の前記第1の光導波路に結合されている第5の光導波路と、
光を出力する光源と、
一方の端部が前記光源に接続され、もう一方の端部が前記第1の半導体光増幅部を挟んで前記第5の光導波路と反対側の前記第1の光導波路に結合された第6の光導波路と
を備えることを特徴とする。
【0008】
【発明の実施の形態】
本発明の実施の形態に係る波長変換素子について添付図面を用いて説明する。なお、図面において、実質的に同一の部材には同一の符号を付している。
【0009】
実施の形態1.
本発明の実施の形態1に係る波長変換素子について、図1から図5を用いて説明する。図1は、この波長変換素子30の構成を示す概略図である。図2は、同一の半導体基板上にモノリシック集積された波長変換素子30の構成を示す斜視図である。また、図3、図4及び図5は、それぞれ図2のA−A’線、B−B’線及びC−C’線に沿った断面図である。この波長変換素子30は、マッハツェンダ光学干渉計の構成を基本としており、同一の光学長さを有する第1及び第2の光導波路(アーム)が配置され、2本の光導波路の両端の分岐・結合部25a、25bでそれぞれ一本の第3及び第4の光導波路24b、26bに結合されている。また、光導波路24b、26bは、分岐・結合部25a、25bからそれぞれ反対方向に延在している。一方、2本の光導波路27、28には、第1及び第2の半導体光増幅部20a、20bがそれぞれ挿入されている。また、第1の半導体光増幅部20aと第4の光導波路26bとの間の第1の光導波路27に第5の光導波路26aが結合されている。さらに、励起光を出力する半導体レーザ部22を備える。またさらに、一方の端部が半導体レーザ部22に接続され、もう一方の端部が第1の半導体光増幅部20aを挟んで第5の光導波路26aと反対側の第1の光導波路27に結合された第6の光導波路24aを備える。
【0010】
なお、図1に示すように、第7及び第8の光導波路24c、26cは、第3及び第4の光導波路24b、26bを結ぶ直線について、入力光λ1が入力される第5の光導波路26a及び励起光λ3が入力される第6の光導波路24aと対称となる位置に設けられている。各分岐・結合部におけるバランスを保つためには、第7及び第8の光導波路24c、26cを設けることが好ましい。
【0011】
この波長変換素子は、半導体光増幅部20a、20b、半導体レーザ部22及び光導波路部24、26が同一の半導体基板上にモノリシック集積されている。その断面構造について説明する。まず、図3に示すように、光導波路部24bは、n−InP基板1の上に、InGaAsP光導波層2、p−InPクラッド層3、p−InPコンタクト層4及びSiO2絶縁膜8が形成されて構成されている。さらに、該光増幅部20aの両サイドには、n−InP基板1の上にp−InP電流ブロック層5、n−InP電流ブロック層6、p−InP電流ブロック層7が順に積層されている。
【0012】
また、図4に示すように、半導体光増幅部20aは、n−InP基板1の上にInGaAsP多重量子井戸活性層11、p−InPクラッド層3、p−InPコンタクト層4、p−InGaAsコンタクト層14、及びアノード電極10が順に積層されている。なお、アノード電極10は、SiO2絶縁膜8によって電流を注入する領域が仕切られている。また、n−InP1基板の裏面にはカソード電極9が形成されている。さらに、該光増幅素子20aの両サイドには、光導波路部分と同様に、n−InP基板1の上にp−InP電流ブロック層5、n−InP電流ブロック層6、p−InP電流ブロック層7が順に積層されており、上下から挟むアノード電極10とカソード電極9との間に流される注入電流を光増幅素子20aの部分に集中させることができる。
【0013】
さらに、図5に示すように、半導体レーザ部22aは、n−InP基板1の上にInGaAsP多重量子井戸活性層11、p−InPクラッド層3、InGaAsP回折格子12、p−InPクラッド層13、p−InPコンタクト層4、p−InGaAsコンタクト層14及びアノード電極10が順に積層されている。なお、アノード電極10は、SiO2絶縁膜8によって電流を注入する領域が仕切られている。また、n−InP基板1の裏面にはカソード電極9が形成されている。さらに、該光増幅素子20aの両サイドには、光導波路部分と同様に、n−InP基板1の上にp−InP電流ブロック層5、n−InP電流ブロック層6、p−InP電流ブロック層7が順に積層されており、上下から挟むアノード電極10とカソード電極9との間に流される注入電流を半導体レーザ部22aの部分に集中させることができる。なお、回折格子12は、分布帰還型、位相シフト分布帰還型、分布反射型等のいずれであってもよい。
【0014】
なお、この波長変化素子30は、各構成部分である半導体光増幅部20a、20b、半導体レーザ部22a、及び光導波路部24、26とを、端面結合法(バットジョイント(butt joint))を用いて一つの半導体基板上にモノリシック集積することができる。また、それぞれの構成部分は、例えば、選択MOVPE法等の通常の方法で作製することができる。なお、上記方法以外の方法で作製してもよい。
【0015】
次に、この波長変換素子30における入出力の経路について説明する。まず、強度変調された波長λ1の入力光が第5の光導波路26aを介して第1の半導体光増幅部20aに入力される。また、半導体レーザ部22から第6の光導波路24aを介して第1の半導体光増幅部20aに励起光が注入される。さらに、波長λ1と異なる波長λ2の連続光(CW光)λ2が、第3の光導波路24bから分岐・結合部25aで2分岐されて2本の光導波路27、28を介して、半導体光増幅部20a、20bにそれぞれ注入される。そして、2つの半導体光増幅部20a、20bの出力は光導波路27、28から分岐・結合部25bで結合されて光導波路26bから波長λ2の出力光が出力される。
【0016】
さらに、この波長変換素子30の波長変換動作について説明する。この波長変換素子30はマッハツェンダ型光学干渉計を用い、強度変調された入力光λ1の強度変化を連続光λ2の位相変化に変換し、次いで、2つの光導波路27、28間を通る連続光λ2の位相差による干渉効果で再び位相変化を強度変化に変換し、波長λ2に波長変換された出力光λ2を得ている。
(1)強度変調された波長λ1の入力光が光導波路26aから光導波路27を介して第1の半導体増幅部20aに入力される。
(2)上記入力光λ1の入力と同時に、光導波路24bから分岐・結合部25aを介してマッハツェンダ光学干渉計の2つの光導波路27、28に波長λ1とは異なる波長λ2の連続光(CW光)を入力する。
(3)上記連続光の入力と同時に、半導体レーザ部22から波長λ3のレーザ光を第1の半導体光増幅部20aに入力する。
(4)カソード電極9とアノード電極10との間に注入される電流によって、それぞれの半導体光増幅部20a、20bにキャリアが注入される。
【0017】
(5)さらに、上記入力光の入力と同時に、波長λ3の励起光を半導体光増幅部20aに入力する。これにより、キャリアの誘導放出によりキャリア寿命は数十psと短くなる。このため、外部からの入力光の強度変化によるキャリア密度の変化の速度は、励起光λ3を注入しない場合に比べて、100GHz以上と速くなる。この場合、誘導放出を生じさせるため、キャリア密度を1×1018cm−3程度となるように半導体光増幅部20aには約100mA以下の電流を注入すればよい。従って、100GHz以上の高速応答性を実現すると共に、励起光を用いない場合に比べて省電力化が可能となる。なお、励起光の波長λ3は、半導体光増幅部20aの波長可変帯域の上限λlong未満とする。即ち、λ3<λlongを満たす。
【0018】
(6)半導体光増幅部20aに入力する入力光λ1の強度が大きくなると、半導体光増幅部20aにおいて誘導放出によりキャリア密度が減少し、プラズマ効果によって半導体増幅部20aの内部の屈折率が増大する。その結果、半導体増幅部20aを含む光導波路27では、もう一方の光導波路28に比べて実効的な光路長が長くなり、強度変化が波長λ2の位相変化に変換される。その結果、2つの光導波路27、28間を通過するそれぞれの波長λ2の連続光の間には位相差が生じる。
【0019】
(7)2本の光導波路27、28が一本の光導波路26bに結合される際、それぞれの連続光λ2における位相差による干渉効果のため、位相差に対応して出力光の強度が変化する。これにより、位相差が強度変化に変換され、波長λ2の出力光が得られる。この場合、半導体光増幅部20a、20bの長さ及び注入電流を調整しておくことにより、入力光λ1と同一符号で強度変調されており、波長λ2に波長変換された出力光が得られる。例えば、入力光の強度レベルが0の場合に2つの光導波路27、28間での位相差が180°、強度レベルが1の時に位相差が0°となるように調整する。
また、実際には光導波路26bの出力には波長λ3の光も含まれるので、所望により波長λ2の出力光を選択的に透過させるフィルタを備えてもよい。
【0020】
実施の形態2.
本発明の実施の形態2に係る波長変換素子について、図6及び図7を用いて説明する。図6は、この波長変換素子30aの構成を示す概略図である。この波長変換素子30aは、実施の形態1に係る波長変換素子と比較すると、2つの半導体光増幅部20a、20bの両方に波長λ3、λ4の励起光をそれぞれ注入する第1及び第2の半導体レーザ部22a、22bがそれぞれ光導波路24a、24cを介して接続されている点で相違する。両方の半導体光増幅部20a、20bに励起光を注入することで様々な条件に合わせて波長変換の調整を容易にすることができる。なお、第2の光源22bから出力される励起光の波長λ4は、第2の半導体光増幅部20bの波長可変帯域の上限λlong’未満とする。即ち、λ4<λlong’を満たす。
【0021】
【発明の効果】
本発明の波長変換素子によれば、強度変調された入力光λ1を半導体光増幅部に入力すると同時に、光源から波長λ3の励起光を入力する。励起光の注入により、半導体光増幅部において、キャリアの誘導放出によりキャリア寿命は数十psと短くなる。このため、外部からの入力光λ1の強度変化に対するキャリア密度の変化の速度は、励起光λ3を注入しない場合に比べて、100GHz以上と速くなる。この場合、誘導放出を生じさせるため、キャリア密度を1×1018cm−3程度となるように半導体光増幅部には約100mA以下の電流を注入すればよい。従って、100GHz以上の高速応答性を実現すると共に、励起光を用いない場合に比べて省電力化が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る波長変換素子の構成を示す概略図である。
【図2】同一半導体基板上にモノリシック集積された図1の波長変換素子の構成を示す斜視図である。
【図3】図2のA−A’線に沿った断面図である。
【図4】図2のB−B’線に沿った断面図である。
【図5】図2のC−C’線に沿った断面図である。
【図6】本発明の実施の形態2に係る波長変換素子の構成を示す概略図である。
【図7】同一半導体基板上にモノリシック集積された図6の波長変換素子の構成を示す斜視図である。
【符号の説明】
1 InP基板、2 InGaAsP光導波層、3、13 InPクラッド層、4 p−InPコンタクト層、5、7 p−InP電流ブロック層、6 n−InP電流ブロック層、8 SiO2絶縁層、9 カソード電極、10 アノード電極、11 活性層(InGaAsP多重量子井戸層)、12 InGaAsP回折格子、14 p−InGaAsコンタクト層、20a、20b 半導体光増幅部、22、22a、22b 半導体レーザ部、24a、24b、24c 光導波路部、25a、25b 分岐・結合部、26a、26b、26c 光導波路部、27 第1の光導波路(アーム)、28 第2の光導波路(アーム)、30、30a 波長変換素子
Claims (6)
- 第1及び第2の光導波路と、
前記第1及び第2の光導波路の両端でそれぞれ結合され、該結合部からそれぞれ互いに反対方向に延在する第3及び第4の光導波路と、
前記第1及び第2の光導波路にそれぞれ挿入されている第1及び第2の半導体光増幅部と、
前記第4の光導波路と前記第1の半導体光増幅器との間の前記第1の光導波路に結合されている第5の光導波路と、
光を出力する光源と、
一方の端部が前記光源に接続され、もう一方の端部が前記第1の半導体光増幅部を挟んで前記第5の光導波路と反対側の前記第1の光導波路に結合された第6の光導波路と
を備えることを特徴とする波長変換素子。 - 前記第1及び第2の半導体光増幅部にそれぞれ第1及び第2の光導波路を介して光を注入する第1及び第2の光源を備えることを特徴とする請求項1に記載の波長変換素子。
- 前記第1及び第2の半導体光増幅部、前記半導体レーザ部及び前記光導波路が同一の半導体基板上にモノリシック集積されていることを特徴とする請求項1又は2に記載の波長変換素子。
- 前記光源は、回折格子を備えることを特徴とする請求項1から3のいずれか一項に記載の波長変換素子。
- 前記第4の光導波路からの出力から所定波長の出力光を選択的に透過させるフィルタをさらに備えることを特徴とする請求項1から4のいずれか一項に記載の波長変換素子。
- 前記第3及び第4の光導波路を結ぶ直線について、前記第5及び第6の光導波路と対称な位置に第7及び第8の光導波路を有することを特徴とする請求項1から5のいずれか一項に記載の波長変換素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328092A JP4448651B2 (ja) | 2002-11-12 | 2002-11-12 | 波長変換素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328092A JP4448651B2 (ja) | 2002-11-12 | 2002-11-12 | 波長変換素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004163585A true JP2004163585A (ja) | 2004-06-10 |
JP4448651B2 JP4448651B2 (ja) | 2010-04-14 |
Family
ID=32806486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002328092A Expired - Fee Related JP4448651B2 (ja) | 2002-11-12 | 2002-11-12 | 波長変換素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4448651B2 (ja) |
-
2002
- 2002-11-12 JP JP2002328092A patent/JP4448651B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4448651B2 (ja) | 2010-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6541898B2 (ja) | 半導体光増幅器およびその製造方法、光位相変調器 | |
JP2017219668A (ja) | 波長可変光源 | |
US20080273567A1 (en) | Hybrid waveguide systems and related methods | |
US9762029B2 (en) | Semiconductor laser and optical integrated light source including the same | |
US7466736B2 (en) | Semiconductor laser diode, semiconductor optical amplifier, and optical communication device | |
JP4906185B2 (ja) | 光半導体素子及び光半導体素子の変調方法 | |
JP3950028B2 (ja) | 光増幅器 | |
JP2018060974A (ja) | 半導体光集積素子 | |
JP6320192B2 (ja) | 波長可変光源および波長可変光源モジュール | |
JP2015167174A (ja) | 波長可変光源および波長可変光源モジュール | |
WO2019043917A1 (ja) | レーザ装置 | |
JP6610834B2 (ja) | 波長可変レーザ装置 | |
JP6245656B2 (ja) | 半導体レーザ素子 | |
JP6761392B2 (ja) | 半導体光集積素子 | |
JP2016149529A (ja) | 波長可変光源および波長可変光源モジュール | |
JP4448651B2 (ja) | 波長変換素子 | |
JP6761391B2 (ja) | 半導体光集積素子 | |
US6356382B1 (en) | Optical wavelength converter with active waveguide | |
JP6761390B2 (ja) | 半導体光集積素子 | |
JP6381507B2 (ja) | 光結合器、波長可変光源及び波長可変光源モジュール | |
US20230420912A1 (en) | Optical Transmitter | |
JP2013251424A (ja) | 光集積素子 | |
JP2018060973A (ja) | 半導体光集積素子およびこれを搭載した光送受信モジュール | |
JP2007248901A (ja) | 光トランシーバ | |
JPS62170907A (ja) | 集積化発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100125 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130129 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |