JP2004156057A - Method for depositing carbon thin film, and carbon thin film obtained thereby - Google Patents

Method for depositing carbon thin film, and carbon thin film obtained thereby Download PDF

Info

Publication number
JP2004156057A
JP2004156057A JP2002295663A JP2002295663A JP2004156057A JP 2004156057 A JP2004156057 A JP 2004156057A JP 2002295663 A JP2002295663 A JP 2002295663A JP 2002295663 A JP2002295663 A JP 2002295663A JP 2004156057 A JP2004156057 A JP 2004156057A
Authority
JP
Japan
Prior art keywords
carbon
thin film
film
carbon thin
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002295663A
Other languages
Japanese (ja)
Inventor
Tomoo Akiyama
倫雄 秋山
Noriaki Tani
典明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002295663A priority Critical patent/JP2004156057A/en
Publication of JP2004156057A publication Critical patent/JP2004156057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition method where the deposition of a carbon thin film which has uniform pretilt angle or tilt angle and includes carbons having columnar structure, and the impartation of orientation properties thereto are simultaneously performed, and to provide a carbon thin film obtained thereby. <P>SOLUTION: Carbon atoms, carbon atoms obtained from an evaporation source of carbon ions, and carbon ions are made incident on the surface of a base material at a prescribed incident angle to deposit a film, so that the carbon thin film comprising carbon with a columnar structure in which the pretilt angle or tilt angle is controlled to a prescribed value in the structure is deposited. The carbon thin film is used as a liquid crystal orientation film, a field electron emission electrode film or the like. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、炭素薄膜の形成方法及び得られた炭素薄膜に関し、特に、液晶表示ディスプレー装置における液晶配向膜や、電界放出型ディスプレー装置における電界電子放出電極膜等として用いられる炭素薄膜の形成方法及びこの方法により得られた炭素薄膜に関するものである。
【0002】
【従来の技術】
(1)液晶表示ディスプレー装置においては、対向して設けられたガラス基板間に充填した液晶に一様な分子配列状態を与えるため、一般に、液晶に接する側に、アンカリングエネルギーを持つ配向膜を設けている。従来、ガラス基板上にポリイミド膜を塗布・硬化させ、ラビング法により配向性を持たせる方法が広く用いられていた。このラビング法には、画素表面での微小ゴミの発生や、ラビング用の布のメンテナンスの必要性、更にプロセスの微妙な調整を経験に負う部分が大きい等の問題がある。
【0003】
このラビング法の問題点を解決するため、アモルファス炭素(以下a‐C)膜を形成し、この膜にイオンビーム照射を行う事で配向性を持たせる手法が開発された(例えば、特許文献1参照)。この手法では、成膜と配向制御という2段階のプロセスを必要とする。また、成膜段階で同時に配向性を持たせるため、SiOやSiO等を斜方蒸着したりする方法(例えば、特許文献2参照)や、SiO等の絶縁膜形成材料を基板とほぼ平行に入射させる等して、セルフシャドウイング効果により微小構造を持つ膜を製造する方法(例えば、特許文献3参照)が開発されている。これらの方法で得られた膜の場合、基板全面の柱状構造のプレティルト角と傾斜方位は均一とならない。なお、プレティルト角の制御性を大きくするためには、蒸着中、回転角速度を変化させつつ基板回転を行う等の複雑なプロセスを要し、また、大面積基板への成膜が困難である。
【0004】
(2)電界放出型ディスプレー装置の電子放出電極膜の構造の一つとして、画面に垂直方向に配向した柱状の微細構造を有するa‐CまたはSiの薄膜が開発されているが、柱状構造の炭素を得るためには、上記(1)項に挙げた斜方蒸着における問題点が存在する。他の手法として、炭化水素ガス等を原料として、熱CVD法により、カーボンナノチューブ(以下、CNTと称す)を基板面に対し垂直に成長させる方法が開発されているが、高温プロセスのため基板材料が制限され、また、CNTの機械的強度及び電気伝導性の面で固体蒸発源を用いた蒸着膜より劣る、という問題がある。
【0005】
【特許文献1】
特開平11−271774号公報(請求項9、17及び18等)
【特許文献2】
特開昭53−82440号公報(特許請求の範囲)
【特許文献3】
特開昭63−151926号公報(特許請求項の範囲)
【0006】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の諸問題点を解決することにあり、成膜と同時に配向性付与を行って、組織中にプレティルト角・傾斜方向(傾斜角度)とも均一性のよい柱状構造の炭素を含む炭素薄膜を形成する方法及び得られた炭素薄膜を提供し、その結果、液晶表示ディスプレー装置及び電界放出型ディスプレイ装置等の製造工程を簡略化することにある。
【0007】
【課題を解決するための手段】
本発明の炭素薄膜の形成方法は、基材表面に炭素薄膜を形成する方法において、炭素原子、炭素イオンの蒸発源から得られた炭素原子、炭素イオンを該基材表面に対して所定の入射角で入射して成膜し、プレティルト角又は傾斜角度が所定の値に制御された柱状構造の炭素を組織中に有する炭素薄膜を形成することを特徴とする。本発明によれば、単純な搬送成膜により、大面積基材上にプレティルト角・傾斜方向とも均一性のよい柱状の微細構造を有する炭素薄膜を形成することができる。
【0008】
この炭素薄膜は、例えば、液晶配向膜又は電界電子放出電極膜として用いられ得る。
入射角は、10〜80°であり、プレティルト角又は傾斜角度は5〜90°であることが好ましい。入射角が10°未満であると、柱状構造の成長は不可能であり、80°を超えると動的成膜速度が小さく、非実用的である。また、プレティルト角が5°未満であると、配向ドメインを生じ、液晶配向膜に不向きとなる。
【0009】
上記形成方法において用いる炭素原子、炭素イオンは、基材表面に対して所定の角度を持たせて配置されている蒸発源から得られたものである。
このように蒸発源から得られた炭素原子、炭素イオンは、基材表面と蒸発源との間に基材表面と平行に配置された遮蔽板の開口を通して、基材表面上に所定の傾斜角で入射される。
成膜中に、基材を直線的に基材面に平行に移動させながら成膜を行う。
本発明の形成方法で用いる蒸発源は、ターゲットのような固体蒸発源であることが好ましく、基材表面に入射される炭素原子、炭素イオンはこの蒸発源から反跳されたものである。
【0010】
上記蒸発源として、その蒸発面が基材の成膜表面に対して10〜80°の傾斜角を持つように配置した蒸発源を用いることが好ましい。10°未満であると、柱状構造の成長は不可能であり、80°を超えると、成膜速度が小さく、非実用的である。
本発明の上記炭素薄膜形成方法によれば、ラビング法を用いずに液晶ディスプレー装置の配向膜を形成することができるので、画素へのダスト付着・ラビング用布のメンテナンス等の問題が解消され、また、この配向膜の形成において、成膜と配向性付与を同時に行うことができので、配向膜の製造工程が短縮される。また、液晶ディスプレー装置の配向膜、及び電界放出型ディスプレー装置の電界電子放出電極膜等の柱状構造の炭素を含む炭素薄膜の形成において、従来型の斜方蒸着と比較して簡便なプロセスで、均一性のよいプレティルト角又は傾斜角度を持つ柱状構造の炭素を含む大面積炭素薄膜を製造することができる。
【0011】
さらに、電界電子放出電極膜を形成する際に、従来の垂直配向のCNTを製造する場合と比べて、基材材質の種類に関係なく、電極膜を形成できる工程を実現することができると共に、膜の電界電子放出特性を向上させることができる。
本発明の炭素薄膜は、炭素原子、炭素イオンの蒸発源から得られた炭素原子、炭素イオンを基材表面に対して所定の入射角で入射して成膜され、所定の値に制御されたプレティルト角又は傾斜角度を有する柱状構造の炭素を組織中に含むものであり、この炭素薄膜は、液晶配向膜又は電界電子放出電極膜として用いられ得る。また、この炭素薄膜は、上記した方法に従って得られる。
【0012】
【発明の実施の形態】
本発明に係わる炭素薄膜の形成方法の実施の形態によれば、基材表面に対して所定の角度を持たせて配置されている固体蒸発源から反跳された炭素原子、炭素イオンを、基材表面と蒸発源との間に基材表面と平行に配置された遮蔽板の開口を通して、基材表面上に所定の傾斜角で入射する。この遮蔽板に設けられた開口は、搬送方向に狭い幅を有し、搬送方向と直角に長手方向を有するものであることが好ましい。
また、本発明の炭素薄膜形成方法で用いる基材としては、特に制限されず、通常の基板や立体形状を持つ基体等であればよく、液晶表示ディスプレー装置における配向膜として用いる場合のように、透明電極等を有していてもよい。
【0013】
以下、本発明に係わる炭素薄膜の形成方法を実施するための各種成膜装置について、図1〜3を参照して説明する。
図1〜3において、1は炭素ターゲットTを備えたマグネトロンスパッタカソード、2は基材、3は開口を有する遮蔽板、4は基材トレー、5は基材搬送機構のレール、6は真空槽、7は排気装置、8はカソード用電源、並びに9及び10はターゲット中心より反跳され、遮蔽板3の開口を通って基材に入射する炭素粒子の経路を示す。また、θ1及びθ2は基材2に入射する炭素粒子の入射角である。図1では、カソード1はターゲットTの表面と基材2の面とが、90°の角度をなすように、図2では45°の角度をなすように、図3では平行となるように配置されている。図1〜3中、同一構成要素は同じ符号を付す。
【0014】
図1の例では、例えば、ターゲットTの中心から基材2までの垂直距離hを100mm、ターゲットTの表面から遮蔽板3の開口の中心までの水平距離Lを155mmとすると、このような遮蔽板3を設けたことにより、炭素粒子の入射角θ1、θ2は、それぞれ、60°、65°になる。真空槽6の上方には、ターゲットTが固定されたカソード1が取り付けられており、真空槽6内にターゲットTと90°の角度をなして設けた基材トレー4上に基材2を載置することにより、ターゲットTからの炭素粒子が、遮蔽板3の開口を通って所定の角度(θ1、θ2)を有する経路9、10でこの基材上に入射され、成膜されるようになっている。この基材トレー4はレール5上に置かれており、スパッタリングしつつ、基材トレー4及び基材2をA方向又はB方向に一定速度で搬送することができるように構成されている。このため、基材2全面に均一性のよい斜め入射成膜が行え、プレティルト角又は傾斜角度が所定の値に制御された柱状構造の炭素を組織中に有する炭素薄膜、すなわち、組織中に所望のプレティルト角又は傾斜角度を持つ柱状構造の炭素を含む炭素薄膜を形成できる。
【0015】
図2及び図3の例でも同様に、垂直距離h、距離L、その他に遮蔽板の開口幅等を適切に組み合わせることで、任意の入射角度で基材2全面に均一性のよい斜め入射成膜を行える。逆に、例えば図3において、遮蔽板3の開口位置を蒸発源の直下に設けると、入射角θ1’、θ2’は0〜10°となるが、この場合、通常のスパッタと同様となるため、膜構造は柱状とならない。また、図1において、粒子の入射角θ1、θ2を80°より大きい角度に限定する場合、遮蔽板3の開口中心までの距離Lは200mm以上となり、粒子は実質的に基材2には殆ど入射しない。この時の動的成膜速度は、100nm・mm/minと非常に低く実用に適さない。また、膜自体が薄く、断面の電子顕微鏡写真では柱状構造を確認できなかった。これらの事態を避け、適切な入射角を与える開口位置を設定することで柱状構造を持った膜を得ることができる。
【0016】
上記成膜装置を用いて行う基材2上への成膜中の炭素の柱状構造の成長モデルを図4に示す。図4に示すように、先に基材上に堆積した炭素の島状構造11があるため、所定の入射角度θiで斜め入射した炭素粒子12は、粒子11の影にあたる部分に堆積するよりも、粒子11の上に堆積する確率が高くなる。この堆積の繰り返しで、13、14の様に間隙の空いた柱状構造の炭素が成長する。このとき、一般に、炭素粒子の入射角θiの増加に伴い、柱状構造の炭素のプレティルト角θpは小さくなる傾向がある。この点について、入射角を種々変え(θi=10〜80°)、以下述べる実施例記載のようにして炭素薄膜を形成させた際の入射角(θi)と柱状構造の傾斜角であるプレティルト角(θp)との関係を図5に示す。
【0017】
次いで、遮蔽板を設けなかったこと以外は上記成膜装置と同じ構成の成膜装置を用いて、上記と同様の成膜プロセスを実施した時に形成される炭素膜断面のモデルを図6に示す。図6に示すように、基材上の位置、例えばx1、x2によって、炭素粒子の入射角θ1、θ2は大きく異なり、プレティルト角θpの均一性を揃えるのは難しい。また、基材を搬送させつつ成膜する場合、プレティルト角θpの制御性は悪くなる。
従って、図4及び6から明らかなように、ターゲット中心より反跳され、基材上へと入射する炭素粒子の経路に遮蔽板を設け、また、この遮蔽板の適切な位置に所定の開口幅の開口を配することにより、任意に制御されたプレティルト角θpを有する柱状構造の炭素を含む炭素薄膜を均一性よく形成することが可能となる。
【0018】
本発明で得られた炭素薄膜は、例えば、液晶表示ディスプレー装置において、対向して設けられたガラス基板間に充填した液晶に一様な分子配列状態を与えるための配向膜として、また、電界放出型ディスプレー装置の電子放出電極膜として有用である。例えば、この炭素薄膜を用いた液晶セルは、第一基板に所定のプレティルト角を有を有する炭素を含む薄膜からなる第一配向膜を付与し、第二基板に第二配向膜を付与し、第一配向膜と第二配向膜との間に液晶層を設けることにより作製できる。
【0019】
【実施例】
以下、本発明の実施例として、図1に示す成膜装置を用い、表1に示す条件で炭素薄膜の形成を行った例を説明する。
排気装置7を稼働させ、真空槽6内を所定の圧力になるまで排気し、カソード用電源8から所定の電流密度でカソード1に出力し、真空槽内に所定の流量のアルゴンガス、水素ガスを流し、所定の搬送速度で、基材搬送用レール5上で基材トレー4上に載置された基材2をA方向又はB方向に搬送し、スパッタリングを行って炭素薄膜を形成せしめた。ターゲットTの中心から基材2までの垂直距離hを100mm、ターゲットT表面から遮蔽板3の開口の中心までの水平距離Lを155mmとした。上記成膜プロセス中の炭素粒子の入射角θ1、θ2は、それぞれ、60°、65°であった。
【0020】
上記成膜プロセスで得られた炭素薄膜は、組織中に所定のプレティルト角を有する柱状構造の炭素を含むものであることが、断面の電子顕微鏡観察により確認された。
【0021】
(表1)

Figure 2004156057
【0022】
上記成膜プロセスにより得られた炭素薄膜の電界電子放出特性を図7に示す。図中、曲線aは上記成膜プロセスにより得られた炭素薄膜についての特性、また、曲線bは従来の熱CVD法により得られた垂直配向CNT膜の特性である。これらの曲線から、電界電子放出特性について、本発明の方法を用いて得られた炭素薄膜の方が従来の場合よりも優れていることが分かる。
【0023】
【発明の効果】
本発明の炭素薄膜形成方法によれば、炭素原子、炭素イオンを所定の入射角範囲で基材表面に入射し、成膜し、組織中に柱状構造の炭素を含む薄膜を形成しているので、プレティルト角又は傾斜角度が所定の値に制御された柱状構造の炭素を組織中に含む炭素薄膜を形成することができる。単純な搬送成膜により、大面積基材上にプレティルト角・傾斜方向とも均一性のよい柱状の微細構造を有する炭素薄膜を形成することができる。
また、本発明の炭素薄膜によれば、所定の値に制御されたプレティルト角又は傾斜角を有する柱状構造の炭素が組織中に含まれているので、例えば、液晶ディスプレー装置の配向膜としての特性や、電界放出型ディスプレー装置の電界電子放出電極膜としての電界電子放出特性に優れている
【0024】
本発明炭素薄膜形成方法の効果について、以下、さらに詳細に説明する。
(1)ラビング法を用いずに液晶ディスプレー装置の配向膜形成することができるので、画素へのダスト付着・ラビング用布のメンテナンス等の問題が解消される。
(2)液晶ディスプレー装置の配向膜形成において、成膜と配向性付与を同時に行うことができるので、配向膜の製造工程が短縮される。
(3)液晶ディスプレー装置の配向膜、及び電界放出型ディスプレー装置の電界電子放出電極膜等の柱状構造の炭素を含む炭素薄膜の形成において、従来型の斜方蒸着と比較して簡便なプロセスで、均一性のよいプレティルト角又は傾斜角度を持つ柱状構造の炭素を含む大面積炭素薄膜を製造することができる。
(4)電界電子放出電極膜を形成する際に、従来の垂直配向のCNTを製造する場合と比べて、基材材質の種類に関係なく、電極膜を形成できる工程を実現することができ、また、膜の電界電子放出特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係わる炭素薄膜形成方法を実施するための一成膜装置の概略の構成を示す断面図。
【図2】本発明に係わる炭素薄膜形成方法を実施するための別の成膜装置の概略の構成を示す断面図。
【図3】本発明に係わる炭素薄膜形成方法を実施するためのさらに別の成膜装置の概略の構成を示す断面図。
【図4】本発明に係わる炭素薄膜形成方法による基材上への成膜中の炭素の柱状構造の成長モデルを説明するための模式図。
【図5】本発明に係わる炭素薄膜形成方法における入射角(θi)とプレティルト角(θp)との関係を示すグラフ。
【図6】本発明に係わる炭素薄膜形成方法(ただし、遮蔽板を設けない装置を使用)により形成される炭素薄膜の断面のモデルを示す断面図。
【図7】本発明に係わる炭素薄膜形成方法により得られた炭素薄膜の電界電子放出特性を示すグラフ。
【符号の説明】
1 マグネトロンスパッタカソード 2 基材
3 遮蔽板 4 基材トレー
5 基材搬送機構のレール 6 真空槽
7 排気装置 8 カソード用電源
9、10 入射炭素粒子の経路 11、12 炭素粒子
13、14 炭素粒子の柱状構造 T ターゲット
h ターゲット中心から基材までの垂直距離
L ターゲット表面から開口中心までの水平距離
θ1、θ2、θi 炭素粒子の入射角 θp プレティルト角[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of forming a carbon thin film and the obtained carbon thin film, and more particularly to a method of forming a carbon thin film used as a liquid crystal alignment film in a liquid crystal display device, a field electron emission electrode film in a field emission display device, and the like. The present invention relates to a carbon thin film obtained by this method.
[0002]
[Prior art]
(1) In a liquid crystal display device, an alignment film having an anchoring energy is generally provided on the side in contact with the liquid crystal in order to give a uniform molecular alignment state to the liquid crystal filled between the glass substrates provided opposite to each other. Provided. Conventionally, a method of applying and curing a polyimide film on a glass substrate to give orientation by a rubbing method has been widely used. The rubbing method has problems such as generation of minute dust on the pixel surface, necessity of maintenance of a rubbing cloth, and a large part of the experience of fine adjustment of the process.
[0003]
In order to solve the problem of the rubbing method, a method has been developed in which an amorphous carbon (hereinafter a-C) film is formed, and the film is irradiated with an ion beam to impart orientation. reference). This method requires a two-stage process of film formation and orientation control. Further, in order to simultaneously provide orientation during the film formation stage, a method of obliquely depositing SiO or SiO 2 or the like (for example, see Patent Document 2), or a method of forming an insulating film such as SiO 2 substantially parallel to the substrate is used. For example, a method of manufacturing a film having a microstructure by the self-shadowing effect by making the light incident on a substrate (see, for example, Patent Document 3) has been developed. In the case of films obtained by these methods, the pretilt angle and the tilt direction of the columnar structure over the entire surface of the substrate are not uniform. Note that in order to increase the controllability of the pretilt angle, a complicated process such as rotating the substrate while changing the rotation angular velocity during vapor deposition is required, and it is difficult to form a film on a large-area substrate.
[0004]
(2) As one of the structures of the electron emission electrode film of the field emission display device, an aC or Si thin film having a columnar fine structure oriented in a direction perpendicular to the screen has been developed. In order to obtain carbon, there is a problem in oblique deposition described in the above item (1). As another method, a method has been developed in which carbon nanotubes (hereinafter referred to as CNTs) are grown perpendicularly to a substrate surface by a thermal CVD method using a hydrocarbon gas or the like as a raw material. In addition, there is a problem that the CNT is inferior to the deposited film using the solid evaporation source in mechanical strength and electrical conductivity of the CNT.
[0005]
[Patent Document 1]
JP-A-11-271774 (claims 9, 17 and 18 etc.)
[Patent Document 2]
JP-A-53-82440 (Claims)
[Patent Document 3]
JP-A-63-151926 (Claims)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide orientation at the same time as film formation, and to provide a columnar structure having good uniformity in both pretilt angle and tilt direction (tilt angle) in a structure. The present invention provides a method for forming a carbon thin film containing carbon and the obtained carbon thin film, and as a result, simplifies the manufacturing steps of a liquid crystal display device, a field emission display device, and the like.
[0007]
[Means for Solving the Problems]
The method for forming a carbon thin film according to the present invention is a method for forming a carbon thin film on a surface of a base material, the method comprising: A film is formed by forming a carbon thin film having a columnar structure in which the pretilt angle or the inclination angle is controlled to a predetermined value in a structure. According to the present invention, it is possible to form a carbon thin film having a columnar fine structure with good uniformity in both the pretilt angle and the tilt direction on a large-area substrate by a simple transfer film formation.
[0008]
This carbon thin film can be used, for example, as a liquid crystal alignment film or a field electron emission electrode film.
The incident angle is preferably from 10 to 80 °, and the pretilt angle or the inclination angle is preferably from 5 to 90 °. When the incident angle is less than 10 °, the growth of the columnar structure is impossible, and when it is more than 80 °, the dynamic film forming rate is low, which is impractical. On the other hand, when the pretilt angle is less than 5 °, an alignment domain is generated, which makes the liquid crystal alignment film unsuitable.
[0009]
The carbon atoms and carbon ions used in the above forming method are obtained from an evaporation source arranged at a predetermined angle with respect to the substrate surface.
The carbon atoms and carbon ions thus obtained from the evaporation source pass through the opening of the shielding plate arranged in parallel with the substrate surface between the substrate surface and the evaporation source, and have a predetermined inclination angle on the substrate surface. Incident.
During the film formation, the film is formed while moving the substrate linearly and parallel to the substrate surface.
The evaporation source used in the formation method of the present invention is preferably a solid evaporation source such as a target, and carbon atoms and carbon ions incident on the surface of the substrate are recoiled from this evaporation source.
[0010]
As the evaporation source, it is preferable to use an evaporation source whose evaporation surface is arranged to have an inclination angle of 10 to 80 ° with respect to the film formation surface of the substrate. If it is less than 10 °, growth of the columnar structure is impossible, and if it is more than 80 °, the film formation rate is low, which is impractical.
According to the carbon thin film forming method of the present invention, since the alignment film of the liquid crystal display device can be formed without using a rubbing method, problems such as dust adhesion to pixels and maintenance of a rubbing cloth are solved, Further, in the formation of the alignment film, the film formation and the imparting of the orientation can be performed at the same time, so that the manufacturing process of the alignment film is shortened. In addition, in forming an alignment film of a liquid crystal display device, and a carbon thin film containing columnar carbon such as a field electron emission electrode film of a field emission display device, a simple process compared to conventional oblique deposition, A large-area carbon thin film containing carbon having a columnar structure having a pretilt angle or a tilt angle with good uniformity can be manufactured.
[0011]
Further, when forming a field electron emission electrode film, a process capable of forming an electrode film can be realized irrespective of the type of the base material, as compared with the case of manufacturing conventional vertically aligned CNTs. The field emission characteristics of the film can be improved.
The carbon thin film of the present invention was formed by depositing carbon atoms and carbon ions obtained from an evaporation source of carbon ions and carbon ions at a predetermined incident angle on the substrate surface, and was controlled to a predetermined value. The structure contains carbon having a columnar structure having a pretilt angle or an inclination angle, and this carbon thin film can be used as a liquid crystal alignment film or a field electron emission electrode film. Further, this carbon thin film is obtained according to the method described above.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the embodiment of the method of forming a carbon thin film according to the present invention, carbon atoms and carbon ions recoiled from a solid evaporation source arranged at a predetermined angle with respect to the substrate surface are used as bases. The light is incident on the surface of the base material at a predetermined inclination angle through an opening of a shielding plate arranged between the material surface and the evaporation source in parallel with the base material surface. The opening provided in the shielding plate preferably has a narrow width in the transport direction and has a longitudinal direction perpendicular to the transport direction.
The substrate used in the method for forming a carbon thin film of the present invention is not particularly limited, and may be a normal substrate or a substrate having a three-dimensional shape, such as an alignment film in a liquid crystal display device. It may have a transparent electrode or the like.
[0013]
Hereinafter, various film forming apparatuses for performing the method of forming a carbon thin film according to the present invention will be described with reference to FIGS.
1 to 3, reference numeral 1 denotes a magnetron sputtering cathode provided with a carbon target T, 2 denotes a substrate, 3 denotes a shielding plate having an opening, 4 denotes a substrate tray, 5 denotes a rail of a substrate transport mechanism, and 6 denotes a vacuum chamber. , 7 indicate an exhaust device, 8 indicates a cathode power supply, and 9 and 10 indicate paths of carbon particles which are recoiled from the center of the target and enter the base material through the opening of the shielding plate 3. Θ1 and θ2 are the incident angles of the carbon particles incident on the substrate 2. In FIG. 1, the cathode 1 is arranged such that the surface of the target T and the surface of the substrate 2 form an angle of 90 °, in FIG. 2 they form an angle of 45 °, and in FIG. 3 they become parallel. Have been. 1 to 3, the same components are denoted by the same reference numerals.
[0014]
In the example of FIG. 1, for example, if the vertical distance h from the center of the target T to the substrate 2 is 100 mm and the horizontal distance L from the surface of the target T to the center of the opening of the shielding plate 3 is 155 mm, such shielding By providing the plate 3, the incident angles θ1 and θ2 of the carbon particles become 60 ° and 65 °, respectively. A cathode 1 to which a target T is fixed is attached above the vacuum chamber 6, and the substrate 2 is placed on a substrate tray 4 provided at an angle of 90 ° with the target T in the vacuum chamber 6. In this way, the carbon particles from the target T are incident on the base material through the openings 9 and 10 having predetermined angles (θ1, θ2) through the openings of the shielding plate 3 to form a film. Has become. The substrate tray 4 is placed on a rail 5, and is configured to be able to transport the substrate tray 4 and the substrate 2 at a constant speed in the A direction or the B direction while sputtering. For this reason, oblique incidence film formation with good uniformity can be performed on the entire surface of the base material 2, and a carbon thin film having columnar structure carbon in which the pretilt angle or the inclination angle is controlled to a predetermined value in the tissue, that is, a desired carbon thin film in the tissue A carbon thin film containing carbon having a columnar structure having a pretilt angle or an inclination angle can be formed.
[0015]
Similarly, in the examples shown in FIGS. 2 and 3, by appropriately combining the vertical distance h, the distance L, the opening width of the shielding plate, and the like, the oblique incident light having good uniformity over the entire surface of the substrate 2 at an arbitrary incident angle. The membrane can be made. Conversely, for example, in FIG. 3, when the opening position of the shielding plate 3 is provided immediately below the evaporation source, the incident angles θ1 ′ and θ2 ′ become 0 to 10 °, but in this case, it becomes the same as ordinary sputtering. In addition, the film structure does not become columnar. In addition, in FIG. 1, when the incident angles θ1 and θ2 of the particles are limited to angles larger than 80 °, the distance L to the center of the opening of the shielding plate 3 is 200 mm or more. Does not enter. The dynamic film formation rate at this time is extremely low, 100 nm · mm / min, and is not suitable for practical use. Further, the film itself was thin, and a columnar structure could not be confirmed in an electron micrograph of the cross section. By avoiding these situations and setting an opening position that gives an appropriate incident angle, a film having a columnar structure can be obtained.
[0016]
FIG. 4 shows a growth model of a columnar structure of carbon during film formation on the base material 2 performed by using the film formation apparatus. As shown in FIG. 4, since there is the carbon island structure 11 previously deposited on the base material, the carbon particles 12 obliquely incident at a predetermined incident angle θi are more likely to be deposited on a portion corresponding to the shadow of the particles 11. , The probability of deposition on the particles 11 increases. By repeating this deposition, carbon having a columnar structure with gaps like 13 and 14 grows. At this time, generally, as the incident angle θi of the carbon particles increases, the pretilt angle θp of the carbon having the columnar structure tends to decrease. In this regard, the incident angle is variously changed (θi = 10 to 80 °), and the incident angle (θi) and the pretilt angle, which is the inclination angle of the columnar structure, when the carbon thin film is formed as described in Examples described below. FIG. 5 shows the relationship with (θp).
[0017]
Next, FIG. 6 shows a model of a cross section of a carbon film formed when a film forming process similar to the above is performed using a film forming apparatus having the same configuration as the above film forming apparatus except that the shielding plate is not provided. . As shown in FIG. 6, the incident angles θ1 and θ2 of the carbon particles greatly differ depending on the positions on the base material, for example, x1 and x2, and it is difficult to make the pretilt angle θp uniform. In addition, when forming a film while transporting the base material, the controllability of the pretilt angle θp deteriorates.
Therefore, as is clear from FIGS. 4 and 6, a shielding plate is provided on the path of the carbon particles which are rebounded from the center of the target and enter the substrate, and a predetermined opening width is provided at an appropriate position of the shielding plate. By disposing the openings, it is possible to form a carbon thin film containing columnar carbon having an arbitrarily controlled pretilt angle θp with good uniformity.
[0018]
The carbon thin film obtained by the present invention can be used, for example, in a liquid crystal display device as an alignment film for giving a uniform molecular alignment state to a liquid crystal filled between glass substrates provided opposite to each other, It is useful as an electron emission electrode film of a type display device. For example, in a liquid crystal cell using this carbon thin film, a first alignment film made of a thin film containing carbon having a predetermined pretilt angle is applied to a first substrate, and a second alignment film is applied to a second substrate. It can be manufactured by providing a liquid crystal layer between the first alignment film and the second alignment film.
[0019]
【Example】
Hereinafter, as an example of the present invention, an example in which a carbon thin film is formed under the conditions shown in Table 1 using the film forming apparatus shown in FIG. 1 will be described.
The evacuation device 7 is operated to evacuate the vacuum chamber 6 to a predetermined pressure, and output from the cathode power supply 8 to the cathode 1 at a predetermined current density, so that a predetermined flow rate of argon gas and hydrogen gas is supplied into the vacuum chamber. The substrate 2 placed on the substrate tray 4 is transported in the A or B direction on the substrate transport rail 5 at a predetermined transport speed, and sputtering is performed to form a carbon thin film. . The vertical distance h from the center of the target T to the substrate 2 was 100 mm, and the horizontal distance L from the surface of the target T to the center of the opening of the shielding plate 3 was 155 mm. The incident angles θ1 and θ2 of the carbon particles during the film forming process were 60 ° and 65 °, respectively.
[0020]
Electron microscopic observation of the cross section confirmed that the carbon thin film obtained by the above film formation process contained carbon having a columnar structure having a predetermined pretilt angle in the structure.
[0021]
(Table 1)
Figure 2004156057
[0022]
FIG. 7 shows the field electron emission characteristics of the carbon thin film obtained by the above film forming process. In the figure, a curve a indicates the characteristic of the carbon thin film obtained by the above-described film forming process, and a curve b indicates the characteristic of the vertically aligned CNT film obtained by the conventional thermal CVD method. From these curves, it can be seen that the carbon thin film obtained by using the method of the present invention is superior to the conventional case in the field electron emission characteristics.
[0023]
【The invention's effect】
According to the method for forming a carbon thin film of the present invention, carbon atoms and carbon ions are incident on the substrate surface in a predetermined incident angle range, a film is formed, and a thin film containing columnar carbon is formed in the tissue. A carbon thin film containing carbon having a columnar structure in which the pretilt angle or the tilt angle is controlled to a predetermined value can be formed. By a simple transfer film formation, a carbon thin film having a columnar microstructure with good uniformity in both the pretilt angle and the tilt direction can be formed on a large-area substrate.
Further, according to the carbon thin film of the present invention, since carbon having a columnar structure having a pretilt angle or a tilt angle controlled to a predetermined value is contained in the tissue, for example, the characteristic as an alignment film of a liquid crystal display device is obtained. Also, it has excellent field emission characteristics as a field emission electrode film of a field emission display device.
The effect of the carbon thin film forming method of the present invention will be described in more detail below.
(1) Since an alignment film of a liquid crystal display device can be formed without using a rubbing method, problems such as dust adhesion to pixels and maintenance of a rubbing cloth can be solved.
(2) In forming the alignment film of the liquid crystal display device, the film formation and the imparting of the orientation can be performed at the same time, so that the manufacturing process of the alignment film is shortened.
(3) A simpler process for forming a carbon thin film containing columnar carbon such as an alignment film of a liquid crystal display device and a field emission electrode film of a field emission display device is simpler than conventional oblique deposition. A large-area carbon thin film containing carbon having a columnar structure having a pretilt angle or a tilt angle with good uniformity can be manufactured.
(4) When forming a field electron emission electrode film, a process capable of forming an electrode film can be realized irrespective of the type of base material, as compared with the case of manufacturing conventional vertically aligned CNTs. Further, the field electron emission characteristics of the film can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a film forming apparatus for performing a carbon thin film forming method according to the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of another film forming apparatus for performing the carbon thin film forming method according to the present invention.
FIG. 3 is a sectional view showing a schematic configuration of still another film forming apparatus for performing a carbon thin film forming method according to the present invention.
FIG. 4 is a schematic diagram for explaining a growth model of a columnar structure of carbon during film formation on a substrate by the method for forming a carbon thin film according to the present invention.
FIG. 5 is a graph showing a relationship between an incident angle (θi) and a pretilt angle (θp) in the method for forming a carbon thin film according to the present invention.
FIG. 6 is a cross-sectional view showing a model of a cross-section of a carbon thin film formed by the method of forming a carbon thin film according to the present invention (using an apparatus without a shielding plate).
FIG. 7 is a graph showing field electron emission characteristics of a carbon thin film obtained by the carbon thin film forming method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetron sputter cathode 2 Substrate 3 Shielding plate 4 Substrate tray 5 Rail of substrate transport mechanism 6 Vacuum tank 7 Exhaust device 8 Power supply for cathode 9, 10 Path of incident carbon particle 11, 12 Carbon particle 13, 14 Columnar structure T Target h Vertical distance from target center to substrate L Horizontal distance from target surface to center of opening θ1, θ2, θi Incident angle of carbon particles θp Pretilt angle

Claims (12)

基材表面に炭素薄膜を形成する方法において、炭素原子、炭素イオンの蒸発源から得られた炭素原子、炭素イオンを該基材表面に対して所定の入射角で入射して成膜し、プレティルト角又は傾斜角度が所定の値に制御された柱状構造の炭素を組織中に有する炭素薄膜を形成することを特徴とする炭素薄膜の形成方法。In a method of forming a carbon thin film on a substrate surface, a carbon atom and a carbon ion obtained from an evaporation source of carbon atoms and carbon ions are incident on the substrate surface at a predetermined incident angle to form a film, and a pretilt is formed. A method for forming a carbon thin film, comprising forming a carbon thin film having a columnar structure of carbon having a controlled angle or inclination angle at a predetermined value in a tissue. 前記炭素薄膜が、液晶配向膜又は電界電子放出電極膜として用いられる薄膜であることを特徴とする請求項1記載の炭素薄膜の形成方法。2. The method according to claim 1, wherein the carbon thin film is a thin film used as a liquid crystal alignment film or a field electron emission electrode film. 前記入射角が10〜80°であることを特徴とする請求項1又は2記載の炭素薄膜の形成方法。The method for forming a carbon thin film according to claim 1, wherein the incident angle is 10 to 80 °. 前記プレティルト角又は傾斜角度が5〜90°であることを特徴とする請求項1〜3のいずれかに記載の炭素薄膜の形成方法。The method for forming a carbon thin film according to any one of claims 1 to 3, wherein the pretilt angle or the inclination angle is 5 to 90 °. 前記炭素原子、炭素イオンが、基材表面に対して所定の角度を持たせて配置されている蒸発源から得られたものであることを特徴とする請求項1〜4のいずれかに記載の炭素薄膜の形成方法。The method according to claim 1, wherein the carbon atom and the carbon ion are obtained from an evaporation source arranged at a predetermined angle with respect to the substrate surface. A method for forming a carbon thin film. 前記蒸発源から生じた炭素原子、炭素イオンを、基材表面と蒸発源との間に基材表面と平行に配置された遮蔽板の開口を通して、該基材表面上に所定の傾斜角で入射することを特徴とする請求項1〜5のいずれかに記載の炭素薄膜の形成方法。Carbon atoms and carbon ions generated from the evaporation source are incident on the surface of the substrate at a predetermined inclination angle through an opening of a shielding plate disposed between the surface of the substrate and the evaporation source in parallel with the surface of the substrate. The method for forming a carbon thin film according to any one of claims 1 to 5, wherein 成膜中に、前記基材を直線的に移動させながら成膜を行うことを特徴とする請求項1〜6のいずれかに記載の炭素薄膜の形成方法。The method for forming a carbon thin film according to any one of claims 1 to 6, wherein the film is formed while moving the substrate linearly during the film formation. 前記蒸発源が固体蒸発源であることを特徴とする請求項1〜7のいずれかに記載の炭素薄膜の形成方法。The method according to claim 1, wherein the evaporation source is a solid evaporation source. 前記蒸発源として、その蒸発面が基材表面に対して10〜80°の傾斜角を持つように配置した蒸発源を用いることを特徴とする請求項1〜8のいずれかに記載の炭素薄膜の形成方法。The carbon thin film according to any one of claims 1 to 8, wherein an evaporation source whose evaporation surface is arranged to have an inclination angle of 10 to 80 ° with respect to the substrate surface is used as the evaporation source. Formation method. 炭素原子、炭素イオンの蒸発源から得られた炭素原子、炭素イオンを基材表面に対して所定の入射角で入射して成膜され、所定の値に制御されたプレティルト角又は傾斜角度を有する柱状構造の炭素を組織中に含む炭素薄膜。A carbon atom and a carbon ion obtained from a carbon atom and a carbon ion evaporation source are incident on a substrate surface at a predetermined incident angle to form a film, and have a pretilt angle or a tilt angle controlled to a predetermined value. Carbon thin film containing columnar carbon in its structure. 前記炭素薄膜が液晶配向膜又は電界電子放出電極膜として用いられる薄膜であることを特徴とする請求項10記載の炭素薄膜。The carbon thin film according to claim 10, wherein the carbon thin film is a thin film used as a liquid crystal alignment film or a field electron emission electrode film. 請求項3〜9のいずれかに記載の方法に従って得られた請求項10又は11記載の炭素薄膜。The carbon thin film according to claim 10, which is obtained by the method according to claim 3.
JP2002295663A 2002-09-10 2002-10-09 Method for depositing carbon thin film, and carbon thin film obtained thereby Pending JP2004156057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295663A JP2004156057A (en) 2002-09-10 2002-10-09 Method for depositing carbon thin film, and carbon thin film obtained thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002264008 2002-09-10
JP2002295663A JP2004156057A (en) 2002-09-10 2002-10-09 Method for depositing carbon thin film, and carbon thin film obtained thereby

Publications (1)

Publication Number Publication Date
JP2004156057A true JP2004156057A (en) 2004-06-03

Family

ID=32827481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295663A Pending JP2004156057A (en) 2002-09-10 2002-10-09 Method for depositing carbon thin film, and carbon thin film obtained thereby

Country Status (1)

Country Link
JP (1) JP2004156057A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047724A (en) * 2004-08-05 2006-02-16 International Display Technology Kk Ion beam irradiation equipment
WO2006030884A1 (en) * 2004-09-16 2006-03-23 The Doshisha Thin film producing method
JP2007108502A (en) * 2005-10-14 2007-04-26 Seiko Epson Corp Manufacturing apparatus of liquid crystal device, manufacturing method of liquid crystal device, liquid crystal device and electronic equipment
JP2007286401A (en) * 2006-04-18 2007-11-01 Seiko Epson Corp Device for manufacturing liquid crystal device and method for manufacturing liquid crystal device
JP2008038245A (en) * 2006-07-14 2008-02-21 Seiko Epson Corp Film deposition apparatus and film deposition method
JP2008108575A (en) * 2006-10-25 2008-05-08 Kuraray Co Ltd Transparent conductive film, transparent electrode substrate, and manufacturing method of liquid crystal orientation film using this
JP2010008460A (en) * 2008-06-24 2010-01-14 Seiko Epson Corp Apparatus for manufacturing liquid crystal device
JP2010020092A (en) * 2008-07-10 2010-01-28 Seiko Epson Corp Sputtering apparatus and manufacturing apparatus for liquid crystal device
JP2010020094A (en) * 2008-07-10 2010-01-28 Seiko Epson Corp Sputtering apparatus, and apparatus for manufacturing liquid crystal device
JP2011038859A (en) * 2009-08-07 2011-02-24 Kobe Steel Ltd Contact probe pin
JP2020196915A (en) * 2019-05-31 2020-12-10 株式会社アルバック Method for depositing carbon film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047724A (en) * 2004-08-05 2006-02-16 International Display Technology Kk Ion beam irradiation equipment
US7951272B2 (en) 2004-09-16 2011-05-31 Omron Corporation Thin film producing method
WO2006030884A1 (en) * 2004-09-16 2006-03-23 The Doshisha Thin film producing method
JP2007108502A (en) * 2005-10-14 2007-04-26 Seiko Epson Corp Manufacturing apparatus of liquid crystal device, manufacturing method of liquid crystal device, liquid crystal device and electronic equipment
JP4736702B2 (en) * 2005-10-14 2011-07-27 セイコーエプソン株式会社 Liquid crystal device manufacturing apparatus, liquid crystal device manufacturing method, liquid crystal device, and electronic apparatus
JP2007286401A (en) * 2006-04-18 2007-11-01 Seiko Epson Corp Device for manufacturing liquid crystal device and method for manufacturing liquid crystal device
JP2008038245A (en) * 2006-07-14 2008-02-21 Seiko Epson Corp Film deposition apparatus and film deposition method
JP4642789B2 (en) * 2006-07-14 2011-03-02 セイコーエプソン株式会社 Film forming apparatus and film forming method
JP2008108575A (en) * 2006-10-25 2008-05-08 Kuraray Co Ltd Transparent conductive film, transparent electrode substrate, and manufacturing method of liquid crystal orientation film using this
JP2010008460A (en) * 2008-06-24 2010-01-14 Seiko Epson Corp Apparatus for manufacturing liquid crystal device
JP2010020092A (en) * 2008-07-10 2010-01-28 Seiko Epson Corp Sputtering apparatus and manufacturing apparatus for liquid crystal device
JP2010020094A (en) * 2008-07-10 2010-01-28 Seiko Epson Corp Sputtering apparatus, and apparatus for manufacturing liquid crystal device
JP4631940B2 (en) * 2008-07-10 2011-02-16 セイコーエプソン株式会社 Sputtering apparatus and liquid crystal device manufacturing apparatus
JP2011038859A (en) * 2009-08-07 2011-02-24 Kobe Steel Ltd Contact probe pin
JP2020196915A (en) * 2019-05-31 2020-12-10 株式会社アルバック Method for depositing carbon film
JP7384574B2 (en) 2019-05-31 2023-11-21 株式会社アルバック Carbon film formation method

Similar Documents

Publication Publication Date Title
JP3971911B2 (en) Solid lithium secondary battery and manufacturing method thereof
TWI337204B (en)
JP2015529744A (en) Film deposition assisted by angle selective etching
JP2002509988A (en) Method and apparatus for depositing a biaxially textured coating
JP2004156057A (en) Method for depositing carbon thin film, and carbon thin film obtained thereby
JPS582022A (en) Thin film formation
US9732419B2 (en) Apparatus for forming gas blocking layer and method thereof
JP3836184B2 (en) Method for manufacturing magnesium oxide film
JP2005272284A (en) Method for making carbon nanotube and substrate for making carbon nanotube
WO2008136130A1 (en) Plasma generation device, and method and apparatus for forming film using the same
JP3928989B2 (en) SiC epitaxial thin film forming method and SiC epitaxial thin film forming apparatus
KR20150076467A (en) Aluminum coating layer with controllable structure and the method thereof
JP4316265B2 (en) Manufacturing method of liquid crystal display panel
TW594853B (en) The manufacturing method of diamond film and diamond film
Çelikel et al. Catalyst-free carbon nanowalls grown on glass and silicon substrates by ECR-MPCVD method
JPH0578831A (en) Formation of thin film and device therefor
JPH0329216A (en) Formation of transparent conductive film
JPH03174306A (en) Production of oxide superconductor
JPS6350463A (en) Method and apparatus for ion plating
WO2024143399A1 (en) Film formation device
JP3822059B2 (en) Method of warping deformation of silicon substrate
JP2907403B2 (en) Deposition film forming equipment
JP2009249689A (en) Method for manufacturing lithium composite oxide thin film and method for manufacturing electrode body
Rodríguez et al. 1D photonic band gap PbTe doped silica quantum dot optical device
CN116043325A (en) Thin film deposition device and thin film deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090129