JP2004158700A - Electronic controller and method for manufacturing the same - Google Patents

Electronic controller and method for manufacturing the same Download PDF

Info

Publication number
JP2004158700A
JP2004158700A JP2002324042A JP2002324042A JP2004158700A JP 2004158700 A JP2004158700 A JP 2004158700A JP 2002324042 A JP2002324042 A JP 2002324042A JP 2002324042 A JP2002324042 A JP 2002324042A JP 2004158700 A JP2004158700 A JP 2004158700A
Authority
JP
Japan
Prior art keywords
ceramic substrate
ceramic
semiconductor element
control device
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002324042A
Other languages
Japanese (ja)
Inventor
Masahito Kirigatani
雅人 桐ヶ谷
Arihiro Kamiya
有弘 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002324042A priority Critical patent/JP2004158700A/en
Priority to US10/701,443 priority patent/US20040089943A1/en
Publication of JP2004158700A publication Critical patent/JP2004158700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Combinations Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the connection reliability and heat dissipation property of a semiconductor element. <P>SOLUTION: A ceramic substrate 10 on which electronic components 11, 12 and 13 are mounted is housed in a case 1. A second ceramic substrate 20 is adhered to the back face of the semiconductor element 13 mounted on the first ceramic substrate 10. Electronic components 22 and 23 are mounted on the lower face of the second ceramic substrate 20. A ceramic member 30 equipped with wiring materials 31 is arranged between the first ceramic substrate 10 and the second ceramic substrate 20, and the first ceramic substrate 10 is electrically connected through wiring materials 31 of the ceramic member 30 to the second ceramic substrate 20. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電子制御装置に関するものである。
【0002】
【従来の技術】
複数の接続端子を有する半導体素子を回路基板上に実装した構造において、半導体素子の接続信頼性や放熱性を向上させる構成として、特許文献1に示すものがある。これは、複数の接続端子のうち、少なくとも角部に位置する接続端子の外周表面を非導電性樹脂層で被覆するものである。
【0003】
【特許文献1】
特開2001−77527号公報
【0004】
【発明が解決しようとする課題】
しかしながら、周囲環境が高温・多湿である場合、被覆樹脂が温度や湿度の影響で劣化する。劣化した樹脂では保護効果が無くなり、ハンダ内でのクラック伸長や基板ランドが剥離することがある。また、温度変化の大きい環境では、これらの減少は顕著になる。即ち、半導体素子の長期接続信頼性が満足されない。さらに、半導体素子で発生した熱は、ハンダバンプからのみ基板に放散される構造のため熱抵抗が高く、半導体素子温度が上昇しやすく、誤動作する場合がある。
【0005】
本発明はこのような背景の下になされたものであり、その目的は、半導体素子の接続信頼性と熱放散性を高めることができるようにすることにある。
【0006】
【課題を解決するための手段】
請求項1に記載の発明によれば、半導体素子の背面にセラミック基板(第2のセラミック基板)を接着するので、半導体素子の見かけの熱膨張率がセラミック基板の熱膨張率に近似させることができ、これにより、ハンダ接合部にかかる熱応力が軽減され、接続信頼性を高くすることができる。また、背面に接着したセラミック基板がヒートシンクの役割を果たし、半導体素子の急激な発熱に対する熱放散性を高くすることができる。このようにして半導体素子の接続信頼性と熱放散性を高めることができる。
【0007】
請求項2に記載の発明によれば、第2のセラミック基板の両面のうちの少なくともいずれかの面に電子部品を実装することにより、電子制御装置の小形化を図ることができる。
【0008】
請求項3に記載の発明によれば、第1と第2のセラミック基板を電気的に接続することにより、大規模な回路を構成することが可能になる。
請求項4に記載の発明によれば、第1と第2のセラミック基板の電気的接続を図る部材に、基板材料と同じセラミックを使用することにより、ハンダ接合部にかかる熱応力が軽減され、接続信頼性を高めることができる。
【0009】
請求項5に記載の発明によれば、第1と第2のセラミック基板の電気的接続を図る部材に、フレキシブル基板を使用することにより、ハンダ接合部にかかる熱応力が軽減され、接続信頼性を高めることができるとともに、製造工程を簡略化することができる。
【0010】
請求項6に記載の発明によれば、台座用フリップチップ型電子部品により半導体素子の背面が第1のセラミック基板に実装する他の電子部品よりも高くなり、第2のセラミック基板を配置しやすくなる。
【0011】
請求項7に記載の発明によれば、台座用フリップチップ型電子部品の材料としてセラミック材料を用いることにより、台座用フリップチップ型電子部品の熱膨張率がセラミック基板の熱膨張率に近いため台座用フリップチップ型電子部品と基板との間にかかる熱応力が軽減され、接続信頼性を高めることができる。
【0012】
請求項8に記載の発明によれば、半導体素子の背面に第2のセラミック基板を接着した後に第1のセラミック基板に半導体素子を実装する場合に比べて、はじめに、半導体素子を第1のセラミック基板に実装するため、ハンダ溶融に伴なうセルフアライメント効果が実現され、厳密な位置合わせを行う必要がなくなり、そのため、製造工程を簡略化することができる。
【0013】
請求項9に記載の発明によれば、一括リフローするため、工程が少なくなるので、製造原価を安くすることが可能となる。
【0014】
【発明の実施の形態】
以下、この発明を具体化した一実施の形態を図面に従って説明する。
図1には、本実施形態における車載用電子制御装置(ECU)の縦断面図を示す。図2には、車載用電子制御装置(ECU)の斜視図を示す。ただし、図2はケースの内部におけるECUの斜視図である。図3にはケース内におけるECUの分解斜視図を示す。本ECUは、エンジン制御用ECUである。
【0015】
図1においてケース1はケース本体2とカバー3とからなる。ケース本体2はアルミよりなり、全体構成として上面が開口した箱型をなしている。ケース本体2の上面開口部はカバー(蓋)3にて塞がれている。
【0016】
ケース1内においてケース本体2の底面には、セラミック基板(第1のセラミック基板)10が配置(収納)され、接着剤にて固定されている。セラミック基板10は回路基板として用いており、詳しくはセラミック基板10はセラミック多層基板よりなる。図3に示すように、セラミック基板10の上面には電子部品11,12,13が搭載(表面実装)されている。電子部品11はチップコンデンサであり、電子部品12はフリップチップ型電子部品である。電子部品13は半導体素子、具体的にはチップサイズパッケージ(CSP)であり、台座用フリップチップ型電子部品としてのインターポーザ14を介して実装されている。詳しくは、セラミック基板10の上面においてインターポーザ(台座用フリップチップ型電子部品)14がハンダ付けされ、このインターポーザ14の上に半導体素子(CSP)13がハンダにて接合されている。また、インターポーザ14は配線用部材としても機能し、電子部品(CSP)13のバンプ(ハンダボール)とセラミック基板10のパッドとを電気的に接続している。この半導体素子(CSP)13はセラミック基板10上に多数(図3では4つ)配置されている。
【0017】
このように、第1のセラミック基板10に対し台座用フリップチップ型電子部品としてのインターポーザ14を介して半導体素子(CSP)13を実装することにより、第1のセラミック基板10に表面実装する他の電子部品11,12よりも半導体素子13の背面(上面)を高くしている。インターポーザ14の材料としてセラミック基板10の材料(例えば、アルミナ)と同じセラミック材料(例えば、アルミナ)を用いている。これにより、インターポーザ14の熱膨張率がセラミック基板10の熱膨張率に近いためインターポーザ14とセラミック基板10との間にかかる熱応力が軽減され、接続信頼性を高めることができる。
【0018】
さらに、図1に示すように、第1のセラミック基板10に実装した半導体素子(CSP)13の背面(上面)にはセラミック基板(第2のセラミック基板)20が配置され、接着層21にて固定(接着)されている。セラミック基板20は回路基板として用いており、詳しくはセラミック基板20はセラミック多層基板よりなる。ここで、前述したようにインターポーザ14により半導体素子13の背面がセラミック基板10に実装する他の電子部品11,12よりも高くなっているので、第2のセラミック基板20を配置しやすい。また、図3に示すように、セラミック基板20の下面には電子部品22,23が搭載(実装)されている。電子部品22はチップコンデンサである。電子部品23はベアチップであり、図1の接着層24にてセラミック基板20に固定されるとともにAuワイヤ25にてボンディングされている(電気的に接続されている)。なお、ベアチップを第1のセラミック基板10に実装してもよい。
【0019】
また、図1に示すように、第1のセラミック基板10と第2のセラミック基板20との間において電気接続部材としてのセラミック部材30が配置されている。セラミック部材30は四角枠状をなし、その内方に電子部品11,12,13,22,23が位置している。セラミック部材30は母体がセラミック材料(絶縁体)よりなり、その内部には多数の配線材(導体)31が上下方向に延びている。このようにセラミック部材30は配線材31を具備している。セラミック部材30の配線材31は上下のセラミック基板10,20に対しハンダ付けされ、両基板10,20はセラミック部材30を介して電気的に接続されている。このようにして、第1と第2のセラミック基板10,20を電気的に接続して大規模な回路を構成することが可能になる。また、第1と第2のセラミック基板10,20の電気的接続を図る部材30に、基板材料と同じセラミックを使用しているので、ハンダ接合部32(図1参照)にかかる熱応力が軽減され、接続信頼性を高めることができる。
【0020】
さらに、図2に示すように、セラミック基板10の上面において左端部と右端部に、多数のパッド15が形成されている。また、ケース本体2におけるセラミック基板10の配置領域の左側と右側には、図1に示すように、コネクタ取付用透孔4が設けられている。この各透孔4にコネクタ40が差し込まれ、この状態で固定されている。コネクタ40はコネクタハウジング(ソケット)41とコネクタピン(外部接続用ピン)42からなる。コネクタハウジング41は有蓋筒状をなし、コネクタハウジング41の蓋部にはコネクタピン42が貫通した状態で支持されている。さらに、図2に示すように、セラミック基板10のパッド15とコネクタピン42とはワイヤ43によるボンディングにて電気的に接続されている。
【0021】
コネクタ40は相手方コネクタを介してワイヤ(図示略)の端部と連結される。このワイヤにはバッテリー、各種センサ、エンジン制御用アクチュエータが接続される。そして、ECUはセンサ信号にてエンジンの運転状態を検知し各種の演算を実行してインジェクタやイグナイタといったアクチュエータを駆動してエンジンを最適な状態で運転させる。
【0022】
次に、電子制御装置の製造方法(組み立て方法)を説明する。
まず、第1工程として、第1のセラミック基板10の上面に半導体素子13を含めた各電子部品11,12,13を実装する。同様に、第2のセラミック基板20に電子部品22,23を実装する。さらに、第1のセラミック基板10の上面にセラミック部材30を配置する。そして、第2工程として、半導体素子13の背面に第2のセラミック基板20を接着する。ここで、半導体素子13の背面に第2のセラミック基板20を接着した後に第1のセラミック基板10に半導体素子13を実装する場合に比べて、はじめに、半導体素子13を第1のセラミック基板10に実装するために、ハンダ溶融に伴なうセルフアライメント効果が実現され、厳密な位置合わせを行う必要がなくなるために、製造工程を簡略化することができる。
【0023】
また、上下のセラミック基板10,20間にセラミック部材30を設置する際、電子部品11,12,13,22,23のハンダ付けと、電気的接続用のセラミック部材30の配線材31の第1と第2のセラミック基板10,20へのハンダ付けとを一括リフローにて行う。このように一括リフローすることにより、工程が少なくなるので、製造原価を安くすることが可能となる。
【0024】
引き続き、ケース1のケース本体2に第1のセラミック基板10を固定するとともにコネクタ40を取り付ける。さらに、セラミック基板10のパッド15とコネクタピン42とをワイヤ43にてボンディングする。さらには、ケース本体2に対しカバー3を取り付けて電子制御装置の製造(組み立て)が完了する。
【0025】
このような手順にて、第2のセラミック基板20を、第1のセラミック基板10上に実装した高集積半導体素子(CSP)13に接着する。この際、図1の接着層21には鉛フリーハンダを用いると、環境負荷低減を図る上で好ましいものとなる。また、チップコンデンサ11,22をセラミック基板10,20に実装する際に、ハンダ接合には、環境負荷低減のために鉛フリーハンダを用いるのが好ましい。同様に、ベアチップ23を固定する接着層24は環境負荷低減のために鉛フリーハンダを用いるとよい。
【0026】
また、半導体素子(CSP)13はセラミック基板と同じ材料からなるインターポーザ14を介して第1のセラミック基板10に実装されているので、第1のセラミック基板10とインターポーザ14にアルミナを使用した場合、熱膨張率は約7×10−6/℃で同じであるため、ハンダ接合部14a(図1参照)に作用する熱応力は小さい。
【0027】
一方、インターポーザ14と半導体素子(CSP)13間のハンダ接合部13a(図1参照)に作用する熱応力は大きい。なぜなら、半導体素子(シリコン)の熱膨張率が約2×10−6/℃であり、約5×10−6/℃の熱膨張率差を含んでいるからである。この熱応力は、半導体素子13の角部もしくは周辺バンプで特に大きく、また、大形な半導体素子13において大きい。
【0028】
近年、半導体素子に高い機能が求められるに従い素子サイズは大型化の傾向にあるため、接続信頼性に関して、前述の熱応力起因の接続寿命が問題となる状況である。
【0029】
そこで、本実施形態のように半導体素子(CSP)13の背面に第2のセラミック基板20を接着することで、半導体素子(CSP)13の見かけの熱膨張率が大きくなりセラミック基板10の熱膨張率に近似させることができる。そのため、図1のハンダ接合部13aにかかる熱応力を軽減することができる。これにより、ハンダ内クラック伸展、及び、基板側ランド剥離を防止でき、半導体素子13の長期接続信頼性を高めることができる。
【0030】
また、第2のセラミック基板20がヒートシンクの役割を果たすため、半導体素子13の急激な発熱に対する熱放散性が高まり、誤動作を防止することができる。つまり、半導体素子(CSP)13内の発熱が、その背面から第2のセラミック基板20に放散するため、半導体素子13と周辺部間の熱抵抗が減少する。これにより、周囲温度が高温な場合においても高放熱で接続信頼性に優れ、より高温の使用環境下でも誤作動させないことが可能となる。
【0031】
図1に示すごとく第2のセラミック基板20の下面にチップコンデンサ22を実装したが、第2のセラミック基板20の上面に実装することも可能である。また、図1に示すごとく第2のセラミック基板20の下面にベアチップ23を実装したが、第2のセラミック基板20の上面にも実装可能である。このように、第2のセラミック基板20の両面のうちの少なくともいずれかの面に電子部品22,23を実装することができ、電子制御装置の小形化を図る上で好ましいものとなる。
【0032】
また、インターポーザ14を介さずに半導体素子(CSP)13を直接第1のセラミック基板10に実装することも可能である。ただし、小形な半導体素子に限定することが望ましい。なぜなら、前述と同様な理由で、ハンダ接合部13aに熱応力が生じやすく、接続信頼性が懸念されるからである。
【0033】
上述したように上下のセラミック基板10,20間の電気的接続は、セラミック部材30内の多数本の配線材(導体)31を介したハンダ付けにて行っているが、このとき、ハンダ接続後のハンダ接合部32(図1参照)の隙間を、低融点のガラス材料でハーメチックシールするとよい。シールすることで外部からの湿気の流入を防止できるために、接続寿命、及び、部品寿命を延長することができる。また、シール構造を採用することで、図1のハンダ接合部32,14a,13a,12a,11a等に鉛共晶(Sn−37Pb)ハンダを用いても、外界に流出する危険性はなくなり、環境負荷低減の効果も期待できる。
【0034】
上下のセラミック基板10,20の接続方法および構造は、図示した形態に限定されるものではない。すなわち、第1と第2のセラミック基板10,20間の電気的接続に(コンタクト用部材30に)フレキシブル基板を用いることも可能である。このように第1と第2のセラミック基板10,20の電気的接続を図る部材に、フレキシブル基板を使用すると、ハンダ接合部にかかる熱応力が軽減され、接続信頼性を高めることができるとともに、製造工程を簡略化することができる。
【0035】
なお、半導体素子13としてCSP(チップサイズパッケージ)を用いたが、これに限定されるものではなく、他の半導体素子、特にフェースダウンボンディング型の半導体素子であるBGA(ボールグリッドアレイ)やフリップチップ型電子部品を用いてもよい。
【図面の簡単な説明】
【図1】実施の形態における車載用電子制御装置(ECU)の縦断面図。
【図2】車載用電子制御装置(ECU)の斜視図。
【図3】車載用電子制御装置(ECU)の分解斜視図。
【符号の説明】
1…ケース、2…ケース本体、3…カバー、10…第1のセラミック基板、11,12…電子部品、13…半導体素子、14…台座用フリップチップ型電子部品、20…第2のセラミック基板、22,23…電子部品、30…セラミック部材、31…配線材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic control device.
[0002]
[Prior art]
In a structure in which a semiconductor element having a plurality of connection terminals is mounted on a circuit board, there is a configuration disclosed in Patent Document 1 as a configuration for improving connection reliability and heat dissipation of the semiconductor element. In this method, at least the outer peripheral surface of a connection terminal located at a corner portion among a plurality of connection terminals is covered with a non-conductive resin layer.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-77527
[Problems to be solved by the invention]
However, when the surrounding environment is high temperature and high humidity, the coating resin deteriorates under the influence of temperature and humidity. The deteriorated resin loses the protection effect, and may cause crack elongation in the solder and peeling of the substrate land. In an environment where the temperature change is large, these reductions become remarkable. That is, the long-term connection reliability of the semiconductor element is not satisfied. Further, heat generated in the semiconductor element is dissipated to the substrate only from the solder bumps, so that the heat resistance is high, the temperature of the semiconductor element tends to rise, and a malfunction may occur.
[0005]
The present invention has been made under such a background, and an object of the present invention is to improve connection reliability and heat dissipation of a semiconductor device.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, since the ceramic substrate (the second ceramic substrate) is bonded to the back surface of the semiconductor element, the apparent coefficient of thermal expansion of the semiconductor element can be approximated to the coefficient of thermal expansion of the ceramic substrate. Accordingly, the thermal stress applied to the solder joint is reduced, and the connection reliability can be improved. In addition, the ceramic substrate adhered to the back surface plays the role of a heat sink, so that heat dissipation from sudden heat generation of the semiconductor element can be increased. In this way, the connection reliability and heat dissipation of the semiconductor element can be improved.
[0007]
According to the second aspect of the invention, the electronic control device can be downsized by mounting the electronic component on at least one of the two surfaces of the second ceramic substrate.
[0008]
According to the third aspect of the present invention, a large-scale circuit can be configured by electrically connecting the first and second ceramic substrates.
According to the invention as set forth in claim 4, by using the same ceramic as the substrate material for the member for electrically connecting the first and second ceramic substrates, the thermal stress applied to the solder joint is reduced. Connection reliability can be improved.
[0009]
According to the fifth aspect of the present invention, by using a flexible substrate as a member for electrically connecting the first and second ceramic substrates, thermal stress applied to the solder joint is reduced, and connection reliability is reduced. And the manufacturing process can be simplified.
[0010]
According to the sixth aspect of the present invention, the flip chip type electronic component for the pedestal makes the back surface of the semiconductor element higher than other electronic components mounted on the first ceramic substrate, so that the second ceramic substrate can be easily arranged. Become.
[0011]
According to the seventh aspect of the present invention, the ceramic material is used as the material of the flip-chip electronic component for the pedestal, so that the thermal expansion coefficient of the flip-chip electronic component for the pedestal is close to the thermal expansion coefficient of the ceramic substrate. Thermal stress applied between the flip-chip type electronic component for use and the substrate is reduced, and connection reliability can be improved.
[0012]
According to the eighth aspect of the present invention, first, the semiconductor element is first mounted on the first ceramic substrate as compared with the case where the semiconductor element is mounted on the first ceramic substrate after the second ceramic substrate is bonded to the back surface of the semiconductor element. Since the semiconductor device is mounted on the substrate, a self-alignment effect accompanying the melting of the solder is realized, and it is not necessary to perform strict alignment. Therefore, the manufacturing process can be simplified.
[0013]
According to the ninth aspect of the present invention, since the batch reflow is performed, the number of steps is reduced, so that the manufacturing cost can be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a longitudinal sectional view of an on-vehicle electronic control unit (ECU) according to the present embodiment. FIG. 2 is a perspective view of an in-vehicle electronic control unit (ECU). However, FIG. 2 is a perspective view of the ECU inside the case. FIG. 3 is an exploded perspective view of the ECU in the case. This ECU is an engine control ECU.
[0015]
In FIG. 1, a case 1 includes a case body 2 and a cover 3. The case body 2 is made of aluminum, and has a box shape with an open upper surface as a whole configuration. The upper opening of the case body 2 is closed by a cover (lid) 3.
[0016]
A ceramic substrate (first ceramic substrate) 10 is disposed (stored) on the bottom surface of the case main body 2 in the case 1 and fixed with an adhesive. The ceramic substrate 10 is used as a circuit board, and more specifically, the ceramic substrate 10 is a ceramic multilayer substrate. As shown in FIG. 3, electronic components 11, 12, and 13 are mounted (surface mounted) on the upper surface of the ceramic substrate 10. The electronic component 11 is a chip capacitor, and the electronic component 12 is a flip-chip type electronic component. The electronic component 13 is a semiconductor element, specifically, a chip size package (CSP), and is mounted via an interposer 14 as a flip-chip type electronic component for a base. Specifically, an interposer (a flip-chip type electronic component for pedestal) 14 is soldered on the upper surface of the ceramic substrate 10, and a semiconductor element (CSP) 13 is joined on the interposer 14 by soldering. The interposer 14 also functions as a wiring member, and electrically connects the bumps (solder balls) of the electronic component (CSP) 13 and the pads of the ceramic substrate 10. A large number (four in FIG. 3) of the semiconductor elements (CSP) 13 are arranged on the ceramic substrate 10.
[0017]
As described above, by mounting the semiconductor element (CSP) 13 on the first ceramic substrate 10 via the interposer 14 as the flip-chip type electronic component for the pedestal, other surface mounting on the first ceramic substrate 10 is performed. The back surface (upper surface) of the semiconductor element 13 is higher than the electronic components 11 and 12. As the material of the interposer 14, the same ceramic material (eg, alumina) as the material of the ceramic substrate 10 (eg, alumina) is used. Thereby, since the thermal expansion coefficient of the interposer 14 is close to the thermal expansion coefficient of the ceramic substrate 10, the thermal stress applied between the interposer 14 and the ceramic substrate 10 is reduced, and the connection reliability can be improved.
[0018]
Further, as shown in FIG. 1, a ceramic substrate (second ceramic substrate) 20 is disposed on the back surface (upper surface) of the semiconductor element (CSP) 13 mounted on the first ceramic substrate 10, and the adhesive layer 21 Fixed (bonded). The ceramic substrate 20 is used as a circuit board. More specifically, the ceramic substrate 20 is a ceramic multilayer substrate. Here, as described above, since the back surface of the semiconductor element 13 is higher than the other electronic components 11 and 12 mounted on the ceramic substrate 10 by the interposer 14, the second ceramic substrate 20 can be easily arranged. As shown in FIG. 3, electronic components 22 and 23 are mounted (mounted) on the lower surface of the ceramic substrate 20. The electronic component 22 is a chip capacitor. The electronic component 23 is a bare chip, which is fixed to the ceramic substrate 20 by the adhesive layer 24 of FIG. 1 and is bonded (electrically connected) by an Au wire 25. Note that a bare chip may be mounted on the first ceramic substrate 10.
[0019]
Further, as shown in FIG. 1, a ceramic member 30 as an electrical connection member is disposed between the first ceramic substrate 10 and the second ceramic substrate 20. The ceramic member 30 has a rectangular frame shape, and the electronic components 11, 12, 13, 22, and 23 are located inside the ceramic member 30. The base of the ceramic member 30 is made of a ceramic material (insulator), and a large number of wiring members (conductors) 31 extend in the vertical direction inside the base. Thus, the ceramic member 30 includes the wiring member 31. The wiring member 31 of the ceramic member 30 is soldered to the upper and lower ceramic substrates 10 and 20, and both substrates 10 and 20 are electrically connected via the ceramic member 30. In this manner, a large-scale circuit can be formed by electrically connecting the first and second ceramic substrates 10 and 20. Further, since the same ceramic as the substrate material is used for the member 30 for electrically connecting the first and second ceramic substrates 10 and 20, the thermal stress applied to the solder joint 32 (see FIG. 1) is reduced. Connection reliability can be improved.
[0020]
Further, as shown in FIG. 2, a large number of pads 15 are formed at the left end and the right end on the upper surface of the ceramic substrate 10. Further, on the left and right sides of the arrangement area of the ceramic substrate 10 in the case body 2, as shown in FIG. A connector 40 is inserted into each of the through holes 4 and is fixed in this state. The connector 40 includes a connector housing (socket) 41 and a connector pin (external connection pin) 42. The connector housing 41 has a closed cylindrical shape, and a connector portion 42 is supported by a cover portion of the connector housing 41 in a state of penetrating therethrough. Further, as shown in FIG. 2, the pads 15 of the ceramic substrate 10 and the connector pins 42 are electrically connected by bonding with wires 43.
[0021]
The connector 40 is connected to an end of a wire (not shown) via a mating connector. A battery, various sensors, and an actuator for engine control are connected to this wire. The ECU detects the operating state of the engine based on the sensor signal, executes various calculations, and drives an actuator such as an injector or an igniter to operate the engine in an optimal state.
[0022]
Next, a manufacturing method (assembly method) of the electronic control device will be described.
First, as a first step, the electronic components 11, 12, and 13 including the semiconductor element 13 are mounted on the upper surface of the first ceramic substrate 10. Similarly, the electronic components 22 and 23 are mounted on the second ceramic substrate 20. Further, the ceramic member 30 is arranged on the upper surface of the first ceramic substrate 10. Then, as a second step, the second ceramic substrate 20 is bonded to the back surface of the semiconductor element 13. Here, first, the semiconductor element 13 is attached to the first ceramic substrate 10 in comparison with the case where the semiconductor element 13 is mounted on the first ceramic substrate 10 after the second ceramic substrate 20 is bonded to the back surface of the semiconductor element 13. The self-alignment effect accompanying solder melting is realized for mounting, and it is not necessary to perform strict alignment, so that the manufacturing process can be simplified.
[0023]
Further, when the ceramic member 30 is installed between the upper and lower ceramic substrates 10 and 20, the electronic components 11, 12, 13, 22 and 23 are soldered and the first wiring member 31 of the ceramic member 30 for electrical connection is used. And soldering to the second ceramic substrates 10 and 20 are performed by batch reflow. By performing the batch reflow in this manner, the number of steps is reduced, and thus the manufacturing cost can be reduced.
[0024]
Subsequently, the first ceramic substrate 10 is fixed to the case body 2 of the case 1 and the connector 40 is attached. Further, the pads 15 of the ceramic substrate 10 and the connector pins 42 are bonded by wires 43. Further, the cover 3 is attached to the case body 2 to complete the manufacture (assembly) of the electronic control device.
[0025]
According to such a procedure, the second ceramic substrate 20 is bonded to the highly integrated semiconductor element (CSP) 13 mounted on the first ceramic substrate 10. At this time, it is preferable to use lead-free solder for the adhesive layer 21 in FIG. 1 in order to reduce environmental load. Further, when mounting the chip capacitors 11 and 22 on the ceramic substrates 10 and 20, it is preferable to use lead-free solder for solder joining in order to reduce environmental load. Similarly, for the adhesive layer 24 for fixing the bare chip 23, it is preferable to use lead-free solder for reducing the environmental load.
[0026]
Further, since the semiconductor element (CSP) 13 is mounted on the first ceramic substrate 10 via the interposer 14 made of the same material as the ceramic substrate, when the first ceramic substrate 10 and the interposer 14 use alumina, Since the thermal expansion coefficient is the same at about 7 × 10 −6 / ° C., the thermal stress acting on the solder joint 14a (see FIG. 1) is small.
[0027]
On the other hand, the thermal stress acting on the solder joint 13a (see FIG. 1) between the interposer 14 and the semiconductor element (CSP) 13 is large. This is because the coefficient of thermal expansion of the semiconductor element (silicon) is about 2 × 10 −6 / ° C., which includes a difference of about 5 × 10 −6 / ° C. This thermal stress is particularly large at a corner portion or a peripheral bump of the semiconductor element 13, and is large in a large semiconductor element 13.
[0028]
In recent years, as semiconductor devices have been required to have higher functions, the device size has tended to increase in size. Therefore, the connection life due to the thermal stress described above has become a problem in connection reliability.
[0029]
Therefore, by adhering the second ceramic substrate 20 to the back surface of the semiconductor element (CSP) 13 as in the present embodiment, the apparent thermal expansion coefficient of the semiconductor element (CSP) 13 increases, and the thermal expansion of the ceramic substrate 10 increases. Rate can be approximated. Therefore, the thermal stress applied to the solder joint 13a in FIG. 1 can be reduced. Thereby, the extension of the crack in the solder and the peeling of the land on the substrate side can be prevented, and the long-term connection reliability of the semiconductor element 13 can be improved.
[0030]
In addition, since the second ceramic substrate 20 functions as a heat sink, the heat dissipation of the semiconductor element 13 against sudden heat generation is enhanced, and malfunction can be prevented. In other words, heat generated in the semiconductor element (CSP) 13 is dissipated from the back surface to the second ceramic substrate 20, so that the thermal resistance between the semiconductor element 13 and the peripheral portion is reduced. As a result, even when the ambient temperature is high, the heat dissipation is high and the connection reliability is excellent, and it is possible to prevent a malfunction even under a higher temperature use environment.
[0031]
Although the chip capacitor 22 is mounted on the lower surface of the second ceramic substrate 20 as shown in FIG. 1, it is also possible to mount the chip capacitor 22 on the upper surface of the second ceramic substrate 20. Although the bare chip 23 is mounted on the lower surface of the second ceramic substrate 20 as shown in FIG. 1, it can be mounted on the upper surface of the second ceramic substrate 20 as well. In this manner, the electronic components 22 and 23 can be mounted on at least one of the two surfaces of the second ceramic substrate 20, which is preferable in reducing the size of the electronic control device.
[0032]
Further, the semiconductor element (CSP) 13 can be directly mounted on the first ceramic substrate 10 without using the interposer 14. However, it is desirable to limit the size to a small semiconductor element. This is because, for the same reason as described above, thermal stress is easily generated in the solder joint 13a, and connection reliability is concerned.
[0033]
As described above, the electrical connection between the upper and lower ceramic substrates 10 and 20 is performed by soldering via a number of wiring members (conductors) 31 in the ceramic member 30. At this time, after the solder connection, It is preferable to hermetically seal the gap between the solder joints 32 (see FIG. 1) with a glass material having a low melting point. The sealing can prevent the inflow of moisture from the outside, so that the connection life and the life of parts can be extended. Also, by employing a seal structure, even if lead eutectic (Sn-37Pb) solder is used for the solder joints 32, 14a, 13a, 12a, 11a, etc. in FIG. The effect of reducing environmental load can also be expected.
[0034]
The connection method and structure of the upper and lower ceramic substrates 10 and 20 are not limited to the illustrated form. That is, a flexible substrate (for the contact member 30) can be used for electrical connection between the first and second ceramic substrates 10 and 20. When a flexible substrate is used as a member for electrically connecting the first and second ceramic substrates 10 and 20 in this manner, thermal stress applied to a solder joint is reduced, and connection reliability can be improved. The manufacturing process can be simplified.
[0035]
Although a CSP (chip size package) is used as the semiconductor element 13, the present invention is not limited to this, and other semiconductor elements, in particular, a BGA (ball grid array) or a flip chip, which is a face-down bonding type semiconductor element. A type electronic component may be used.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an in-vehicle electronic control unit (ECU) according to an embodiment.
FIG. 2 is a perspective view of an in-vehicle electronic control unit (ECU).
FIG. 3 is an exploded perspective view of an in-vehicle electronic control unit (ECU).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Case main body, 3 ... Cover, 10 ... First ceramic substrate, 11, 12 ... Electronic component, 13 ... Semiconductor element, 14 ... Flip chip type electronic component for pedestal, 20 ... Second ceramic substrate , 22, 23 ... electronic parts, 30 ... ceramic members, 31 ... wiring materials.

Claims (9)

ケース(1)内において、電子部品(11,12,13)を実装したセラミック基板(10)を収納した電子制御装置であって、
第1のセラミック基板(10)に実装した半導体素子(13)の背面に第2のセラミック基板(20)を接着したことを特徴とする電子制御装置。
An electronic control device containing a ceramic substrate (10) on which electronic components (11, 12, 13) are mounted in a case (1),
An electronic control device characterized in that a second ceramic substrate (20) is bonded to the back surface of a semiconductor element (13) mounted on a first ceramic substrate (10).
前記第2のセラミック基板(20)の両面のうちの少なくともいずれかの面に電子部品(22,23)を実装したことを特徴とする請求項1に記載の電子制御装置。The electronic control device according to claim 1, wherein electronic components (22, 23) are mounted on at least one of both surfaces of the second ceramic substrate (20). 前記第1のセラミック基板(10)と第2のセラミック基板(20)とを電気的に接続したことを特徴とする請求項2に記載の電子制御装置。The electronic control device according to claim 2, wherein the first ceramic substrate (10) and the second ceramic substrate (20) are electrically connected. 配線材(31)を具備するセラミック部材(30)を、前記第1のセラミック基板(10)と第2のセラミック基板(20)との間に配置し、セラミック部材(30)の配線材(31)を介して第1のセラミック基板(10)と第2のセラミック基板(20)とを電気的に接続したことを特徴とする請求項3に記載の電子制御装置。A ceramic member (30) including a wiring member (31) is disposed between the first ceramic substrate (10) and the second ceramic substrate (20), and a wiring member (31) of the ceramic member (30) is provided. The electronic control device according to claim 3, wherein the first ceramic substrate (10) and the second ceramic substrate (20) are electrically connected to each other via (1). 前記第1と第2のセラミック基板(10,20)間の電気的接続にフレキシブル基板を用いたことを特徴とする請求項3に記載の電子制御装置。The electronic control device according to claim 3, wherein a flexible substrate is used for electrical connection between the first and second ceramic substrates (10, 20). 前記第1のセラミック基板(10)に対し台座用フリップチップ型電子部品(14)を介して前記半導体素子(13)を実装することにより、第1のセラミック基板(10)に実装する他の電子部品(11,12)よりも前記半導体素子(13)の背面を高くするようにしたことを特徴とする請求項1〜5のいずれか1項に記載の電子制御装置。By mounting the semiconductor element (13) on the first ceramic substrate (10) via a flip-chip type electronic component (14) for a pedestal, other electronic components mounted on the first ceramic substrate (10). The electronic control device according to any one of claims 1 to 5, wherein the back surface of the semiconductor element (13) is higher than the components (11, 12). 前記台座用フリップチップ型電子部品(14)の材料としてセラミック材料を用いたことを特徴とする請求項6に記載の電子制御装置。The electronic control device according to claim 6, wherein a ceramic material is used as a material of the flip-chip electronic component (14) for the pedestal. ケース(1)内において、電子部品(11,12,13)を実装したセラミック基板(10)を収納した電子制御装置の製造方法であって、
第1のセラミック基板(10)に半導体素子(13)を実装する第1工程と、
前記半導体素子(13)の背面に第2のセラミック基板(20)を接着する第2工程と、
を含むことを特徴とする電子制御装置の製造方法。
A method for manufacturing an electronic control device in which a ceramic substrate (10) on which electronic components (11, 12, 13) are mounted is housed in a case (1),
A first step of mounting a semiconductor element (13) on a first ceramic substrate (10);
A second step of bonding a second ceramic substrate (20) to the back surface of the semiconductor element (13);
A method of manufacturing an electronic control device, comprising:
電子部品(11,12,13)のハンダ付けと、電気的接続用のセラミック部材(30)の配線材(31)の第1と第2のセラミック基板(10,20)へのハンダ付けとを一括リフローにて行うようにしたことを特徴とする請求項8に記載の電子制御装置の製造方法。Soldering the electronic components (11, 12, 13) and soldering the wiring member (31) of the ceramic member (30) for electrical connection to the first and second ceramic substrates (10, 20). The method for manufacturing an electronic control device according to claim 8, wherein the process is performed by batch reflow.
JP2002324042A 2002-11-07 2002-11-07 Electronic controller and method for manufacturing the same Pending JP2004158700A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002324042A JP2004158700A (en) 2002-11-07 2002-11-07 Electronic controller and method for manufacturing the same
US10/701,443 US20040089943A1 (en) 2002-11-07 2003-11-06 Electronic control device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324042A JP2004158700A (en) 2002-11-07 2002-11-07 Electronic controller and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004158700A true JP2004158700A (en) 2004-06-03

Family

ID=32803751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324042A Pending JP2004158700A (en) 2002-11-07 2002-11-07 Electronic controller and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004158700A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547240A (en) * 2005-06-30 2008-12-25 シーメンス アクチエンゲゼルシヤフト Sensitive electronic device data module hardware protection device against unauthorized manipulation from outside
US8258405B2 (en) 2005-06-30 2012-09-04 Siemens Aktiengesellschaft Sensor for a hardware protection system for sensitive electronic-data modules protecting against external manipulations
JP2016171202A (en) * 2015-03-12 2016-09-23 株式会社デンソー Electronic device
KR20200055555A (en) * 2018-11-13 2020-05-21 삼성전기주식회사 Package structure
KR20200055982A (en) * 2018-11-14 2020-05-22 삼성전기주식회사 Interposer and package structure having the same
JP2022025294A (en) * 2020-07-29 2022-02-10 トレックス・セミコンダクター株式会社 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547240A (en) * 2005-06-30 2008-12-25 シーメンス アクチエンゲゼルシヤフト Sensitive electronic device data module hardware protection device against unauthorized manipulation from outside
JP4891994B2 (en) * 2005-06-30 2012-03-07 シーメンス アクチエンゲゼルシヤフト Circuit carrier for protecting sensitive electronic device data module against unauthorized operation from outside, and method of detecting unauthorized access to electronic device data module using the same
US8258405B2 (en) 2005-06-30 2012-09-04 Siemens Aktiengesellschaft Sensor for a hardware protection system for sensitive electronic-data modules protecting against external manipulations
US8270174B2 (en) 2005-06-30 2012-09-18 Siemens Aktiengesellschaft Hardware protection system for sensitive electronic-data modules protecting against external manipulations
JP2016171202A (en) * 2015-03-12 2016-09-23 株式会社デンソー Electronic device
KR20200055555A (en) * 2018-11-13 2020-05-21 삼성전기주식회사 Package structure
KR102561946B1 (en) 2018-11-13 2023-08-01 삼성전기주식회사 Package structure
KR20200055982A (en) * 2018-11-14 2020-05-22 삼성전기주식회사 Interposer and package structure having the same
JP2020088375A (en) * 2018-11-14 2020-06-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Interposer and package structure comprising the same
JP7302784B2 (en) 2018-11-14 2023-07-04 サムソン エレクトロ-メカニックス カンパニーリミテッド. Interposer and package structure including the same
KR102580836B1 (en) * 2018-11-14 2023-09-20 삼성전기주식회사 Interposer and package structure having the same
JP2022025294A (en) * 2020-07-29 2022-02-10 トレックス・セミコンダクター株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
KR100694739B1 (en) Ball grid array package with multiple power/ground planes
US20040089943A1 (en) Electronic control device and method for manufacturing the same
US6984889B2 (en) Semiconductor device
JP4828164B2 (en) Interposer and semiconductor device
US7344916B2 (en) Package for a semiconductor device
JPH10163386A (en) Semiconductor device, semiconductor package and mounting circuit device
US20100270667A1 (en) Semiconductor package with multiple chips and substrate in metal cap
US6201707B1 (en) Wiring substrate used for a resin-sealing type semiconductor device and a resin-sealing type semiconductor device structure using such a wiring substrate
JP2000353767A (en) Board for mounting electronic component, package, mounting method, and method for housing integrated circuit chip in package
JP4218434B2 (en) Electronic equipment
JP2000223645A (en) Semiconductor device
JPH11135679A (en) Electronic device and semiconductor package
JPH09293808A (en) Semiconductor device
US20130140664A1 (en) Flip chip packaging structure
KR20130034310A (en) Printed circuit board assembly
JP2004158700A (en) Electronic controller and method for manufacturing the same
JP4810235B2 (en) Semiconductor device and electronic component module using the same
JP2000243862A (en) Interposer board
US6291893B1 (en) Power semiconductor device for “flip-chip” connections
JPH11204692A (en) Semiconductor device
JPH09321188A (en) Semiconductor device and its mounting method
JP2001118951A (en) Semiconductor device
KR20070079654A (en) Printed circuit board for flip chip bonding and ball grid array package manufacturing method using the same
JP2002270762A (en) Semiconductor device
JPH10256420A (en) Semiconductor device and package thereof