JP2004161841A - 蛍光体およびそれを含む照明装置と表示装置 - Google Patents
蛍光体およびそれを含む照明装置と表示装置 Download PDFInfo
- Publication number
- JP2004161841A JP2004161841A JP2002327973A JP2002327973A JP2004161841A JP 2004161841 A JP2004161841 A JP 2004161841A JP 2002327973 A JP2002327973 A JP 2002327973A JP 2002327973 A JP2002327973 A JP 2002327973A JP 2004161841 A JP2004161841 A JP 2004161841A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- particles
- excitation light
- light
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 0 C*(I=BrC=[*+])=C Chemical compound C*(I=BrC=[*+])=C 0.000 description 1
Images
Landscapes
- Illuminated Signs And Luminous Advertising (AREA)
- Liquid Crystal (AREA)
- Luminescent Compositions (AREA)
Abstract
【課題】光変換効率の低下を抑制し得る蛍光体を実現し、さらにその蛍光体を含む照明装置と表示装置を提供する。
【解決手段】蛍光体は、媒質(104)中に分散された第1種類の粒子(100、101、102)と第2種類の粒子(103)を含み、第1種類の粒子(100、101、102)は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、励起光に対してレイリー散乱を生じさせる粒子径を有し、第2種類の粒子(103)は励起光に対してミー散乱を生じさせる粒子径を有している。
【選択図】 図1
【解決手段】蛍光体は、媒質(104)中に分散された第1種類の粒子(100、101、102)と第2種類の粒子(103)を含み、第1種類の粒子(100、101、102)は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、励起光に対してレイリー散乱を生じさせる粒子径を有し、第2種類の粒子(103)は励起光に対してミー散乱を生じさせる粒子径を有している。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、光源からの励起光を吸収してその励起光の波長を変換して様々な色を発光する半導体微粒子(ナノ結晶)を含む蛍光体に関し、特に励起光量から蛍光量への光変換効率や色度(色ずれに対する)特性の良好な蛍光体およびその蛍光体を含む照明装置と表示装置に関するものである。
【0002】
【従来の技術】
半導体の粒子径を励起子ボーア半径程度(数nm程度)に小さくすれば、量子サイズ効果が生じて、その半導体粒子のバンドギャップが増大することが知られている。このようなバンドギャップの変化を利用すべく、半導体微粒子(ナノ結晶)を含む蛍光体の開発が試みられている。特に、半導体ナノ結晶では、量子効果に起因する非線形効果による高い光変換効率が期待されている。
【0003】
そして、半導体微粒子を含む蛍光体およびそのような蛍光体を含む表示装置や照明装置の例が、特許文献1の特開平11−340516公報に開示されている。すなわち、この特許文献1においては、蛍光体に含まれる微粒子材料として、励起光を吸収して赤色および緑色を発光し得るZnCdSe混晶と青色を発光し得るZnSe結晶とが教示されている。また、その特許文献1には、それらの半導体ナノ結晶を適当な割合で樹脂中に分散させた蛍光体が窒化物系半導体発光素子からの励起光で励起される照明装置および表示装置が開示されている。
【0004】
【特許文献1】
特開平11−340516号公報
【0005】
【発明が解決しようとする課題】
本発明者は、半導体ナノ結晶を含む蛍光体の光学特性を励起光の散乱に関連して詳細に調べたところ、光変換効率が蛍光体中の粒子構造に依存して顕著に変動することを見出した。
【0006】
本発明者が見出したこのような課題に鑑み、本発明は光変換効率の低下を抑制し得る蛍光体を実現し、さらにその蛍光体を含む照明装置と表示装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の一つの態様による蛍光体は、媒質中に分散された第1種類の粒子と第2種類の粒子を含み、第1種類の粒子は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、励起光に対してレイリー散乱を生じさせる粒子径を有し、第2種類の粒子は励起光に対してミー散乱を生じさせる粒子径を有することを特徴としている。
【0008】
本発明のもう一つの態様による蛍光体は、媒質中に分散された第1種類の粒子と第2種類の粒子を含み、第1種類の粒子は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、励起光の波長より小さい粒子径を有し、第2種類の粒子は励起光の波長より大きい粒子径を有することを特徴としている。
【0009】
なお、第2種類の粒子も、励起光を吸収してその励起光と異なる波長の蛍光を放射することが好ましい。また、蛍光体は、第1種類の粒子と第2種類の粒子との分散割合が互いに異なる複数の層を含む積層構造を有し得る。
【0010】
そのような蛍光体とその励起用の光源とを含むことにより、低消費電力の照明装置を得ることができる。また、そのような蛍光体と、その励起用の光源と、その光源からの励起光の強度および蛍光体からの放射光の強度の少なくとも一方を制御する光制御手段とを含むことにより、低消費電力の表示装置を得ることができる。
【0011】
【発明の実施の形態】
本発明者が蛍光体の光学特性を詳細に調べたところ、ナノ結晶の半導体粒子を含む蛍光体において、レイリー散乱の発生が光変換効率に対して問題を生じることが見いだされた。
【0012】
(実施形態1)
図1から図3を参照しつつ、本発明の実施形態1による蛍光体が以下に説明される。なお、本願の図面において、同一の参照符号は同一部分または相当部分を表わしている。また、図面における長さ、厚さ、幅などの寸法関係は、図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わしてはいない。
【0013】
図1の模式的な断面図に示された実施形態1による蛍光体においては、粒子径がそれぞれ5nm、6nm、13nmのInN粒子100、101、102と粒子径1μmの石英ガラス粒子103が、アクリル樹脂104中に分散させられている。このような蛍光体へ励起光として波長400nmの紫外光を照射すれば、その励起光を吸収したInN粒子100、101、102からそれぞれ青、緑、赤の蛍光が放射される。これは、径の小さなInN粒子ほど大きなバンドギャップを有するので、それらのバンドギャップに対応した色の蛍光が放射されることによる。
【0014】
図2においては、励起光が蛍光体中のInN粒子に照射された場合に、そのInN粒子による励起光の散乱分布とそのInN粒子からの蛍光放射分布が模式的に図解されている。すなわち、図2において、InN粒子100に照射される励起光が破線の矢印で示され、InN粒子で散乱された散乱励起光が太線の矢印で示され、そしてInN粒子から放射される蛍光が細線の矢印で示されている。
【0015】
この図に示されているように、励起光の1部はInN粒子100で吸収されて、そのInN粒子によって光波長が変換された蛍光が粒子周りに放射される。またInN粒子100に吸収されない励起光成分は、InN粒子表面で散乱される。ここで、InN粒子100の粒子径は励起光の波長に比べて小さいので、励起光はそのInN粒子でレイリー散乱され、四方に散乱される。
【0016】
このように四方に散乱された励起光のうちで、元の励起光の伝播方向(前方散乱方向)に対して逆方向(後方散乱方向)に散乱された励起光は、その後方散乱方向に存在するInN粒子に照射される。しかしながら、後方散乱方向に存在するInN粒子においては、既に光源側からの励起光が照射されているので、既に電子と正孔が発生している。したがって、後方散乱方向に存在するInN粒子においては、既に生じている電子と正孔の飽和によって、後方散乱された励起光の吸収がほとんど生じない。その結果、ほとんどの後方散乱励起光がInN粒子を透過してしまうので、それらの後方散乱光が励起光の損失成分となり、光変換効率の低下を生じてしまう。
【0017】
さらに、レイリー散乱の特性として、四方への散乱強度は照射される光波長の4乗の逆数に比例する。したがって、可視光の波長範囲内の蛍光を放射させるために必要とされる短波長の励起光が散乱され易く、蛍光体が蛍光を放射すべき表面側に近いInN粒子に励起光が到達しにくい。また、レイリー散乱においては、励起光が照射された粒子から放射される波長の異なる(例えば青、緑、赤の)蛍光に関する散乱強度が互いに異なるので、蛍光体表面に到達する各波長の蛍光強度が異なり、色度ずれ(色ずれ)が発生してしまう。
【0018】
他方、図3においては、励起光が粒子径1μmの石英ガラス粒子に照射された場合に、そのガラス粒子による励起光の散乱分布が模式的に図解されている。すなわち、図3において、石英ガラス粒子103に照射される励起光が破線の矢印で示され、そのガラス粒子で散乱された散乱励起光が太線の矢印で示されている。
【0019】
この図に示されているように、石英ガラス粒子103の粒径は励起光の波長に比べて大きいので、励起光はこのガラス粒子でミー散乱されて、励起光の伝播方向(前方散乱方向)に強く散乱される。また、ミー散乱の特性として、レイリー散乱におけるような散乱強度の波長依存性はない。
【0020】
したがって、蛍光体中で励起光を吸収して各色を発光するInN粒子100、101、102と励起光を単に散乱させる石英ガラス粒子103とをそれぞれ分散させることにより、InN粒子のみが分散している場合に発生するレイリー散乱の効果を抑制することができる。このことにより、蛍光体中で励起光を前方散乱方向へより多く散乱させることができ、光変換効率と色度を良好にすることができる。
【0021】
なお、励起光を主に前方散乱させる光散乱粒子の材質としては、無機材系ではサファイアや水晶など、有機材系ではポリイミド、ポリスチレン、ポリ塩化ビニル、シリコーン系樹脂など、金属系では金や銀など、さらに酸化物系ではZrO2やTa2O5などを用いることができる。また、蛍光体中の蛍光粒子もInN粒子に限られず、Si粒子などの他の半導体粒子を用いることもできる。
【0022】
(実施形態2)
図4の模式的な断面図は、本発明の実施形態2による蛍光体を図解している。この蛍光体においては、粒子径がそれぞれ5nm、6nm、13nmのInN粒子100、101、102と粒子径1μmのIn0.46Ga0.54N粒子300とが、アクリル樹脂104中に分散させられている。このような蛍光体に励起光として波長400nmの紫外光を照射すれば、その励起光を吸収した蛍光体中のInN粒子100、101、102からそれぞれの粒子径に応じた青、緑、赤の蛍光が放射される。
【0023】
ここで、実施形態1と同様に、本実施形態2においてもInN粒子の粒子径は励起光の波長に比べて小さいので、InN粒子に吸収されなかった励起光はそのInN粒子によるレイリー散乱によって四方に散乱される。他方、粒子径1μmのIn0.46Ga0.54N粒子300の粒径は励起光の波長に比べて大きいので、励起光はIn0.46Ga0.54N粒子でミー散乱されてその励起光の伝播方向(前方散乱方向)に強く散乱される。
【0024】
したがって、励起光を吸収して各色を発光するInN粒子100、101、102と励起光を散乱するIn0.46Ga0.54N粒子300とを蛍光体中に分散させることにより、InN粒子のみを含む場合に生じるレイリー散乱の効果を抑制することができる。このことにより、蛍光体中で励起光を前方散乱方向へより多く散乱させることができ、光変換効率と色度を良好にすることができる。
【0025】
さらに、In0.46Ga0.54N粒子300に照射された励起光の1部はそのIn0.46Ga0.54N粒子で吸収され、その粒子から青色の螢光が放射され得る。このことから、本実施形態2の蛍光体においては、レイリー散乱を生じやすい青色発光する粒径の小さなInN粒子100を減らして、その代わりに青色発光する粒径の大きなIn0.46Ga0.54N粒子300を増やすことができる。
【0026】
なお、InxGa1−xN粒子300では、In組成比を調整することにより、そのバンドギャップを制御することができる。例えば、In組成比を大きくすればバンドギャップが狭くなるので、その粒子から放射される蛍光は長波長化する。すなわち、InxGa1−xN粒子のIn組成比を変化させることにより、その粒子から青色以外の所望の波長の蛍光を得ることができる。
【0027】
したがって、蛍光体中に所望の色を発光するInxGa1−xN粒子300を含有させることによって、光変換効率に影響しやすい小さな粒径のInN粒子100、101、102の含有割合を変えることなく、様々な色の色度を調整することもできる。
【0028】
(実施形態3)
図5の模式的な断面図は、本発明の実施形態3による蛍光体を図解している。この蛍光体においては、粒子径が5nm、6nm、13nmのInN粒子100、101、102と粒子径1μmの石英ガラス粒子103とがそれらの含有割合が互いに異なるようにアクリル樹脂104中に分散された複数の層400、4001を含む積層構造が形成されている。そして、この積層構造からなる蛍光体に励起光として波長400nmの紫外光を照射することによって、蛍光体中で励起光を吸収したそれぞれの粒径のInN粒子100、101、102から青、緑、赤の蛍光が放射される。
【0029】
このように、蛍光体中で励起光を吸収して各色を発光するInN粒子100、101、102と励起光を散乱する石英ガラス粒子103をそれぞれ分散させることにより、第1の実施形態の場合と同様に、本実施形態3においてもInN粒子のみを含む場合に発生する励起光のレイリー散乱を抑制することができる。したがって、蛍光体中で励起光を前方散乱方向へより多く散乱させることができ、光変換効率と色度を良好にすることができる。
【0030】
さらに、本実施形態3においては、励起光源に近い側の蛍光体層400に含まれる石英ガラス粒子103が、励起光源に遠い側の蛍光体層401に含まれる石英ガラス粒子に比べて高密度にされている。こうすることによって、励起光源に近い側の蛍光体層400では、励起光源に遠い側の蛍光体層401に比べて、励起光に対するミー散乱の効果が大きくなる(レイリー散乱の効果が小さくなる)。逆に、励起光源に遠い側の蛍光体層401では、励起光に関するレイリー散乱の効果が大きくなる(ミー散乱の効果が小さくなる)。
【0031】
すなわち、蛍光体層400において、励起光は蛍光体層401のある前方向(励起光の伝播方向)に散乱されやすくなる。他方、蛍光体層401では、励起光はその蛍光体層401内に均一に散乱されやすくなる。このように、本実施形態3では、蛍光体層400、401内における励起光の散乱状態を個別に制御することができ、蛍光体中において蛍光放射する表面側に近い領域で励起光分布を大きくかつ均一にすることができる。
【0032】
(実施形態4)
図6と図7の模式的な斜視図に図解されているような本発明の実施形態4による照明装置においては、前述の実施形態による蛍光体が利用される。なお、図6は、図7の照明装置の一部分を示している。
【0033】
図6において、GaN系半導体レーザ500から放射された波長400nmの励起光が円柱状のアクリル樹脂からなる第1の導光体501内に入射させられる。第1の導光体501の両端面のうちで半導体レーザ500が結合されていない側の端面には、酸化シリコンからなる反射膜508が形成されている。また、第1の導光体501の円柱面の1部(スリット)領域を除いた周面にはアルミニウムの金属反射膜502が形成されている。
【0034】
第1の導光体501に入射した励起光は、アルミニウムの金属反射膜502に設けられたスリット領域から放射される。これによって、半導体レーザ500から放射された点光源が線状光源に変換される。
【0035】
そして、図7に示されているように、第1の導光体501の円筒面に形成された金属反射膜502のスリット領域を第2の導光体503に結合させることによって、第1の導光体502から放射される光が第2の導光体503内に入射される。この第2の導光体503の底面は、第1の導光体501から入射した光の伝播方向に対して弓状の形状をしており、さらにこの底面の全面にアルミニウムからなる金属反射膜504が設けられている。すなわち、第1の導光体501からの励起光は、第2の導光体503内を伝播しながら、その1部はこの弓状の金属反射膜504で反射されて、第2の導光体の上方向に放射される。こうして、第1の導光体から入射された線状光源が面状光源に変換される。
【0036】
なお、第2の導光体503の上面上には、蛍光体層506から放射された光がその第2の導光体の方向に後方散乱されることによって生じる光損失を防ぐために、励起光を透過するが蛍光体から放射される螢光を上方向に反射する光学特性を有する光学膜(たとえば干渉フィルタ)505が形成されている。このような光学膜の膜構造は、励起光に対して吸収がない酸化シリコンや酸化アルミナなどの誘電体膜を用いて、その膜中での光の多重干渉の原理を用いた一般的な光学膜の設計手法に基づいて設定することができる。
【0037】
光学膜505の上面上の少なくとも1部領域には、前述の実施形態で得られた赤色、緑色、青色を発光する粒子と励起光を散乱する粒子が含まれた蛍光体層506が積層されている。この蛍光体層に励起光が照射され、各色を発光する粒子から放射された螢光が混色されることによって白色の蛍光が上方空間に放射される。
【0038】
蛍光体506の上面上の少なくとも一部領域には、人間の目に対する安全性に関する観点から、コヒーレントな励起光が空間に放射されるのを防ぎ、かつ白色光が空間に放射されるような光学特性を有する光学膜507が形成されている。この光学膜507の膜構造は、白色光に対して吸収がない酸化シリコンや酸化アルミナなどの誘電体膜を用いて、その膜中での光の多重干渉の原理を用いた一般的な光学膜の設計手法に基づいて設定することができる。
【0039】
前述の実施形態で得られた光変換効率の良好な蛍光体を本実施形態4の照明装置に利用することによって、従来と同じ放射光量を得る場合に励起光の光量を低減することができ、低消費電力の照明装置を実現することができる。なお、照明装置の形態としては、導光体を使用せずに励起光が直接に蛍光体に照射されるような構造を有していてもよい。
【0040】
(実施形態5)
図8と図9の模式的断面図に図解されているような本発明の第5の実施形態による表示装置においても、前述の実施形態による蛍光体が利用される。
【0041】
図8に示されているように、GaN系半導体ダイオード600から放射された波長400nmの励起光が、各画素に対応してピクセル状に配置されている赤色、緑色、青色を発光する蛍光体601、602、603に照射される。
【0042】
各蛍光体の上面上には、この蛍光体から放射された光強度を制御するように偏光板に挟まれたアクティブマトリクス駆動型TFT(薄膜トランジスタ)を含む液晶光変調素子604が設けられている。なお、蛍光体から放射される光強度の制御手段としては、蛍光体から放射される光を光電界吸収効果で吸収する手段を用いることもできる。
【0043】
液晶光変調素子604の上面上の少なくとも一部領域には、人間の目に対する安全性への観点から、コヒーレントな励起光が空間に放射されるのを防ぎかつ蛍光体から放射された光が上方空間に放射されるような光学特性を有する光学膜605が形成されている。
【0044】
この光学膜605の膜構造は、蛍光体から放射される光に対して吸収がない酸化シリコン、酸化アルミナなどの誘電体膜を用いて、その膜中での光の多重干渉の原理を用いた一般的な光学膜の設計手法に基づいて設定することができる。
【0045】
図9は、本実施形態5における他の表示装置を示している。この表示装置においては、各画素としてピクセル状に配置されていて赤色、緑色、青色を発光する蛍光体601、602、603に対応して、波長400nmの励起光を放射するGaN系半導体レーザ700がそれぞれ配置されている。これらの半導体レーザ700には、それぞれの半導体レーザから放射される励起光量を独立に駆動制御するための駆動回路701が接続されている。こうして励起光量を制御することにより、各画素の蛍光体から放射される螢光の強度が制御され得る。
【0046】
さらに、蛍光体601、602、603の少なくとも一部領域上には、図8の場合と同様に光学膜605が形成されている。
【0047】
前述の実施形態で得られた光変換効率の良好な蛍光体を本実施形態5の表示装置に利用することによって、従来と同じ放射光量を得る場合に励起光の光量を低減することができ、低消費電力の表示装置を実現することができる。
【0048】
【発明の効果】
以上のように、励起光のレイリー散乱を生じる粒径を有しかつその励起光を吸収して様々な色の蛍光を放射する半導体粒子と励起光のミー散乱を生じる粒径を有する粒子とを適当な媒体中に分散させることにより、光変換効率および色度(色ずれに対する)特性が良好な蛍光体を得ることができる。
【0049】
また、そのような蛍光体を照明装置および表示装置に利用することによって、低消費電力の照明装置および表示装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態1による蛍光体の構造を示す模式的な断面図である。
【図2】蛍光体中のInN粒子によりレイリー散乱された励起光およびその粒子から放射された蛍光の分散状態を示す模式的な断面図である。
【図3】蛍光体中の石英ガラス粒子によりミー散乱された励起光の分散状態を示す模式的な断面図である。
【図4】本発明の実施形態2による蛍光体の構造を示す模式的な断面図である。
【図5】本発明の実施形態3による蛍光体の構造を示す模式的な断面図である。
【図6】本発明の実施形態4による照明装置における導光体部を示す模式的な斜視図である。
【図7】本発明の実施形態4による照明装置を示す模式的な斜視図である。
【図8】本発明の実施形態5による表示装置の一例を示す模式的な断面図である。
【図9】本発明の実施形態5による表示装置の他の例を示す模式的な断面図である。
【符号の説明】
100 粒径5nmのInN粒子、101 粒径6nmのInN粒子、102粒径13nmのInN粒子、103 石英ガラス粒子、104 アクリル樹脂からなる分散媒体、500 GaN系半導体レーザ、501 第1の導光体、502 金属反射膜、503 第2の導光体、504 金属反射膜、505 光学膜、506 蛍光体層、507 光学膜、508 酸化珪素の反射膜、600 GaN系半導体ダイオード、601 赤色発光蛍光体、602 緑色発光蛍光体、603 青色発光蛍光体、604 液晶光変調素子、605 光学膜、700GaN系半導体レーザ、701 駆動回路。
【発明の属する技術分野】
本発明は、光源からの励起光を吸収してその励起光の波長を変換して様々な色を発光する半導体微粒子(ナノ結晶)を含む蛍光体に関し、特に励起光量から蛍光量への光変換効率や色度(色ずれに対する)特性の良好な蛍光体およびその蛍光体を含む照明装置と表示装置に関するものである。
【0002】
【従来の技術】
半導体の粒子径を励起子ボーア半径程度(数nm程度)に小さくすれば、量子サイズ効果が生じて、その半導体粒子のバンドギャップが増大することが知られている。このようなバンドギャップの変化を利用すべく、半導体微粒子(ナノ結晶)を含む蛍光体の開発が試みられている。特に、半導体ナノ結晶では、量子効果に起因する非線形効果による高い光変換効率が期待されている。
【0003】
そして、半導体微粒子を含む蛍光体およびそのような蛍光体を含む表示装置や照明装置の例が、特許文献1の特開平11−340516公報に開示されている。すなわち、この特許文献1においては、蛍光体に含まれる微粒子材料として、励起光を吸収して赤色および緑色を発光し得るZnCdSe混晶と青色を発光し得るZnSe結晶とが教示されている。また、その特許文献1には、それらの半導体ナノ結晶を適当な割合で樹脂中に分散させた蛍光体が窒化物系半導体発光素子からの励起光で励起される照明装置および表示装置が開示されている。
【0004】
【特許文献1】
特開平11−340516号公報
【0005】
【発明が解決しようとする課題】
本発明者は、半導体ナノ結晶を含む蛍光体の光学特性を励起光の散乱に関連して詳細に調べたところ、光変換効率が蛍光体中の粒子構造に依存して顕著に変動することを見出した。
【0006】
本発明者が見出したこのような課題に鑑み、本発明は光変換効率の低下を抑制し得る蛍光体を実現し、さらにその蛍光体を含む照明装置と表示装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の一つの態様による蛍光体は、媒質中に分散された第1種類の粒子と第2種類の粒子を含み、第1種類の粒子は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、励起光に対してレイリー散乱を生じさせる粒子径を有し、第2種類の粒子は励起光に対してミー散乱を生じさせる粒子径を有することを特徴としている。
【0008】
本発明のもう一つの態様による蛍光体は、媒質中に分散された第1種類の粒子と第2種類の粒子を含み、第1種類の粒子は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、励起光の波長より小さい粒子径を有し、第2種類の粒子は励起光の波長より大きい粒子径を有することを特徴としている。
【0009】
なお、第2種類の粒子も、励起光を吸収してその励起光と異なる波長の蛍光を放射することが好ましい。また、蛍光体は、第1種類の粒子と第2種類の粒子との分散割合が互いに異なる複数の層を含む積層構造を有し得る。
【0010】
そのような蛍光体とその励起用の光源とを含むことにより、低消費電力の照明装置を得ることができる。また、そのような蛍光体と、その励起用の光源と、その光源からの励起光の強度および蛍光体からの放射光の強度の少なくとも一方を制御する光制御手段とを含むことにより、低消費電力の表示装置を得ることができる。
【0011】
【発明の実施の形態】
本発明者が蛍光体の光学特性を詳細に調べたところ、ナノ結晶の半導体粒子を含む蛍光体において、レイリー散乱の発生が光変換効率に対して問題を生じることが見いだされた。
【0012】
(実施形態1)
図1から図3を参照しつつ、本発明の実施形態1による蛍光体が以下に説明される。なお、本願の図面において、同一の参照符号は同一部分または相当部分を表わしている。また、図面における長さ、厚さ、幅などの寸法関係は、図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わしてはいない。
【0013】
図1の模式的な断面図に示された実施形態1による蛍光体においては、粒子径がそれぞれ5nm、6nm、13nmのInN粒子100、101、102と粒子径1μmの石英ガラス粒子103が、アクリル樹脂104中に分散させられている。このような蛍光体へ励起光として波長400nmの紫外光を照射すれば、その励起光を吸収したInN粒子100、101、102からそれぞれ青、緑、赤の蛍光が放射される。これは、径の小さなInN粒子ほど大きなバンドギャップを有するので、それらのバンドギャップに対応した色の蛍光が放射されることによる。
【0014】
図2においては、励起光が蛍光体中のInN粒子に照射された場合に、そのInN粒子による励起光の散乱分布とそのInN粒子からの蛍光放射分布が模式的に図解されている。すなわち、図2において、InN粒子100に照射される励起光が破線の矢印で示され、InN粒子で散乱された散乱励起光が太線の矢印で示され、そしてInN粒子から放射される蛍光が細線の矢印で示されている。
【0015】
この図に示されているように、励起光の1部はInN粒子100で吸収されて、そのInN粒子によって光波長が変換された蛍光が粒子周りに放射される。またInN粒子100に吸収されない励起光成分は、InN粒子表面で散乱される。ここで、InN粒子100の粒子径は励起光の波長に比べて小さいので、励起光はそのInN粒子でレイリー散乱され、四方に散乱される。
【0016】
このように四方に散乱された励起光のうちで、元の励起光の伝播方向(前方散乱方向)に対して逆方向(後方散乱方向)に散乱された励起光は、その後方散乱方向に存在するInN粒子に照射される。しかしながら、後方散乱方向に存在するInN粒子においては、既に光源側からの励起光が照射されているので、既に電子と正孔が発生している。したがって、後方散乱方向に存在するInN粒子においては、既に生じている電子と正孔の飽和によって、後方散乱された励起光の吸収がほとんど生じない。その結果、ほとんどの後方散乱励起光がInN粒子を透過してしまうので、それらの後方散乱光が励起光の損失成分となり、光変換効率の低下を生じてしまう。
【0017】
さらに、レイリー散乱の特性として、四方への散乱強度は照射される光波長の4乗の逆数に比例する。したがって、可視光の波長範囲内の蛍光を放射させるために必要とされる短波長の励起光が散乱され易く、蛍光体が蛍光を放射すべき表面側に近いInN粒子に励起光が到達しにくい。また、レイリー散乱においては、励起光が照射された粒子から放射される波長の異なる(例えば青、緑、赤の)蛍光に関する散乱強度が互いに異なるので、蛍光体表面に到達する各波長の蛍光強度が異なり、色度ずれ(色ずれ)が発生してしまう。
【0018】
他方、図3においては、励起光が粒子径1μmの石英ガラス粒子に照射された場合に、そのガラス粒子による励起光の散乱分布が模式的に図解されている。すなわち、図3において、石英ガラス粒子103に照射される励起光が破線の矢印で示され、そのガラス粒子で散乱された散乱励起光が太線の矢印で示されている。
【0019】
この図に示されているように、石英ガラス粒子103の粒径は励起光の波長に比べて大きいので、励起光はこのガラス粒子でミー散乱されて、励起光の伝播方向(前方散乱方向)に強く散乱される。また、ミー散乱の特性として、レイリー散乱におけるような散乱強度の波長依存性はない。
【0020】
したがって、蛍光体中で励起光を吸収して各色を発光するInN粒子100、101、102と励起光を単に散乱させる石英ガラス粒子103とをそれぞれ分散させることにより、InN粒子のみが分散している場合に発生するレイリー散乱の効果を抑制することができる。このことにより、蛍光体中で励起光を前方散乱方向へより多く散乱させることができ、光変換効率と色度を良好にすることができる。
【0021】
なお、励起光を主に前方散乱させる光散乱粒子の材質としては、無機材系ではサファイアや水晶など、有機材系ではポリイミド、ポリスチレン、ポリ塩化ビニル、シリコーン系樹脂など、金属系では金や銀など、さらに酸化物系ではZrO2やTa2O5などを用いることができる。また、蛍光体中の蛍光粒子もInN粒子に限られず、Si粒子などの他の半導体粒子を用いることもできる。
【0022】
(実施形態2)
図4の模式的な断面図は、本発明の実施形態2による蛍光体を図解している。この蛍光体においては、粒子径がそれぞれ5nm、6nm、13nmのInN粒子100、101、102と粒子径1μmのIn0.46Ga0.54N粒子300とが、アクリル樹脂104中に分散させられている。このような蛍光体に励起光として波長400nmの紫外光を照射すれば、その励起光を吸収した蛍光体中のInN粒子100、101、102からそれぞれの粒子径に応じた青、緑、赤の蛍光が放射される。
【0023】
ここで、実施形態1と同様に、本実施形態2においてもInN粒子の粒子径は励起光の波長に比べて小さいので、InN粒子に吸収されなかった励起光はそのInN粒子によるレイリー散乱によって四方に散乱される。他方、粒子径1μmのIn0.46Ga0.54N粒子300の粒径は励起光の波長に比べて大きいので、励起光はIn0.46Ga0.54N粒子でミー散乱されてその励起光の伝播方向(前方散乱方向)に強く散乱される。
【0024】
したがって、励起光を吸収して各色を発光するInN粒子100、101、102と励起光を散乱するIn0.46Ga0.54N粒子300とを蛍光体中に分散させることにより、InN粒子のみを含む場合に生じるレイリー散乱の効果を抑制することができる。このことにより、蛍光体中で励起光を前方散乱方向へより多く散乱させることができ、光変換効率と色度を良好にすることができる。
【0025】
さらに、In0.46Ga0.54N粒子300に照射された励起光の1部はそのIn0.46Ga0.54N粒子で吸収され、その粒子から青色の螢光が放射され得る。このことから、本実施形態2の蛍光体においては、レイリー散乱を生じやすい青色発光する粒径の小さなInN粒子100を減らして、その代わりに青色発光する粒径の大きなIn0.46Ga0.54N粒子300を増やすことができる。
【0026】
なお、InxGa1−xN粒子300では、In組成比を調整することにより、そのバンドギャップを制御することができる。例えば、In組成比を大きくすればバンドギャップが狭くなるので、その粒子から放射される蛍光は長波長化する。すなわち、InxGa1−xN粒子のIn組成比を変化させることにより、その粒子から青色以外の所望の波長の蛍光を得ることができる。
【0027】
したがって、蛍光体中に所望の色を発光するInxGa1−xN粒子300を含有させることによって、光変換効率に影響しやすい小さな粒径のInN粒子100、101、102の含有割合を変えることなく、様々な色の色度を調整することもできる。
【0028】
(実施形態3)
図5の模式的な断面図は、本発明の実施形態3による蛍光体を図解している。この蛍光体においては、粒子径が5nm、6nm、13nmのInN粒子100、101、102と粒子径1μmの石英ガラス粒子103とがそれらの含有割合が互いに異なるようにアクリル樹脂104中に分散された複数の層400、4001を含む積層構造が形成されている。そして、この積層構造からなる蛍光体に励起光として波長400nmの紫外光を照射することによって、蛍光体中で励起光を吸収したそれぞれの粒径のInN粒子100、101、102から青、緑、赤の蛍光が放射される。
【0029】
このように、蛍光体中で励起光を吸収して各色を発光するInN粒子100、101、102と励起光を散乱する石英ガラス粒子103をそれぞれ分散させることにより、第1の実施形態の場合と同様に、本実施形態3においてもInN粒子のみを含む場合に発生する励起光のレイリー散乱を抑制することができる。したがって、蛍光体中で励起光を前方散乱方向へより多く散乱させることができ、光変換効率と色度を良好にすることができる。
【0030】
さらに、本実施形態3においては、励起光源に近い側の蛍光体層400に含まれる石英ガラス粒子103が、励起光源に遠い側の蛍光体層401に含まれる石英ガラス粒子に比べて高密度にされている。こうすることによって、励起光源に近い側の蛍光体層400では、励起光源に遠い側の蛍光体層401に比べて、励起光に対するミー散乱の効果が大きくなる(レイリー散乱の効果が小さくなる)。逆に、励起光源に遠い側の蛍光体層401では、励起光に関するレイリー散乱の効果が大きくなる(ミー散乱の効果が小さくなる)。
【0031】
すなわち、蛍光体層400において、励起光は蛍光体層401のある前方向(励起光の伝播方向)に散乱されやすくなる。他方、蛍光体層401では、励起光はその蛍光体層401内に均一に散乱されやすくなる。このように、本実施形態3では、蛍光体層400、401内における励起光の散乱状態を個別に制御することができ、蛍光体中において蛍光放射する表面側に近い領域で励起光分布を大きくかつ均一にすることができる。
【0032】
(実施形態4)
図6と図7の模式的な斜視図に図解されているような本発明の実施形態4による照明装置においては、前述の実施形態による蛍光体が利用される。なお、図6は、図7の照明装置の一部分を示している。
【0033】
図6において、GaN系半導体レーザ500から放射された波長400nmの励起光が円柱状のアクリル樹脂からなる第1の導光体501内に入射させられる。第1の導光体501の両端面のうちで半導体レーザ500が結合されていない側の端面には、酸化シリコンからなる反射膜508が形成されている。また、第1の導光体501の円柱面の1部(スリット)領域を除いた周面にはアルミニウムの金属反射膜502が形成されている。
【0034】
第1の導光体501に入射した励起光は、アルミニウムの金属反射膜502に設けられたスリット領域から放射される。これによって、半導体レーザ500から放射された点光源が線状光源に変換される。
【0035】
そして、図7に示されているように、第1の導光体501の円筒面に形成された金属反射膜502のスリット領域を第2の導光体503に結合させることによって、第1の導光体502から放射される光が第2の導光体503内に入射される。この第2の導光体503の底面は、第1の導光体501から入射した光の伝播方向に対して弓状の形状をしており、さらにこの底面の全面にアルミニウムからなる金属反射膜504が設けられている。すなわち、第1の導光体501からの励起光は、第2の導光体503内を伝播しながら、その1部はこの弓状の金属反射膜504で反射されて、第2の導光体の上方向に放射される。こうして、第1の導光体から入射された線状光源が面状光源に変換される。
【0036】
なお、第2の導光体503の上面上には、蛍光体層506から放射された光がその第2の導光体の方向に後方散乱されることによって生じる光損失を防ぐために、励起光を透過するが蛍光体から放射される螢光を上方向に反射する光学特性を有する光学膜(たとえば干渉フィルタ)505が形成されている。このような光学膜の膜構造は、励起光に対して吸収がない酸化シリコンや酸化アルミナなどの誘電体膜を用いて、その膜中での光の多重干渉の原理を用いた一般的な光学膜の設計手法に基づいて設定することができる。
【0037】
光学膜505の上面上の少なくとも1部領域には、前述の実施形態で得られた赤色、緑色、青色を発光する粒子と励起光を散乱する粒子が含まれた蛍光体層506が積層されている。この蛍光体層に励起光が照射され、各色を発光する粒子から放射された螢光が混色されることによって白色の蛍光が上方空間に放射される。
【0038】
蛍光体506の上面上の少なくとも一部領域には、人間の目に対する安全性に関する観点から、コヒーレントな励起光が空間に放射されるのを防ぎ、かつ白色光が空間に放射されるような光学特性を有する光学膜507が形成されている。この光学膜507の膜構造は、白色光に対して吸収がない酸化シリコンや酸化アルミナなどの誘電体膜を用いて、その膜中での光の多重干渉の原理を用いた一般的な光学膜の設計手法に基づいて設定することができる。
【0039】
前述の実施形態で得られた光変換効率の良好な蛍光体を本実施形態4の照明装置に利用することによって、従来と同じ放射光量を得る場合に励起光の光量を低減することができ、低消費電力の照明装置を実現することができる。なお、照明装置の形態としては、導光体を使用せずに励起光が直接に蛍光体に照射されるような構造を有していてもよい。
【0040】
(実施形態5)
図8と図9の模式的断面図に図解されているような本発明の第5の実施形態による表示装置においても、前述の実施形態による蛍光体が利用される。
【0041】
図8に示されているように、GaN系半導体ダイオード600から放射された波長400nmの励起光が、各画素に対応してピクセル状に配置されている赤色、緑色、青色を発光する蛍光体601、602、603に照射される。
【0042】
各蛍光体の上面上には、この蛍光体から放射された光強度を制御するように偏光板に挟まれたアクティブマトリクス駆動型TFT(薄膜トランジスタ)を含む液晶光変調素子604が設けられている。なお、蛍光体から放射される光強度の制御手段としては、蛍光体から放射される光を光電界吸収効果で吸収する手段を用いることもできる。
【0043】
液晶光変調素子604の上面上の少なくとも一部領域には、人間の目に対する安全性への観点から、コヒーレントな励起光が空間に放射されるのを防ぎかつ蛍光体から放射された光が上方空間に放射されるような光学特性を有する光学膜605が形成されている。
【0044】
この光学膜605の膜構造は、蛍光体から放射される光に対して吸収がない酸化シリコン、酸化アルミナなどの誘電体膜を用いて、その膜中での光の多重干渉の原理を用いた一般的な光学膜の設計手法に基づいて設定することができる。
【0045】
図9は、本実施形態5における他の表示装置を示している。この表示装置においては、各画素としてピクセル状に配置されていて赤色、緑色、青色を発光する蛍光体601、602、603に対応して、波長400nmの励起光を放射するGaN系半導体レーザ700がそれぞれ配置されている。これらの半導体レーザ700には、それぞれの半導体レーザから放射される励起光量を独立に駆動制御するための駆動回路701が接続されている。こうして励起光量を制御することにより、各画素の蛍光体から放射される螢光の強度が制御され得る。
【0046】
さらに、蛍光体601、602、603の少なくとも一部領域上には、図8の場合と同様に光学膜605が形成されている。
【0047】
前述の実施形態で得られた光変換効率の良好な蛍光体を本実施形態5の表示装置に利用することによって、従来と同じ放射光量を得る場合に励起光の光量を低減することができ、低消費電力の表示装置を実現することができる。
【0048】
【発明の効果】
以上のように、励起光のレイリー散乱を生じる粒径を有しかつその励起光を吸収して様々な色の蛍光を放射する半導体粒子と励起光のミー散乱を生じる粒径を有する粒子とを適当な媒体中に分散させることにより、光変換効率および色度(色ずれに対する)特性が良好な蛍光体を得ることができる。
【0049】
また、そのような蛍光体を照明装置および表示装置に利用することによって、低消費電力の照明装置および表示装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態1による蛍光体の構造を示す模式的な断面図である。
【図2】蛍光体中のInN粒子によりレイリー散乱された励起光およびその粒子から放射された蛍光の分散状態を示す模式的な断面図である。
【図3】蛍光体中の石英ガラス粒子によりミー散乱された励起光の分散状態を示す模式的な断面図である。
【図4】本発明の実施形態2による蛍光体の構造を示す模式的な断面図である。
【図5】本発明の実施形態3による蛍光体の構造を示す模式的な断面図である。
【図6】本発明の実施形態4による照明装置における導光体部を示す模式的な斜視図である。
【図7】本発明の実施形態4による照明装置を示す模式的な斜視図である。
【図8】本発明の実施形態5による表示装置の一例を示す模式的な断面図である。
【図9】本発明の実施形態5による表示装置の他の例を示す模式的な断面図である。
【符号の説明】
100 粒径5nmのInN粒子、101 粒径6nmのInN粒子、102粒径13nmのInN粒子、103 石英ガラス粒子、104 アクリル樹脂からなる分散媒体、500 GaN系半導体レーザ、501 第1の導光体、502 金属反射膜、503 第2の導光体、504 金属反射膜、505 光学膜、506 蛍光体層、507 光学膜、508 酸化珪素の反射膜、600 GaN系半導体ダイオード、601 赤色発光蛍光体、602 緑色発光蛍光体、603 青色発光蛍光体、604 液晶光変調素子、605 光学膜、700GaN系半導体レーザ、701 駆動回路。
Claims (6)
- 媒質中に分散された第1種類の粒子と第2種類の粒子を含む蛍光体であって、
前記第1種類の粒子は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、前記励起光に対してレイリー散乱を生じさせる粒子径を有し、
前記第2種類の粒子は前記励起光に対してミー散乱を生じさせる粒子径を有することを特徴とする蛍光体。 - 媒質中に分散された第1種類の粒子と第2種類の粒子を含む蛍光体であって、
前記第1種類の粒子は励起光を吸収してその励起光と異なる波長の蛍光を放射するとともに、前記励起光の波長より小さい粒子径を有し、
前記第2種類の粒子は前記励起光の波長より大きい粒子径を有することを特徴とする蛍光体。 - 前記第2種類の粒子も前記励起光を吸収してその励起光と異なる波長の蛍光を放射することを特徴とする請求項1または2に記載の蛍光体。
- 前記蛍光体は前記第1種類の粒子と前記前記第2種類の粒子との分散割合が互いに異なる複数の層を含む積層構造を有していることを特徴とする請求項1から3のいずれかに記載の蛍光体。
- 請求項1から4のいずれかに記載の蛍光体とその蛍光体を励起する光源とを含むことを特徴とする照明装置。
- 請求項1から4のいずれかに記載の蛍光体と、その蛍光体を励起する光源と、前記蛍光体に照射される励起光の強度および前記蛍光体から放射される蛍光の強度の少なくとも1方を制御する光制御手段とを含むことを特徴とする表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002327973A JP2004161841A (ja) | 2002-11-12 | 2002-11-12 | 蛍光体およびそれを含む照明装置と表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002327973A JP2004161841A (ja) | 2002-11-12 | 2002-11-12 | 蛍光体およびそれを含む照明装置と表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004161841A true JP2004161841A (ja) | 2004-06-10 |
Family
ID=32806408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002327973A Withdrawn JP2004161841A (ja) | 2002-11-12 | 2002-11-12 | 蛍光体およびそれを含む照明装置と表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004161841A (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018548A1 (en) * | 2006-08-11 | 2008-02-14 | Mitsubishi Chemical Corporation | Illuminating apparatus |
JP2008170496A (ja) * | 2007-01-09 | 2008-07-24 | ▲ぎょく▼瀚科技股▲ふん▼有限公司 | 蛍光層を備えたバックライトモジュール及び表示装置 |
JP2013153105A (ja) * | 2012-01-26 | 2013-08-08 | Sharp Corp | 蛍光体板、蛍光体板を用いた発光装置及び蛍光体板の製造方法 |
JP2015028948A (ja) * | 2014-09-17 | 2015-02-12 | シャープ株式会社 | 発光装置 |
JP2015096964A (ja) * | 2009-02-23 | 2015-05-21 | イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム・リミテッド | 光学ディスプレイデバイスおよびその方法 |
EP2918901A1 (en) * | 2014-03-10 | 2015-09-16 | CoeLux Srl | Lighting system |
CN104913267A (zh) * | 2014-03-10 | 2015-09-16 | 科勒克斯有限责任公司 | 照明系统 |
JP2017138558A (ja) * | 2016-02-05 | 2017-08-10 | 大日本印刷株式会社 | 画像表示装置 |
CN109467315A (zh) * | 2018-10-23 | 2019-03-15 | 温州大学新材料与产业技术研究院 | 一种掺杂InN的钠基玻璃及其制备方法 |
-
2002
- 2002-11-12 JP JP2002327973A patent/JP2004161841A/ja not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008018548A1 (en) * | 2006-08-11 | 2008-02-14 | Mitsubishi Chemical Corporation | Illuminating apparatus |
US8348456B2 (en) | 2006-08-11 | 2013-01-08 | Mitsubishi Chemical Corporation | Illuminating device |
EP2056364A4 (en) * | 2006-08-11 | 2013-07-24 | Mitsubishi Chem Corp | LIGHTING APPARATUS |
JP2008170496A (ja) * | 2007-01-09 | 2008-07-24 | ▲ぎょく▼瀚科技股▲ふん▼有限公司 | 蛍光層を備えたバックライトモジュール及び表示装置 |
JP2015096964A (ja) * | 2009-02-23 | 2015-05-21 | イサム・リサーチ・デベロツプメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシテイ・オブ・エルサレム・リミテッド | 光学ディスプレイデバイスおよびその方法 |
JP2013153105A (ja) * | 2012-01-26 | 2013-08-08 | Sharp Corp | 蛍光体板、蛍光体板を用いた発光装置及び蛍光体板の製造方法 |
EP2918901A1 (en) * | 2014-03-10 | 2015-09-16 | CoeLux Srl | Lighting system |
CN104913267A (zh) * | 2014-03-10 | 2015-09-16 | 科勒克斯有限责任公司 | 照明系统 |
WO2015135560A1 (en) * | 2014-03-10 | 2015-09-17 | Coelux Srl | Lighting system |
US10352534B2 (en) | 2014-03-10 | 2019-07-16 | Coelux S.R.L. | Lighting system |
JP2015028948A (ja) * | 2014-09-17 | 2015-02-12 | シャープ株式会社 | 発光装置 |
JP2017138558A (ja) * | 2016-02-05 | 2017-08-10 | 大日本印刷株式会社 | 画像表示装置 |
CN109467315A (zh) * | 2018-10-23 | 2019-03-15 | 温州大学新材料与产业技术研究院 | 一种掺杂InN的钠基玻璃及其制备方法 |
CN109467315B (zh) * | 2018-10-23 | 2022-04-05 | 温州大学新材料与产业技术研究院 | 一种掺杂InN的钠基玻璃及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7022260B2 (en) | Fluorescent member, and illumination device and display device including the same | |
JP4197109B2 (ja) | 照明装置 | |
JP4401348B2 (ja) | 発光デバイスならびにそれを用いた照明機器および表示機器 | |
US10203547B2 (en) | Quantum dot light emitting device, backlight module, and liquid crystal display device | |
KR102106045B1 (ko) | 양자점을 이용한 백라이트 유닛을 구비한 액정표시장치 | |
JP5193586B2 (ja) | 半導体発光装置 | |
KR101177480B1 (ko) | 조명 장치 및 이를 포함하는 디스플레이 장치 | |
US7781958B2 (en) | Light emitting device | |
US7859175B2 (en) | Illuminating device, display device and optical film | |
JP6259443B2 (ja) | 液晶表示装置 | |
CN105114867B (zh) | 一种背光模组及显示装置 | |
JP2008258171A (ja) | 面状発光装置 | |
JP2006291064A (ja) | 蛍光体フィルム、照明装置、及び、これを有する表示装置 | |
JP2007157831A (ja) | 発光装置 | |
JP2007294754A (ja) | 発光装置および車両用ヘッドランプ | |
JP2019021890A (ja) | Led発光装置 | |
JP2010177656A (ja) | 発光ダイオードユニット及びこれを含む表示装置 | |
JP2008117879A (ja) | 平面発光装置 | |
KR102009824B1 (ko) | 광원 장치 및 표시 장치 | |
JP2011187285A (ja) | 発光装置 | |
WO2019178951A1 (zh) | 液晶显示装置和量子点led | |
JP2006261554A (ja) | 発光ダイオード装置 | |
JP2004161841A (ja) | 蛍光体およびそれを含む照明装置と表示装置 | |
KR20070065486A (ko) | 백색 발광 장치 | |
JP2005332963A (ja) | 発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060207 |