JP2004163390A - 非接触式表面測定装置及びその測定方法 - Google Patents
非接触式表面測定装置及びその測定方法 Download PDFInfo
- Publication number
- JP2004163390A JP2004163390A JP2003114917A JP2003114917A JP2004163390A JP 2004163390 A JP2004163390 A JP 2004163390A JP 2003114917 A JP2003114917 A JP 2003114917A JP 2003114917 A JP2003114917 A JP 2003114917A JP 2004163390 A JP2004163390 A JP 2004163390A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- frequency
- sample
- cantilever
- sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
- G01Q10/04—Fine scanning or positioning
- G01Q10/06—Circuits or algorithms therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
- G01Q60/32—AC mode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y35/00—Methods or apparatus for measurement or analysis of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/18—SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/24—AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
Landscapes
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Nanotechnology (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
【課題】一つの駆動器で表面の高さを追従する役割とカンチレバーをその固有振動数で加振する役割を同時にできること。
【解決手段】X−Yスキャナ11上に、その表面の形状を測定するための対象であるサンプル12が位置している。チップ14とサンプル12との間隔の変化による加振周波数fRの振幅の大きさがセンシング部13を介してセンシングされるので、周波数変換部18は、センシングされた信号を介して実際サンプル12とチップ14との間の距離を算出して、測定された実際サンプル12とチップ14との間の距離に対応する低周波信号fLを出力する。周波数発生部19は、カンチレバー15を加振するための加振周波数fRを出力し、周波数合成部20は、加振周波数fRと駆動部16のZ方向駆動の低周波信号fLを合成した後、このように合成された信号を介して駆動部16を駆動させる。
【選択図】 図1
【解決手段】X−Yスキャナ11上に、その表面の形状を測定するための対象であるサンプル12が位置している。チップ14とサンプル12との間隔の変化による加振周波数fRの振幅の大きさがセンシング部13を介してセンシングされるので、周波数変換部18は、センシングされた信号を介して実際サンプル12とチップ14との間の距離を算出して、測定された実際サンプル12とチップ14との間の距離に対応する低周波信号fLを出力する。周波数発生部19は、カンチレバー15を加振するための加振周波数fRを出力し、周波数合成部20は、加振周波数fRと駆動部16のZ方向駆動の低周波信号fLを合成した後、このように合成された信号を介して駆動部16を駆動させる。
【選択図】 図1
Description
【0001】
【発明が属する技術分野】
本発明は、周波数応答分離方式を用いた非接触式表面測定装置及びその測定方法に関し、より詳細には、周波数応答分離法を通して、非接触式で表面形状をAFM(Atomic Force Microscope)及びこれと類似する顕微鏡で一つの駆動器を利用して、表面の形状を追従する役割と駆動器に取り付けられているセンサを振動させる(加振する)役割とを同時に行うことのできる非接触式表面測定装置及びその測定方法に関する。
【0002】
【従来の技術】
ナノメートル水準の表面形状及び特性を測定するためのSPM(Scanning Probe Microscope)は、チップを表面に接触する接触式と接触しない非接触式との大きく2種類がある。
【0003】
非接触式において、カンチレバー(Cantilever)チップをその固有振動数で振動しなければならないが、このような振動のための駆動器には、広い周波数領域を有する圧電性物質(Piezoelectric material)を用いて電圧を加えてサンプルをX、Y、Z軸方向へ移動させてスキャンされるようにするPZTスキャナーを用いる場合が殆どである。
【0004】
特に、光学的な方法でチップとサンプルとの間の距離を保持する場合、振動のための駆動器とサンプルの高さ方向へのスキャン(駆動)のための駆動器とを別々に備えなければならなかった。
【0005】
チップとサンプルとの間の距離を非接触方式で測定するための方法に光学的な方法を用いない場合、光ファイバや炭素ナノチューブ(Carbon nanotube)をチューニングフォークに取り付けて、チューニングフォークにおける振動幅を測定する方法がある。または、カンチレバー自体にセンサを設けたり、工程で製作してカンチレバーを接触式に用いたり、またはそれ自体を駆動させて共振させる方法が提示されている。
【0006】
以下、上述したような各従来技術について説明する。
【0007】
<第1の従来の技術>
レーザーダイオード(以下、LDという)とフォトダイオード(以下、PDという)を用いてカンチレバーの終端における変位量を測定する方法は、SPM分野では最も広く知られている方法である。この場合、LDとPDの整列のための努力が必要となるが、開発された技術を土台として比較的容易に整列できる。
【0008】
しかし、カンチレバーを固定した部分において大きな変位を有すると、光学的な整列が乱れるので、固定した部分における加振される量は非常に少なくなる。これによって振動のための駆動器とチップと表面との間の間隔調節用の駆動器を一つの形態に組み合わせることができず、カンチレバーを固有振動数で振動させるための駆動器と表面の高さ方向への駆動のための駆動器(Z方向のTube scanner)が別途必要となる。一方、フォトダイオードから出力される信号をロックイン増幅器(Lock’in Amplifier)を介して信号処理すべきであることはいずれの場合も同様である(特許文献1参照)。
【0009】
<第2の従来の技術>
非接触式でチップと表面との間の間隔を測定するための方法に、チューニングフォークを用いる方法がある。チューニングフォークにNSOM(Near field Scanning Optical Microscope)用の光ファイバを取り付けたり、AFM用の炭素ナノチューブを取り付けたりする方法がある。この2つの方法ともにチューニングフォークがチップ/表面の間隔が変化することに伴って、その振動幅が変化することを電気的、または光学的に信号を介して測定する。この場合、チューニングフォークに光ファイバや炭素ナノチューブを取り付ける方法が非常に煩雑であり、その取り付けの瞬間ごとに応じて敏感度が変化するという短所がある。
【0010】
また、この場合も、チップ/表面間の間隔を測定するものに用いられるので、表面形状によるZ方向の駆動役割をする駆動器は別途必要となる。このようなことは、主にXYZ Scannerが行うことになる(非特許文献1,特許文献2参照)。
【0011】
<第3の従来の技術>
SPMの光学的な整列の困難さを解消するための方法として、圧電抵抗(Piezo−resistive)材料をカンチレバーにドープ、または工程で処理して、センサ付きのカンチレバーを用いることが広く用いられている。このような場合、センサ付きのカンチレバーを表面形状によるZ方向の駆動役割をする駆動器に取り付けて用いることができるという長所がある。しかし、現在までこのようなセンサ付きのカンチレバーを非接触式で用いる場合、上述した<第1の従来の技術>のように、カンチレバーを固有振動数で共振させる駆動器と表面形状に沿ってZ方向に駆動する駆動器とを分離して用いている。または、光学的な整列の困難さを回避できる環境における接触式表面形状、または特性測定のために用いられている。また、光学的な方法よりは敏感度が落ちるので、表面形状の分解能が少し低い状況である。しかし、非接触式方法を用する場合、ロックイン増幅器を用いるので敏感度面においては大きな差がない(非特許文献2参照)。
【0012】
<第4の従来の技術>
センサ付きのカンチレバーよりさらに発展したものに、カンチレバーにセンサと駆動器を工程順序において一括的に作ったカンチレバーがある。この場合、カンチレバーの固有振動数をカンチレバーの形状に応じて設計することが容易であい、センサ/駆動器カンチレバーを用いる場合、それ自体を駆動しながらセンシングするのに良い方法である。
【0013】
しかし、この場合、カンチレバーを製作することにおいて、固有振動数を高くするための設計方向とカンチレバーの駆動範囲を大きくする方向の間には、トレードオフ(Trade off)が発生するようになる。一般に、今まで用いているカンチレバーの駆動範囲は、約1μmの水準である。この程度の水準で測定できる表面形状もあり得るが、一般的なサンプルの表面は、サンプルが置かれた状況に応じてその傾斜程度を考慮すると、10μm程度の駆動範囲を有するべきである。
【0014】
したがって、この技術を実際に応用するに際しては、表面形状をZ方向に駆動する別の駆動器が必要となる。勿論、それ自体に駆動させ得る駆動器があるので、カンチレバーを固有振動数で駆動する駆動器に置き換えることができる(非特許文献3参照)。
【0015】
【特許文献1】
米国特許第5,955,660号明細書
【0016】
【特許文献2】
米国特許第6,094,971号明細書
【0017】
【非特許文献1】
“Non−contact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe”、Masami Kageshima and etal、Applied Surface Science、7695(2002)、pp1−5
【0018】
【非特許文献2】
“Atomic force microscopy probe with piezoresistive read−out and a highly symmetrical Wheatstone bridge arrangement”、J.Thaysen and et al、Sensor and Actuators 83(2000)、pp47−53
【0019】
【非特許文献3】
“Micro−fabricated piezoelectric cantilever for atomic force microscopy”、Shunji Watanabe and Toru Fujii、Rev、Sci.Instrum.67(11)、1996、pp3898−3903
【0020】
【発明が解決しようとする課題】
本発明は、このような状況に鑑みてなされたもので、その目的とするところは、表面形状をZ方向に駆動する別の駆動器を使用せず、一つの駆動器で表面の高さを追従する役割とカンチレバーをその固有振動数で加振する役割とを同時に行うことのできる非接触式表面測定装置及びその測定方法を提供することにある。
【0021】
【課題を解決するための手段】
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながら、前記サンプルの表面形状を自己の共振周波数の振幅変化を通してセンシングするセンシング手段と、該センシング手段を通してセンシングされた信号を周波数形態の第1信号に変換して出力する周波数変換手段と、前記第1信号と周波数発生手段から出力される第2信号とを合成する周波数合成手段(前記第2信号は、前記共振周波数と同一であり、前記第1信号に比べて高周波である)と、前記合成された信号の内、前記第2信号に比べて相対的に低周波である前記第1信号に応答して、前記センシング手段をZ軸方向に駆動させ、該センシング手段が、前記第1信号に比べて相対的に高周波である前記第2信号のみで選択的に作動するように前記合成された信号を前記センシング手段に提供する駆動手段とを備えたことを特徴とする。
【0022】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記センシング手段は、前記第1信号に応答した前記駆動手段のZ軸方向への移動により、自己と前記サンプルとの間隔を保持しながら、前記サンプルとの間隔の変位に該当する自己の前記共振周波数の振幅の大きさの変化をセンシングすることを特徴とする。
【0023】
また、請求項3に記載の発明は、請求項1に記載の発明において、前記駆動手段は、前記第1信号に応答した動作を通して、実質的に低域通過フィルタの役割を行うことを特徴とする。
【0024】
また、請求項4に記載の発明は、請求項1に記載の発明において、前記センシング手段は、その一端が前記駆動手段に接続されたカンチレバーと、該カンチレバーの他端に接続され、前記サンプルの表面を追従するチップと、前記カンチレバーの所定領域に取り付けられて前記チップを介して前記サンプルの表面形状をセンシングするセンシング部とを備えたことを特徴とする。
【0025】
また、請求項5に記載の発明は、請求項4に記載の発明において、前記チップは探針形状であって、AFMの用途に用いられることを特徴とする。
【0026】
また、請求項6に記載の発明は、請求項4に記載の発明において、前記チップは孔のある形状であって、NSOMの用途に用いられることを特徴とする。
【0027】
また、請求項7に記載の発明は、請求項1に記載の発明において、前記サンプルは、その下段に位置したX−YスキャナーによりX軸及びY軸方向へ移動することを特徴とする。
【0028】
また、請求項8に記載の発明は、請求項1乃至7のいずれかに記載の発明において、前記駆動手段は、圧電アクチュエータ、バイモルフアクチュエータ、またはVCMのいずれか1つからなることを特徴とする。
【0029】
また、請求項9に記載の発明は、X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながら、前記サンプルの表面形状をセンシング手段の共振周波数の振幅変化を通してセンシングするステップと、前記センシング手段によってセンシングされた信号を周波数形態の第1信号に変換するステップと、前記第1信号と周波数発生手段から出力される第2信号とを合成するステップ(前記第2信号は、前記共振周波数と同一であり、前記第1信号に比べて高周波である)と、前記合成された信号を駆動手段にフィードバックするステップと、伝達された前記合成された信号の内、前記第2信号に比べて相対的に低周波である前記第1信号に応答してZ軸方向に前記駆動手段を駆動させ、前記第1信号に比べて相対的に高周波である前記第2信号のみで選択的に前記センシング手段を作動させる周波数応答分離動作を実施するステップとを備えたことを特徴とする。
【0030】
このように、本発明は、非接触式で表面形状を測定するAFM及びこれと類似した顕微鏡において、一つの駆動部を利用して表面の形状を追従する役割と、駆動器に取り付けているセンシング部を加振する役割とを同時に行うことのできる非接触式表面測定装置及びその測定方法に関するものである。
【0031】
本発明の非接触式表面測定装置は、数10μmの行程範囲を有する駆動部と、それ自己センシングカンチレバーから構成される。探針とサンプルとの間の間隙測定は、駆動部を自己センシングカンチレバーの固有振動数で振動(加振)させ、その振動された自己センシングカンチレバーの振動幅の変化を測定することによって可能となり、このように測定された間隙が一定になるようにフィードバック回路を介して制御することにおいて、サンプル表面の屈曲による間隙の差が発生する時、この間隙を一定にするために自己センシングカンチレバーを加振するものと同じ駆動器を用いて非接触式表面測定装置の構造を単純化する。
【0032】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
図1は、本発明の非接触式表面測定装置の一実施例を説明するための構成図で、自己センシングカンチレバーと駆動器とが結合された電子顕微鏡を示す概略図で、周波数応答分離法を用いた非接触式AFM構造の概念図である。
【0033】
図1を参照すると、ベース部10上に、X−Y方向へ移動しながらスキャニング可能にするX−Yスキャナ11が配置されており、このX−Yスキャナ11上に、その表面の形状を測定するための対象であるサンプル12が位置している。
【0034】
サンプル12の上部には、自己センシングが可能なカンチレバー15がセンシング部13をその自体に備え、サンプル12の表面をセンシングするためにその他端にチップ14を有するように配置されている。カンチレバー15の一端は、カンチレバー15をZ方向に駆動させるための駆動部16を介して支持されており、この駆動部16は、固定部材17を介して支持されている。
【0035】
チップ14とサンプル12との間隔の変化による加振周波数fR(すなわち、カンチレバー15の共振周波数)の振幅の大きさがセンシング部13を介してセンシングされるので、周波数変換部18(例えば、ロックイン増幅器;以下、ロックイン増幅器という)は、このようにセンシングされた信号を介して実際サンプル12とチップ14との間の距離を算出して、測定された実際サンプル12とチップ14との間の距離に対応する低周波信号fLを出力する。
【0036】
周波数発生部19(例えば、ファンクションジェネレーター(Function Generator);以下、ファンクションジェネレーターという)は、カンチレバー15を加振するための加振周波数fR(例えば、fL=1kHz、fR=37kHz)を出力し、周波数合成部20は、このような加振周波数fRと駆動部16のZ方向駆動の低周波信号fLを合成した後、このように合成された信号を介して駆動部16を駆動させる。
【0037】
以下に、より具体的に説明する。
ファンクションジェネレーター19から発生されるカンチレバー15加振用信号とサンプル500の屈曲による低周波信号fLとを合成する周波数合成部20から出力される信号fL+fRは、一つの駆動部16に加えられる。加えられる信号fL+fRは、電圧信号で駆動器を駆動させるようになり、この駆動力は、カンチレバー15のZ方向の動きと同時に固有振動数への共振も同時に発生させるようになる。
【0038】
共振された信号の大きさ、すなわち、振幅はカンチレバー15のチップ14とサンプル12との表面間の間隔により変化するようになる。したがって、このような振幅の変化は、カンチレバー15に取り付けられたセンシング部13を介して測定され、これはさらにロックイン増幅器18を介して実際測定されたサンプル12の屈曲と算出することになる。
【0039】
このように測定された信号を、ロックイン増幅器18を介してサンプルの屈曲を測定するようになり、これはまた駆動部16を制御するための信号、すなわち、低周波信号fLとして用いられ、周波数合成部20を経由するフィードバックループを回るようになる。
【0040】
図2は、本実施例において一つの駆動部に加えられる二つの周波数領域の入力信号を合わせる方法を説明するための概念図である。カンチレバーの固有振動数に該当する周波数の電圧信号と表面の屈曲に該当する電圧信号とを電圧合算増幅器で合わせることについて説明する。
【0041】
図2を参照すると、合わせられた電圧信号の最大値と最小値は、増幅器が支援する最高電圧を越えることができない。共振させる周波数fRにおける電圧は、非常に小さくてもカンチレバー15を共振させるのには十分であるので、信号の形状はサンプル12の表面屈曲による形状と殆ど差がなくなる。
【0042】
図3は、周波数合成部を介して合わせられた電圧信号が駆動部とセンシング部とから構成されているシステムにおいて、どのように分離されるかを説明するために駆動部とセンシング部とから構成されているシステムを数学的にモデリングしたブロック図で、駆動部とセンシング部とを含むシステムの周波数応答差による周波数の分離効果を示す。
【0043】
図3を参照すると、駆動部16とセンシング部13は、各々質量M、m、スプリングkv、kc及び減衰器bv、bcを含む構造に細分化してモデリングできる。
【0044】
また、駆動部16とセンシング部13は、各々異なる質量とスプリング及び減衰器に該当する値を有しているので、各々が敏感に反応する周波数帯域において大きな差があると説明できる。
【0045】
カンチレバー15の共振周波数fRが駆動部16の共振周波数帯域に比べて相対的に非常に大きいため、駆動部16は、それ自体に低域通過フィルタ(Low−pass filter)の役割によって、高い周波数帯域の電圧信号による駆動部16の動きは非常に小さく、低い周波数帯域の電圧信号に対してはその応答が1:1に現れるので、自然な周波数応答分離法による信号分離がなされると見られる。
【0046】
このように分離された信号の中から高い周波数帯域へ加えられる駆動部16は、たとえその応答が非常に小さいであるが、カンチレバー15が非常に小さく、共振点において加えられる加振力が非常に小さくても大きい応答を示すので、センサとしての役割をするのには全く支障がなくなる。
【0047】
下記の数1と数2は、各々上述した図3のブロック図を数式に表現した動力学式である。
【0048】
【数1】
Mxv” + bvxv’ + kvxv + bv(xv’ − xc’) + kc(xv − xc) = F
【0049】
【数2】
mxc” + bc(xc’ − xv’) + kc(xc − xv) = 0
【0050】
ここで、Mは、駆動部16の質量、mはセンシング部13の質量、xvは駆動部16の変位、xv’は時間に対して微分したものであって、駆動部16の速度、xv”はxvを時間に対して二回微分したものであって、駆動部16の加速度、xCはセンシング部13の変位、xC’はxCを時間に対して微分したものであって、センシング部13の速度、xC”はxCを時間に対して二回微分したものであって、センシング部13の加速度、kVは駆動部16のスプリング定数、kCはセンシング部13のスプリング定数、bVは駆動部16の減衰定数、bCはセンシング部13の減衰定数を表し、Fは力、すなわち、駆動部16を動かす駆動力を示す。
【0051】
従って、数1は、駆動力Fにより発生する駆動部16の細部的な力を示す。したがって、左項の各力の和は、右項の駆動力Fと同一になる。
【0052】
以下、各力に対して具体的に説明する。
Mxvは、駆動部16の質量Mと駆動力Fによる実質的な駆動部16の加速度xv”を乗じた値であって、物理的には駆動力Fにより駆動部16が所定の加速度で運動することを意味する。bvxv’は、駆動部16の減衰定数bvと駆動部16の速度xv’とを乗じた値であり、kvxvは、駆動部16のスプリング定数kvと駆動部16の変位xvとを乗じた値である。
【0053】
また、bv(xv’−xc’)は、駆動部16の変位xvに対する相対的な変位を考慮した減衰特性に対する力を示し、kc(xv−xc)は、カンチレバー15の変位xcに対する相対的な変位を考慮した弾性特性に対する力を示す。
【0054】
数2は、駆動部16が数1の動作をする場合のカンチレバー15の作動を示す。この場合、右辺項の値が「0」となる理由は、カンチレバー15の自体には外部の力が加えられなかったためであり、mxc”は、カンチレバー15の質量mと実質的なカンチレバー15の加速度xc”とを乗じた値であって、物理的には「0」である駆動力によりカンチレバー15が所定の加速度で運動することを意味する。
【0055】
また、bc(xc’−xv’)は、カンチレバー15の変位xcに対する相対的な変位を考慮した減衰特性に対する力を示し、kc(xc−xv)は、駆動部16の変位xvに対する相対的な変位を考慮した弾性特性に対する力を示す。
【0056】
上述した数1と数2をラプラス変換(Laplace transform)を通して、駆動力による変位の比で表現したものが下記の数3ないし数5である。
【0057】
【数3】
【0058】
【数4】
【0059】
【数5】
【0060】
数3は、駆動力Fに対する駆動部16の変位xvを表し、数式4は、駆動力Fに対するカンチレバー15の変位を表し、数5は、駆動部16の変位xvに対するカンチレバー15の相手変位xc−xvを表す。
【0061】
図4Aないし図4Cは、駆動部と自己センシングカンチレバー15の周波数応答現象に対する数学的な解析結果をグラフに示す図で、上述した図3で数学的にモデリングしたものを数3ないし数5を通してその応答差がどのように現れるかを説明している。
【0062】
図4Aないし図4Cを参照すると、駆動部16に加えられる電圧は駆動力Fを発生させ、その発生された力によって駆動部16も変位を得るようになり、カンチレバー15も動くようになる。
【0063】
図4Aから確認できるように、駆動部16の変位は、カンチレバー15が共振される周波数fR、すなわち、高周波においてその応答が非常に小さく現れ、示された「A」のように102Hzの低周波信号であるfLによる変位の変化程度が最も大きいことを確認できる。
【0064】
これに比べて図4Bから確認できるように、カンチレバー15の変位は、駆動部16に比べて105Hzの高周波においても変位のピーク値を示していることが分かる。
【0065】
ここで、図面符号「B」と「C」は、二つの共振周波数を示す。
結果的に、図4Cの「D」のように、駆動部16の変位xvに対するカンチレバー15の相対的な変位が105Hzの高周波領域で最も大きく現れることを確認することができ、実際の作動時センシング部13は、相対的な変位が発生しないとセンシングしないので、図4Cのような相対的変位のみをセンシングするようになる。
【0066】
したがって、本実施例では駆動部16とは異なって、センシング部13の反応はその共振点のみで最も大きいので、こういう特徴を利用してセンシング部13の共振周波数fRに該当する電圧信号をサンプル表面の屈曲信号に足して加えるようになる。
【0067】
図5は、駆動部の周波数応答現象に対する実験結果をグラフに示す図で、代表的な駆動部であるVCM(Voice Coil Motor)の周波数応答結果を示す図である。
また、図6は、センシング部の周波数応答現象に対する実験結果をグラフに示す図である。
【0068】
図5を参照すると、駆動部16は、100Hzと10Hzとの間で入力電圧に応じた速度(変位の変化)の比がピーク値を有し、これは図4Aのような理論的なグラフと類似した低周波領域においてプロファイル(Profile frequency range(Hz))を有することを立証するものである。それに対し、103Hz〜105Hzでは低周波で有したプロファイルを有し得ないことが分かる(Oscillation frequency range)。
【0069】
図6を参照すると、これは図4Cに対応するものであって、カンチレバー15、具体的にはセンシング部13の固有振動数fRである37.425Hzにおいて、入力に対する出力の比が最も大きく現れることが分かる。
【0070】
上述した図5と図6の実験結果から確認できるように、VCMの場合、低周波ではその応答が大きいが、高周波、特にカンチレバー固有振動数に該当する周波数ではその応答が顕著に小さいことが分かる。これは機械システムが低域通過フィルタとしての機能を有していることを証明する実験結果である。
【0071】
勿論、この駆動部16が高周波において複数のモードがあるため、高周波における複数の共振点があるが、根本的にはその応答の大きさは自然に小さくなることが分かる。これに対し、カンチレバー15の場合、自分の固有振動数fRに該当する周波数において高敏感度を有し、小さな加振力にも敏感な応答を示す。この敏感な応答を通してチップ14とサンプル12との表面間の距離を敏感に測定できるようになる。
【0072】
図7は、サンプルの表面とチップとの間の間隔(μm)によるカンチレバー振幅変化及び表面測定のための間隔設定をグラフに示す図で、カンチレバーを固有振動数で加振しチップの終端を表面に近づけながら得たカンチレバーの振幅に当たるセンサの電圧値Vを測定したものである。
【0073】
図7を参照すると、図面符号「E」のように、チップ14がサンプル12の表面に近づくと、カンチレバー15の振幅が減少することになり、これによりセンシング電圧値も減少する。このように減少する電圧値は、サンプル12の表面との距離(間隔)が減少しながら急激に変化し、この急激に変化する所の電圧値を基準として間隔を、フィードバック制御を通して調節すると、サンプル12の表面とチップ14との間の間隔を一定に保持できる。このようにチップ14とサンプル12表面との間の距離を一定に保持するため、センシング電圧を一定のレベルに保持するようにし、このような点を制御点(Regulating point)「P」という。
【0074】
図8は、非接触式で10μm標準格子の表面形状を測定した結果をグラフに示す図で、上述した図1の測定装置で図7のフィードバック制御する途中に、間隔10μm格子の標準サンプルをX−Yスキャナ11上に載置し、縦横各々50μmを測定した結果と縦横各々15μmを測定した結果を示す図である。
図8を参照すると、標準サンプルの形状がよく現れることが分かり、これにより本周波数応答分離法が良い性能を示すことを確認できる。
【0075】
図9は、本発明の周波数応答分離法を適用して実施できる組み合わせの他の実施例を示すブロック図である。
【0076】
図9を参照すると、駆動部には、上述した実施例で検討した行程範囲が長い圧電アクチュエータ(Piezo actuator)91とバイモルフアクチュエータ(Bimorph actuator)92及びVCM93などがある。
【0077】
圧電アクチュエータ91は、固定部材910と、固定部材910に一端が接続されてZ方向に駆動されるアクチュエータ911とから構成されて、図1の実施例において、上述したような作動をする。
【0078】
バイモルフアクチュエータ92は、固定部材920と互いに異なる電気的、または熱的特性を有する二つの金属921、922が接触された形態のアクチュエータの一端が固定部材920に接続されてZ方向に駆動される。
【0079】
VCM93は、ベース部933とその上部の支持部材930と連結部材932及びアクチュエータ931とから構成されてZ方向に駆動される。
【0080】
上述した圧電アクチュエータ91とバイモルフアクチュエータ92及びVCM93の共通的な特徴は、行程範囲が表面の高低を超過する行程範囲を有するという点である。
これにより、これらはたとえ高周波数においてその応答変位量が少ないとしても駆動部としての適用が可能である。
【0081】
一方、カンチレバーは、それ自体にセンシング部941、951を装着したものであって、探針チップ942のみある場合94と、孔があるチップ952がある場合がある。探針のみあるチップ942の場合は、AFM形状測定が可能であり、孔があるチップの場合はNSOMが可能である。
【0082】
図10は、本発明の他の実施例に係る周波数応答分離動作を用いた非接触式表面測定方法を図式化したフローチャートを示す図である。
図10を参照すると、X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながらサンプルの表面形状をセンシング部の共振周波数の振幅変化を通してセンシングする(S100)。
【0083】
次いで、センシングされた信号を周波数形態の第1信号に変換する(S101)が、ここで第1信号は、サンプルの表面形状がチップとサンプル表面との間隔変化による第2信号の振幅変化にセンシングされたものを低周波形態に変換されたアナログ信号である。
【0084】
前記第1信号と周波数発生部、例えば、ファンクションジェネレーターから出力される第2信号を合成する(S102)。ここで、第2信号は、共振周波数と同一であり第1信号に比べて高周波である。
【0085】
次いで、合成された信号を駆動部にフィードバックループを介して伝送すると(S103)、伝送された合成信号の内、前記第2信号に比べて相対的に低周波である第1信号に応答してZ軸方向に駆動部を駆動させ(S104)、第1信号に比べて相対的に高周波である第2信号のみで選択的にセンシング部を作動させる周波数応答分離動作(S105)がなされる。
【0086】
上述したようになされる本発明は、既存のAFM、NSOMに適用して使用できる周波数応答分離法を利用して、一つの駆動部でサンプルの表面高さを追従する役割とカンチレバーをその固有振動数で加振動する役割を同時に行えるようにする。したがって、既存のAFMとNSOMなどの装置構造を簡単にすることができ、駆動部の数が減少するだけでなく、これによる構造の単純化と駆動部増幅器の単純化によって、コスト面や構造面において良い長所があることを、実施例を通して確認した。
【0087】
なお、本発明は、上述した実施例に限られるものではない。本発明の趣旨から逸脱しない範囲内で多様に変更実施することが可能である。
【0088】
例えば、上述したような簡単な構造のため、原子顕微鏡などの表面測定装置のみでなく、光学と形状情報まで測定するNSOM、表面の段差を測定するアルファステップ、探針型高密度光情報貯蔵装置において光情報の記録及び再生に必要な近接場ヘッドとサンプルとの間の間隙調節装置などに多様に応用可能である。
【0089】
【発明の効果】
以上説明したように本発明によれば、一つの駆動器で表面の高さを追従する役割とカンチレバーをその固有振動数で加振する役割を同時に行うことができ、駆動部の数を減少させることができるのみでなく、これによる構造の単純化に期することができ、コスト対性能比を向上させることのできる優れた効果を期待することができる。
【図面の簡単な説明】
【図1】本発明の非接触式表面測定装置の一実施例を説明するための構成図である。
【図2】本実施例において一つの駆動部に加えられる二つの周波数領域の入力信号を合わせる方法を説明するための概念図である。
【図3】周波数合成部を介して合わせられた電圧信号が駆動部とセンシング部とから構成されているシステムにおいて、どのように分離されるかを説明するために駆動部とセンシング部とから構成されているシステムを数学的にモデリングしたブロック図である。
【図4A】駆動部と自己センシングカンチレバーの周波数応答現象に対する数学的な解析結果をグラフに示す図(その1)である。
【図4B】駆動部と自己センシングカンチレバーの周波数応答現象に対する数学的な解析結果をグラフに示す図(その2)である。
【図4C】駆動部と自己センシングカンチレバーの周波数応答現象に対する数学的な解析結果をグラフに示す図(その3)である。
【図5】駆動部の周波数応答現象に対する実験結果をグラフに示す図である。
【図6】センシング部の周波数応答現象に対する実験結果をグラフに示す図である。
【図7】サンプルの表面とチップとの間の間隔(μm)によるカンチレバー振幅変化及び表面測定のための間隔設定をグラフに示す図である。
【図8】非接触式で10μm標準格子の表面形状を測定した結果をグラフに示す図である。
【図9】本発明の周波数応答分離法を適用して実施できる組み合わせの他の実施例を示すブロック図である。
【図10】本発明の他の実施例に係る周波数応答分離動作を用いた非接触式表面測定方法を図式化したフローチャートを示す図である。
【符号の説明】
10 ベース部
11 X−Yスキャナ
12 サンプル
13 センシング部
14 チップ
15 カンチレバー
16 駆動部
17 固定部材
18 周波数変換部(ロックイン増幅器)
19 周波数発生部(ファンクションジェネレーター)
20 周波数合成部
【発明が属する技術分野】
本発明は、周波数応答分離方式を用いた非接触式表面測定装置及びその測定方法に関し、より詳細には、周波数応答分離法を通して、非接触式で表面形状をAFM(Atomic Force Microscope)及びこれと類似する顕微鏡で一つの駆動器を利用して、表面の形状を追従する役割と駆動器に取り付けられているセンサを振動させる(加振する)役割とを同時に行うことのできる非接触式表面測定装置及びその測定方法に関する。
【0002】
【従来の技術】
ナノメートル水準の表面形状及び特性を測定するためのSPM(Scanning Probe Microscope)は、チップを表面に接触する接触式と接触しない非接触式との大きく2種類がある。
【0003】
非接触式において、カンチレバー(Cantilever)チップをその固有振動数で振動しなければならないが、このような振動のための駆動器には、広い周波数領域を有する圧電性物質(Piezoelectric material)を用いて電圧を加えてサンプルをX、Y、Z軸方向へ移動させてスキャンされるようにするPZTスキャナーを用いる場合が殆どである。
【0004】
特に、光学的な方法でチップとサンプルとの間の距離を保持する場合、振動のための駆動器とサンプルの高さ方向へのスキャン(駆動)のための駆動器とを別々に備えなければならなかった。
【0005】
チップとサンプルとの間の距離を非接触方式で測定するための方法に光学的な方法を用いない場合、光ファイバや炭素ナノチューブ(Carbon nanotube)をチューニングフォークに取り付けて、チューニングフォークにおける振動幅を測定する方法がある。または、カンチレバー自体にセンサを設けたり、工程で製作してカンチレバーを接触式に用いたり、またはそれ自体を駆動させて共振させる方法が提示されている。
【0006】
以下、上述したような各従来技術について説明する。
【0007】
<第1の従来の技術>
レーザーダイオード(以下、LDという)とフォトダイオード(以下、PDという)を用いてカンチレバーの終端における変位量を測定する方法は、SPM分野では最も広く知られている方法である。この場合、LDとPDの整列のための努力が必要となるが、開発された技術を土台として比較的容易に整列できる。
【0008】
しかし、カンチレバーを固定した部分において大きな変位を有すると、光学的な整列が乱れるので、固定した部分における加振される量は非常に少なくなる。これによって振動のための駆動器とチップと表面との間の間隔調節用の駆動器を一つの形態に組み合わせることができず、カンチレバーを固有振動数で振動させるための駆動器と表面の高さ方向への駆動のための駆動器(Z方向のTube scanner)が別途必要となる。一方、フォトダイオードから出力される信号をロックイン増幅器(Lock’in Amplifier)を介して信号処理すべきであることはいずれの場合も同様である(特許文献1参照)。
【0009】
<第2の従来の技術>
非接触式でチップと表面との間の間隔を測定するための方法に、チューニングフォークを用いる方法がある。チューニングフォークにNSOM(Near field Scanning Optical Microscope)用の光ファイバを取り付けたり、AFM用の炭素ナノチューブを取り付けたりする方法がある。この2つの方法ともにチューニングフォークがチップ/表面の間隔が変化することに伴って、その振動幅が変化することを電気的、または光学的に信号を介して測定する。この場合、チューニングフォークに光ファイバや炭素ナノチューブを取り付ける方法が非常に煩雑であり、その取り付けの瞬間ごとに応じて敏感度が変化するという短所がある。
【0010】
また、この場合も、チップ/表面間の間隔を測定するものに用いられるので、表面形状によるZ方向の駆動役割をする駆動器は別途必要となる。このようなことは、主にXYZ Scannerが行うことになる(非特許文献1,特許文献2参照)。
【0011】
<第3の従来の技術>
SPMの光学的な整列の困難さを解消するための方法として、圧電抵抗(Piezo−resistive)材料をカンチレバーにドープ、または工程で処理して、センサ付きのカンチレバーを用いることが広く用いられている。このような場合、センサ付きのカンチレバーを表面形状によるZ方向の駆動役割をする駆動器に取り付けて用いることができるという長所がある。しかし、現在までこのようなセンサ付きのカンチレバーを非接触式で用いる場合、上述した<第1の従来の技術>のように、カンチレバーを固有振動数で共振させる駆動器と表面形状に沿ってZ方向に駆動する駆動器とを分離して用いている。または、光学的な整列の困難さを回避できる環境における接触式表面形状、または特性測定のために用いられている。また、光学的な方法よりは敏感度が落ちるので、表面形状の分解能が少し低い状況である。しかし、非接触式方法を用する場合、ロックイン増幅器を用いるので敏感度面においては大きな差がない(非特許文献2参照)。
【0012】
<第4の従来の技術>
センサ付きのカンチレバーよりさらに発展したものに、カンチレバーにセンサと駆動器を工程順序において一括的に作ったカンチレバーがある。この場合、カンチレバーの固有振動数をカンチレバーの形状に応じて設計することが容易であい、センサ/駆動器カンチレバーを用いる場合、それ自体を駆動しながらセンシングするのに良い方法である。
【0013】
しかし、この場合、カンチレバーを製作することにおいて、固有振動数を高くするための設計方向とカンチレバーの駆動範囲を大きくする方向の間には、トレードオフ(Trade off)が発生するようになる。一般に、今まで用いているカンチレバーの駆動範囲は、約1μmの水準である。この程度の水準で測定できる表面形状もあり得るが、一般的なサンプルの表面は、サンプルが置かれた状況に応じてその傾斜程度を考慮すると、10μm程度の駆動範囲を有するべきである。
【0014】
したがって、この技術を実際に応用するに際しては、表面形状をZ方向に駆動する別の駆動器が必要となる。勿論、それ自体に駆動させ得る駆動器があるので、カンチレバーを固有振動数で駆動する駆動器に置き換えることができる(非特許文献3参照)。
【0015】
【特許文献1】
米国特許第5,955,660号明細書
【0016】
【特許文献2】
米国特許第6,094,971号明細書
【0017】
【非特許文献1】
“Non−contact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe”、Masami Kageshima and etal、Applied Surface Science、7695(2002)、pp1−5
【0018】
【非特許文献2】
“Atomic force microscopy probe with piezoresistive read−out and a highly symmetrical Wheatstone bridge arrangement”、J.Thaysen and et al、Sensor and Actuators 83(2000)、pp47−53
【0019】
【非特許文献3】
“Micro−fabricated piezoelectric cantilever for atomic force microscopy”、Shunji Watanabe and Toru Fujii、Rev、Sci.Instrum.67(11)、1996、pp3898−3903
【0020】
【発明が解決しようとする課題】
本発明は、このような状況に鑑みてなされたもので、その目的とするところは、表面形状をZ方向に駆動する別の駆動器を使用せず、一つの駆動器で表面の高さを追従する役割とカンチレバーをその固有振動数で加振する役割とを同時に行うことのできる非接触式表面測定装置及びその測定方法を提供することにある。
【0021】
【課題を解決するための手段】
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながら、前記サンプルの表面形状を自己の共振周波数の振幅変化を通してセンシングするセンシング手段と、該センシング手段を通してセンシングされた信号を周波数形態の第1信号に変換して出力する周波数変換手段と、前記第1信号と周波数発生手段から出力される第2信号とを合成する周波数合成手段(前記第2信号は、前記共振周波数と同一であり、前記第1信号に比べて高周波である)と、前記合成された信号の内、前記第2信号に比べて相対的に低周波である前記第1信号に応答して、前記センシング手段をZ軸方向に駆動させ、該センシング手段が、前記第1信号に比べて相対的に高周波である前記第2信号のみで選択的に作動するように前記合成された信号を前記センシング手段に提供する駆動手段とを備えたことを特徴とする。
【0022】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記センシング手段は、前記第1信号に応答した前記駆動手段のZ軸方向への移動により、自己と前記サンプルとの間隔を保持しながら、前記サンプルとの間隔の変位に該当する自己の前記共振周波数の振幅の大きさの変化をセンシングすることを特徴とする。
【0023】
また、請求項3に記載の発明は、請求項1に記載の発明において、前記駆動手段は、前記第1信号に応答した動作を通して、実質的に低域通過フィルタの役割を行うことを特徴とする。
【0024】
また、請求項4に記載の発明は、請求項1に記載の発明において、前記センシング手段は、その一端が前記駆動手段に接続されたカンチレバーと、該カンチレバーの他端に接続され、前記サンプルの表面を追従するチップと、前記カンチレバーの所定領域に取り付けられて前記チップを介して前記サンプルの表面形状をセンシングするセンシング部とを備えたことを特徴とする。
【0025】
また、請求項5に記載の発明は、請求項4に記載の発明において、前記チップは探針形状であって、AFMの用途に用いられることを特徴とする。
【0026】
また、請求項6に記載の発明は、請求項4に記載の発明において、前記チップは孔のある形状であって、NSOMの用途に用いられることを特徴とする。
【0027】
また、請求項7に記載の発明は、請求項1に記載の発明において、前記サンプルは、その下段に位置したX−YスキャナーによりX軸及びY軸方向へ移動することを特徴とする。
【0028】
また、請求項8に記載の発明は、請求項1乃至7のいずれかに記載の発明において、前記駆動手段は、圧電アクチュエータ、バイモルフアクチュエータ、またはVCMのいずれか1つからなることを特徴とする。
【0029】
また、請求項9に記載の発明は、X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながら、前記サンプルの表面形状をセンシング手段の共振周波数の振幅変化を通してセンシングするステップと、前記センシング手段によってセンシングされた信号を周波数形態の第1信号に変換するステップと、前記第1信号と周波数発生手段から出力される第2信号とを合成するステップ(前記第2信号は、前記共振周波数と同一であり、前記第1信号に比べて高周波である)と、前記合成された信号を駆動手段にフィードバックするステップと、伝達された前記合成された信号の内、前記第2信号に比べて相対的に低周波である前記第1信号に応答してZ軸方向に前記駆動手段を駆動させ、前記第1信号に比べて相対的に高周波である前記第2信号のみで選択的に前記センシング手段を作動させる周波数応答分離動作を実施するステップとを備えたことを特徴とする。
【0030】
このように、本発明は、非接触式で表面形状を測定するAFM及びこれと類似した顕微鏡において、一つの駆動部を利用して表面の形状を追従する役割と、駆動器に取り付けているセンシング部を加振する役割とを同時に行うことのできる非接触式表面測定装置及びその測定方法に関するものである。
【0031】
本発明の非接触式表面測定装置は、数10μmの行程範囲を有する駆動部と、それ自己センシングカンチレバーから構成される。探針とサンプルとの間の間隙測定は、駆動部を自己センシングカンチレバーの固有振動数で振動(加振)させ、その振動された自己センシングカンチレバーの振動幅の変化を測定することによって可能となり、このように測定された間隙が一定になるようにフィードバック回路を介して制御することにおいて、サンプル表面の屈曲による間隙の差が発生する時、この間隙を一定にするために自己センシングカンチレバーを加振するものと同じ駆動器を用いて非接触式表面測定装置の構造を単純化する。
【0032】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
図1は、本発明の非接触式表面測定装置の一実施例を説明するための構成図で、自己センシングカンチレバーと駆動器とが結合された電子顕微鏡を示す概略図で、周波数応答分離法を用いた非接触式AFM構造の概念図である。
【0033】
図1を参照すると、ベース部10上に、X−Y方向へ移動しながらスキャニング可能にするX−Yスキャナ11が配置されており、このX−Yスキャナ11上に、その表面の形状を測定するための対象であるサンプル12が位置している。
【0034】
サンプル12の上部には、自己センシングが可能なカンチレバー15がセンシング部13をその自体に備え、サンプル12の表面をセンシングするためにその他端にチップ14を有するように配置されている。カンチレバー15の一端は、カンチレバー15をZ方向に駆動させるための駆動部16を介して支持されており、この駆動部16は、固定部材17を介して支持されている。
【0035】
チップ14とサンプル12との間隔の変化による加振周波数fR(すなわち、カンチレバー15の共振周波数)の振幅の大きさがセンシング部13を介してセンシングされるので、周波数変換部18(例えば、ロックイン増幅器;以下、ロックイン増幅器という)は、このようにセンシングされた信号を介して実際サンプル12とチップ14との間の距離を算出して、測定された実際サンプル12とチップ14との間の距離に対応する低周波信号fLを出力する。
【0036】
周波数発生部19(例えば、ファンクションジェネレーター(Function Generator);以下、ファンクションジェネレーターという)は、カンチレバー15を加振するための加振周波数fR(例えば、fL=1kHz、fR=37kHz)を出力し、周波数合成部20は、このような加振周波数fRと駆動部16のZ方向駆動の低周波信号fLを合成した後、このように合成された信号を介して駆動部16を駆動させる。
【0037】
以下に、より具体的に説明する。
ファンクションジェネレーター19から発生されるカンチレバー15加振用信号とサンプル500の屈曲による低周波信号fLとを合成する周波数合成部20から出力される信号fL+fRは、一つの駆動部16に加えられる。加えられる信号fL+fRは、電圧信号で駆動器を駆動させるようになり、この駆動力は、カンチレバー15のZ方向の動きと同時に固有振動数への共振も同時に発生させるようになる。
【0038】
共振された信号の大きさ、すなわち、振幅はカンチレバー15のチップ14とサンプル12との表面間の間隔により変化するようになる。したがって、このような振幅の変化は、カンチレバー15に取り付けられたセンシング部13を介して測定され、これはさらにロックイン増幅器18を介して実際測定されたサンプル12の屈曲と算出することになる。
【0039】
このように測定された信号を、ロックイン増幅器18を介してサンプルの屈曲を測定するようになり、これはまた駆動部16を制御するための信号、すなわち、低周波信号fLとして用いられ、周波数合成部20を経由するフィードバックループを回るようになる。
【0040】
図2は、本実施例において一つの駆動部に加えられる二つの周波数領域の入力信号を合わせる方法を説明するための概念図である。カンチレバーの固有振動数に該当する周波数の電圧信号と表面の屈曲に該当する電圧信号とを電圧合算増幅器で合わせることについて説明する。
【0041】
図2を参照すると、合わせられた電圧信号の最大値と最小値は、増幅器が支援する最高電圧を越えることができない。共振させる周波数fRにおける電圧は、非常に小さくてもカンチレバー15を共振させるのには十分であるので、信号の形状はサンプル12の表面屈曲による形状と殆ど差がなくなる。
【0042】
図3は、周波数合成部を介して合わせられた電圧信号が駆動部とセンシング部とから構成されているシステムにおいて、どのように分離されるかを説明するために駆動部とセンシング部とから構成されているシステムを数学的にモデリングしたブロック図で、駆動部とセンシング部とを含むシステムの周波数応答差による周波数の分離効果を示す。
【0043】
図3を参照すると、駆動部16とセンシング部13は、各々質量M、m、スプリングkv、kc及び減衰器bv、bcを含む構造に細分化してモデリングできる。
【0044】
また、駆動部16とセンシング部13は、各々異なる質量とスプリング及び減衰器に該当する値を有しているので、各々が敏感に反応する周波数帯域において大きな差があると説明できる。
【0045】
カンチレバー15の共振周波数fRが駆動部16の共振周波数帯域に比べて相対的に非常に大きいため、駆動部16は、それ自体に低域通過フィルタ(Low−pass filter)の役割によって、高い周波数帯域の電圧信号による駆動部16の動きは非常に小さく、低い周波数帯域の電圧信号に対してはその応答が1:1に現れるので、自然な周波数応答分離法による信号分離がなされると見られる。
【0046】
このように分離された信号の中から高い周波数帯域へ加えられる駆動部16は、たとえその応答が非常に小さいであるが、カンチレバー15が非常に小さく、共振点において加えられる加振力が非常に小さくても大きい応答を示すので、センサとしての役割をするのには全く支障がなくなる。
【0047】
下記の数1と数2は、各々上述した図3のブロック図を数式に表現した動力学式である。
【0048】
【数1】
Mxv” + bvxv’ + kvxv + bv(xv’ − xc’) + kc(xv − xc) = F
【0049】
【数2】
mxc” + bc(xc’ − xv’) + kc(xc − xv) = 0
【0050】
ここで、Mは、駆動部16の質量、mはセンシング部13の質量、xvは駆動部16の変位、xv’は時間に対して微分したものであって、駆動部16の速度、xv”はxvを時間に対して二回微分したものであって、駆動部16の加速度、xCはセンシング部13の変位、xC’はxCを時間に対して微分したものであって、センシング部13の速度、xC”はxCを時間に対して二回微分したものであって、センシング部13の加速度、kVは駆動部16のスプリング定数、kCはセンシング部13のスプリング定数、bVは駆動部16の減衰定数、bCはセンシング部13の減衰定数を表し、Fは力、すなわち、駆動部16を動かす駆動力を示す。
【0051】
従って、数1は、駆動力Fにより発生する駆動部16の細部的な力を示す。したがって、左項の各力の和は、右項の駆動力Fと同一になる。
【0052】
以下、各力に対して具体的に説明する。
Mxvは、駆動部16の質量Mと駆動力Fによる実質的な駆動部16の加速度xv”を乗じた値であって、物理的には駆動力Fにより駆動部16が所定の加速度で運動することを意味する。bvxv’は、駆動部16の減衰定数bvと駆動部16の速度xv’とを乗じた値であり、kvxvは、駆動部16のスプリング定数kvと駆動部16の変位xvとを乗じた値である。
【0053】
また、bv(xv’−xc’)は、駆動部16の変位xvに対する相対的な変位を考慮した減衰特性に対する力を示し、kc(xv−xc)は、カンチレバー15の変位xcに対する相対的な変位を考慮した弾性特性に対する力を示す。
【0054】
数2は、駆動部16が数1の動作をする場合のカンチレバー15の作動を示す。この場合、右辺項の値が「0」となる理由は、カンチレバー15の自体には外部の力が加えられなかったためであり、mxc”は、カンチレバー15の質量mと実質的なカンチレバー15の加速度xc”とを乗じた値であって、物理的には「0」である駆動力によりカンチレバー15が所定の加速度で運動することを意味する。
【0055】
また、bc(xc’−xv’)は、カンチレバー15の変位xcに対する相対的な変位を考慮した減衰特性に対する力を示し、kc(xc−xv)は、駆動部16の変位xvに対する相対的な変位を考慮した弾性特性に対する力を示す。
【0056】
上述した数1と数2をラプラス変換(Laplace transform)を通して、駆動力による変位の比で表現したものが下記の数3ないし数5である。
【0057】
【数3】
【0058】
【数4】
【0059】
【数5】
【0060】
数3は、駆動力Fに対する駆動部16の変位xvを表し、数式4は、駆動力Fに対するカンチレバー15の変位を表し、数5は、駆動部16の変位xvに対するカンチレバー15の相手変位xc−xvを表す。
【0061】
図4Aないし図4Cは、駆動部と自己センシングカンチレバー15の周波数応答現象に対する数学的な解析結果をグラフに示す図で、上述した図3で数学的にモデリングしたものを数3ないし数5を通してその応答差がどのように現れるかを説明している。
【0062】
図4Aないし図4Cを参照すると、駆動部16に加えられる電圧は駆動力Fを発生させ、その発生された力によって駆動部16も変位を得るようになり、カンチレバー15も動くようになる。
【0063】
図4Aから確認できるように、駆動部16の変位は、カンチレバー15が共振される周波数fR、すなわち、高周波においてその応答が非常に小さく現れ、示された「A」のように102Hzの低周波信号であるfLによる変位の変化程度が最も大きいことを確認できる。
【0064】
これに比べて図4Bから確認できるように、カンチレバー15の変位は、駆動部16に比べて105Hzの高周波においても変位のピーク値を示していることが分かる。
【0065】
ここで、図面符号「B」と「C」は、二つの共振周波数を示す。
結果的に、図4Cの「D」のように、駆動部16の変位xvに対するカンチレバー15の相対的な変位が105Hzの高周波領域で最も大きく現れることを確認することができ、実際の作動時センシング部13は、相対的な変位が発生しないとセンシングしないので、図4Cのような相対的変位のみをセンシングするようになる。
【0066】
したがって、本実施例では駆動部16とは異なって、センシング部13の反応はその共振点のみで最も大きいので、こういう特徴を利用してセンシング部13の共振周波数fRに該当する電圧信号をサンプル表面の屈曲信号に足して加えるようになる。
【0067】
図5は、駆動部の周波数応答現象に対する実験結果をグラフに示す図で、代表的な駆動部であるVCM(Voice Coil Motor)の周波数応答結果を示す図である。
また、図6は、センシング部の周波数応答現象に対する実験結果をグラフに示す図である。
【0068】
図5を参照すると、駆動部16は、100Hzと10Hzとの間で入力電圧に応じた速度(変位の変化)の比がピーク値を有し、これは図4Aのような理論的なグラフと類似した低周波領域においてプロファイル(Profile frequency range(Hz))を有することを立証するものである。それに対し、103Hz〜105Hzでは低周波で有したプロファイルを有し得ないことが分かる(Oscillation frequency range)。
【0069】
図6を参照すると、これは図4Cに対応するものであって、カンチレバー15、具体的にはセンシング部13の固有振動数fRである37.425Hzにおいて、入力に対する出力の比が最も大きく現れることが分かる。
【0070】
上述した図5と図6の実験結果から確認できるように、VCMの場合、低周波ではその応答が大きいが、高周波、特にカンチレバー固有振動数に該当する周波数ではその応答が顕著に小さいことが分かる。これは機械システムが低域通過フィルタとしての機能を有していることを証明する実験結果である。
【0071】
勿論、この駆動部16が高周波において複数のモードがあるため、高周波における複数の共振点があるが、根本的にはその応答の大きさは自然に小さくなることが分かる。これに対し、カンチレバー15の場合、自分の固有振動数fRに該当する周波数において高敏感度を有し、小さな加振力にも敏感な応答を示す。この敏感な応答を通してチップ14とサンプル12との表面間の距離を敏感に測定できるようになる。
【0072】
図7は、サンプルの表面とチップとの間の間隔(μm)によるカンチレバー振幅変化及び表面測定のための間隔設定をグラフに示す図で、カンチレバーを固有振動数で加振しチップの終端を表面に近づけながら得たカンチレバーの振幅に当たるセンサの電圧値Vを測定したものである。
【0073】
図7を参照すると、図面符号「E」のように、チップ14がサンプル12の表面に近づくと、カンチレバー15の振幅が減少することになり、これによりセンシング電圧値も減少する。このように減少する電圧値は、サンプル12の表面との距離(間隔)が減少しながら急激に変化し、この急激に変化する所の電圧値を基準として間隔を、フィードバック制御を通して調節すると、サンプル12の表面とチップ14との間の間隔を一定に保持できる。このようにチップ14とサンプル12表面との間の距離を一定に保持するため、センシング電圧を一定のレベルに保持するようにし、このような点を制御点(Regulating point)「P」という。
【0074】
図8は、非接触式で10μm標準格子の表面形状を測定した結果をグラフに示す図で、上述した図1の測定装置で図7のフィードバック制御する途中に、間隔10μm格子の標準サンプルをX−Yスキャナ11上に載置し、縦横各々50μmを測定した結果と縦横各々15μmを測定した結果を示す図である。
図8を参照すると、標準サンプルの形状がよく現れることが分かり、これにより本周波数応答分離法が良い性能を示すことを確認できる。
【0075】
図9は、本発明の周波数応答分離法を適用して実施できる組み合わせの他の実施例を示すブロック図である。
【0076】
図9を参照すると、駆動部には、上述した実施例で検討した行程範囲が長い圧電アクチュエータ(Piezo actuator)91とバイモルフアクチュエータ(Bimorph actuator)92及びVCM93などがある。
【0077】
圧電アクチュエータ91は、固定部材910と、固定部材910に一端が接続されてZ方向に駆動されるアクチュエータ911とから構成されて、図1の実施例において、上述したような作動をする。
【0078】
バイモルフアクチュエータ92は、固定部材920と互いに異なる電気的、または熱的特性を有する二つの金属921、922が接触された形態のアクチュエータの一端が固定部材920に接続されてZ方向に駆動される。
【0079】
VCM93は、ベース部933とその上部の支持部材930と連結部材932及びアクチュエータ931とから構成されてZ方向に駆動される。
【0080】
上述した圧電アクチュエータ91とバイモルフアクチュエータ92及びVCM93の共通的な特徴は、行程範囲が表面の高低を超過する行程範囲を有するという点である。
これにより、これらはたとえ高周波数においてその応答変位量が少ないとしても駆動部としての適用が可能である。
【0081】
一方、カンチレバーは、それ自体にセンシング部941、951を装着したものであって、探針チップ942のみある場合94と、孔があるチップ952がある場合がある。探針のみあるチップ942の場合は、AFM形状測定が可能であり、孔があるチップの場合はNSOMが可能である。
【0082】
図10は、本発明の他の実施例に係る周波数応答分離動作を用いた非接触式表面測定方法を図式化したフローチャートを示す図である。
図10を参照すると、X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながらサンプルの表面形状をセンシング部の共振周波数の振幅変化を通してセンシングする(S100)。
【0083】
次いで、センシングされた信号を周波数形態の第1信号に変換する(S101)が、ここで第1信号は、サンプルの表面形状がチップとサンプル表面との間隔変化による第2信号の振幅変化にセンシングされたものを低周波形態に変換されたアナログ信号である。
【0084】
前記第1信号と周波数発生部、例えば、ファンクションジェネレーターから出力される第2信号を合成する(S102)。ここで、第2信号は、共振周波数と同一であり第1信号に比べて高周波である。
【0085】
次いで、合成された信号を駆動部にフィードバックループを介して伝送すると(S103)、伝送された合成信号の内、前記第2信号に比べて相対的に低周波である第1信号に応答してZ軸方向に駆動部を駆動させ(S104)、第1信号に比べて相対的に高周波である第2信号のみで選択的にセンシング部を作動させる周波数応答分離動作(S105)がなされる。
【0086】
上述したようになされる本発明は、既存のAFM、NSOMに適用して使用できる周波数応答分離法を利用して、一つの駆動部でサンプルの表面高さを追従する役割とカンチレバーをその固有振動数で加振動する役割を同時に行えるようにする。したがって、既存のAFMとNSOMなどの装置構造を簡単にすることができ、駆動部の数が減少するだけでなく、これによる構造の単純化と駆動部増幅器の単純化によって、コスト面や構造面において良い長所があることを、実施例を通して確認した。
【0087】
なお、本発明は、上述した実施例に限られるものではない。本発明の趣旨から逸脱しない範囲内で多様に変更実施することが可能である。
【0088】
例えば、上述したような簡単な構造のため、原子顕微鏡などの表面測定装置のみでなく、光学と形状情報まで測定するNSOM、表面の段差を測定するアルファステップ、探針型高密度光情報貯蔵装置において光情報の記録及び再生に必要な近接場ヘッドとサンプルとの間の間隙調節装置などに多様に応用可能である。
【0089】
【発明の効果】
以上説明したように本発明によれば、一つの駆動器で表面の高さを追従する役割とカンチレバーをその固有振動数で加振する役割を同時に行うことができ、駆動部の数を減少させることができるのみでなく、これによる構造の単純化に期することができ、コスト対性能比を向上させることのできる優れた効果を期待することができる。
【図面の簡単な説明】
【図1】本発明の非接触式表面測定装置の一実施例を説明するための構成図である。
【図2】本実施例において一つの駆動部に加えられる二つの周波数領域の入力信号を合わせる方法を説明するための概念図である。
【図3】周波数合成部を介して合わせられた電圧信号が駆動部とセンシング部とから構成されているシステムにおいて、どのように分離されるかを説明するために駆動部とセンシング部とから構成されているシステムを数学的にモデリングしたブロック図である。
【図4A】駆動部と自己センシングカンチレバーの周波数応答現象に対する数学的な解析結果をグラフに示す図(その1)である。
【図4B】駆動部と自己センシングカンチレバーの周波数応答現象に対する数学的な解析結果をグラフに示す図(その2)である。
【図4C】駆動部と自己センシングカンチレバーの周波数応答現象に対する数学的な解析結果をグラフに示す図(その3)である。
【図5】駆動部の周波数応答現象に対する実験結果をグラフに示す図である。
【図6】センシング部の周波数応答現象に対する実験結果をグラフに示す図である。
【図7】サンプルの表面とチップとの間の間隔(μm)によるカンチレバー振幅変化及び表面測定のための間隔設定をグラフに示す図である。
【図8】非接触式で10μm標準格子の表面形状を測定した結果をグラフに示す図である。
【図9】本発明の周波数応答分離法を適用して実施できる組み合わせの他の実施例を示すブロック図である。
【図10】本発明の他の実施例に係る周波数応答分離動作を用いた非接触式表面測定方法を図式化したフローチャートを示す図である。
【符号の説明】
10 ベース部
11 X−Yスキャナ
12 サンプル
13 センシング部
14 チップ
15 カンチレバー
16 駆動部
17 固定部材
18 周波数変換部(ロックイン増幅器)
19 周波数発生部(ファンクションジェネレーター)
20 周波数合成部
Claims (9)
- X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながら、前記サンプルの表面形状を自己の共振周波数の振幅変化を通してセンシングするセンシング手段と、
該センシング手段を通してセンシングされた信号を周波数形態の第1信号に変換して出力する周波数変換手段と、
前記第1信号と周波数発生手段から出力される第2信号とを合成する周波数合成手段と、
前記合成された信号の内、前記第2信号に比べて相対的に低周波である前記第1信号に応答して、前記センシング手段をZ軸方向に駆動させ、該センシング手段が、前記第1信号に比べて相対的に高周波である前記第2信号のみで選択的に作動するように前記合成された信号を前記センシング手段に提供する駆動手段と
を備えたことを特徴とする非接触式表面測定装置。 - 前記センシング手段は、
前記第1信号に応答した前記駆動手段のZ軸方向への移動により、自己と前記サンプルとの間隔を保持しながら、前記サンプルとの間隔の変位に該当する自己の前記共振周波数の振幅の大きさの変化をセンシングすることを特徴とする請求項1に記載の非接触式表面測定装置。 - 前記駆動手段は、前記第1信号に応答した動作を通して、実質的に低域通過フィルタの役割を行うことを特徴とする請求項1に記載の非接触式表面測定装置。
- 前記センシング手段は、
その一端が前記駆動手段に接続されたカンチレバーと、
該カンチレバーの他端に接続され、前記サンプルの表面を追従するチップと、
前記カンチレバーの所定領域に取り付けられて前記チップを介して前記サンプルの表面形状をセンシングするセンシング部と
を備えたことを特徴とする請求項1に記載の非接触式表面測定装置。 - 前記チップは探針形状であって、AFMの用途に用いられることを特徴とする請求項4に記載の非接触式表面測定装置。
- 前記チップは孔のある形状であって、NSOMの用途に用いられることを特徴とする請求項4に記載の非接触式表面測定装置。
- 前記サンプルは、その下段に位置したX−YスキャナーによりX軸及びY軸方向へ移動することを特徴とする請求項1に記載の非接触式表面測定装置。
- 前記駆動手段は、
圧電アクチュエータ、バイモルフアクチュエータ、またはVCMのいずれか1つからなることを特徴とする請求項1乃至7のいずれかに記載の非接触式表面測定装置。 - X軸及びY軸方向へ移動するサンプルと一定の距離を保持しながら、前記サンプルの表面形状をセンシング手段の共振周波数の振幅変化を通してセンシングするステップと、
前記センシング手段によってセンシングされた信号を周波数形態の第1信号に変換するステップと、
前記第1信号と周波数発生手段から出力される第2信号とを合成するステップと、
前記合成された信号を駆動手段にフィードバックするステップと、
伝達された前記合成された信号の内、前記第2信号に比べて相対的に低周波である前記第1信号に応答してZ軸方向に前記駆動手段を駆動させ、前記第1信号に比べて相対的に高周波である前記第2信号のみで選択的に前記センシング手段を作動させる周波数応答分離動作を実施するステップと
を備えたことを特徴とする非接触式表面測定方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0070716A KR100501893B1 (ko) | 2002-11-14 | 2002-11-14 | 주파수 응답 분리 방식을 이용한 비접촉식 측정 장치 및그 측정 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004163390A true JP2004163390A (ja) | 2004-06-10 |
Family
ID=32291732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003114917A Pending JP2004163390A (ja) | 2002-11-14 | 2003-04-18 | 非接触式表面測定装置及びその測定方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7194897B2 (ja) |
JP (1) | JP2004163390A (ja) |
KR (1) | KR100501893B1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122091A (ja) * | 2006-11-08 | 2008-05-29 | National Institute Of Advanced Industrial & Technology | カンチレバー共振特性評価法 |
WO2009014801A2 (en) * | 2007-05-30 | 2009-01-29 | Peter Burke | Scanning nanotube probe device and associated method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2264647B1 (es) * | 2005-06-24 | 2007-12-01 | Consejo Superior Investigaciones Cientificas | Metodo de utilizacion de un microscopio de fuerzas atomicas y microscopio. |
US7958776B2 (en) * | 2007-09-06 | 2011-06-14 | Chunhai Wang | Atomic force gradient microscope and method of using this microscope |
FI20086241L (fi) | 2008-12-23 | 2010-06-24 | Palodex Group Oy | Kuvalevyn lukijalaite |
EP2211187B1 (en) * | 2009-01-14 | 2013-10-02 | Mitutoyo Corporation | Method of actuating a system, apparatus for modifying a control signal for actuation of a system and method of tuning such an apparatus |
WO2011049577A1 (en) * | 2009-10-23 | 2011-04-28 | Academia Sinica | Alignment and anti-drift mechanism |
US8606426B2 (en) * | 2009-10-23 | 2013-12-10 | Academia Sinica | Alignment and anti-drift mechanism |
US9535025B2 (en) | 2012-03-06 | 2017-01-03 | Northwestern University | Probe assembly and method for contactless electrical characterization of buried conducting layers |
KR101513198B1 (ko) * | 2014-09-24 | 2015-04-17 | 엘지전자 주식회사 | 주차 보조 장치 및 차량 |
CN110057338B (zh) * | 2019-05-24 | 2021-04-20 | 福建工程学院 | 一种基于复合测量的工件原点自适应设置方法 |
CN110906852B (zh) * | 2019-11-13 | 2021-07-27 | 宁波大学 | 一种压电执行器输出位移的自感知方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5598327A (en) * | 1990-11-30 | 1997-01-28 | Burr-Brown Corporation | Planar transformer assembly including non-overlapping primary and secondary windings surrounding a common magnetic flux path area |
US5267471A (en) * | 1992-04-30 | 1993-12-07 | Ibm Corporation | Double cantilever sensor for atomic force microscope |
US5517280A (en) * | 1994-04-12 | 1996-05-14 | The Board Of Trustees Of The Leland Stanford, Jr. University | Photolithography system |
US5666190A (en) * | 1994-04-12 | 1997-09-09 | The Board Of Trustees Of The Leland Stanford, Jr. University | Method of performing lithography using cantilever array |
JPH08122341A (ja) * | 1994-10-24 | 1996-05-17 | Olympus Optical Co Ltd | 走査型プローブ顕微鏡 |
JP3175913B2 (ja) | 1995-12-08 | 2001-06-11 | セイコーインスツルメンツ株式会社 | プローブ顕微鏡の制御方法 |
JPH10239329A (ja) * | 1997-02-27 | 1998-09-11 | Jeol Ltd | 走査プローブ顕微鏡 |
JP3925991B2 (ja) * | 1997-07-08 | 2007-06-06 | 日本電子株式会社 | 走査プローブ顕微鏡 |
JP3286565B2 (ja) * | 1997-07-28 | 2002-05-27 | セイコーインスツルメンツ株式会社 | サンプリング走査プローブ顕微鏡 |
US6094971A (en) | 1997-09-24 | 2000-08-01 | Texas Instruments Incorporated | Scanning-probe microscope including non-optical means for detecting normal tip-sample interactions |
JPH11352135A (ja) * | 1998-06-04 | 1999-12-24 | Seiko Instruments Inc | 原子間力顕微鏡 |
US6189374B1 (en) * | 1999-03-29 | 2001-02-20 | Nanodevices, Inc. | Active probe for an atomic force microscope and method of use thereof |
JP3481213B2 (ja) * | 2001-03-22 | 2003-12-22 | 日本電子株式会社 | 原子間力顕微鏡における試料観察方法および原子間力顕微鏡 |
-
2002
- 2002-11-14 KR KR10-2002-0070716A patent/KR100501893B1/ko not_active IP Right Cessation
-
2003
- 2003-04-18 JP JP2003114917A patent/JP2004163390A/ja active Pending
- 2003-08-28 US US10/651,680 patent/US7194897B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122091A (ja) * | 2006-11-08 | 2008-05-29 | National Institute Of Advanced Industrial & Technology | カンチレバー共振特性評価法 |
WO2009014801A2 (en) * | 2007-05-30 | 2009-01-29 | Peter Burke | Scanning nanotube probe device and associated method |
WO2009014801A3 (en) * | 2007-05-30 | 2009-07-02 | Peter Burke | Scanning nanotube probe device and associated method |
US7721347B2 (en) | 2007-05-30 | 2010-05-18 | Rf Nano Corporation | Scanning nanotube probe device and associated method |
Also Published As
Publication number | Publication date |
---|---|
US7194897B2 (en) | 2007-03-27 |
KR100501893B1 (ko) | 2005-07-25 |
KR20040042420A (ko) | 2004-05-20 |
US20040094711A1 (en) | 2004-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5000076B2 (ja) | 力走査型プローブ顕微鏡 | |
Rogers et al. | Improving tapping mode atomic force microscopy with piezoelectric cantilevers | |
US7979916B2 (en) | Preamplifying cantilever and applications thereof | |
KR100878078B1 (ko) | 원자력현미경 및 원자력현미경의 작동방법 | |
US8763475B2 (en) | Active damping of high speed scanning probe microscope components | |
US5641896A (en) | Coupled oscillator scanning imager | |
US7596989B2 (en) | Probe for an atomic force microscope | |
US20090070904A1 (en) | Oscillating scanning probe microscope | |
JP2004523748A5 (ja) | ||
Akiyama et al. | Symmetrically arranged quartz tuning fork with soft cantilever for intermittent contact mode atomic force microscopy | |
JP5208201B2 (ja) | 原子間力顕微鏡法のためのプローブ | |
JP2004523748A (ja) | 運動量の釣り合いが取られたプローブケース | |
JP4190936B2 (ja) | 走査型プローブ顕微鏡およびその操作法 | |
JP2004163390A (ja) | 非接触式表面測定装置及びその測定方法 | |
JP3953958B2 (ja) | 走査プローブ顕微鏡のための作動および検知装置 | |
US7013717B1 (en) | Manual control with force-feedback for probe microscopy-based force spectroscopy | |
US7687767B2 (en) | Fast scanning stage for a scanning probe microscope | |
JPH1010140A (ja) | 走査型プローブ顕微鏡 | |
Nakano | A novel low profile atomic force microscope compatible with optical microscopes | |
JPH0989911A (ja) | 連成オシレータ走査イメージャー | |
Lee et al. | Simple gap control structure in probe type head through frequency response separation scheme | |
JP2000227436A (ja) | 走査探針顕微鏡および試料観察方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090327 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090918 |