JP3971911B2 - Solid lithium secondary battery and manufacturing method thereof - Google Patents

Solid lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP3971911B2
JP3971911B2 JP2001330661A JP2001330661A JP3971911B2 JP 3971911 B2 JP3971911 B2 JP 3971911B2 JP 2001330661 A JP2001330661 A JP 2001330661A JP 2001330661 A JP2001330661 A JP 2001330661A JP 3971911 B2 JP3971911 B2 JP 3971911B2
Authority
JP
Japan
Prior art keywords
substrate
film
active material
electrode active
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001330661A
Other languages
Japanese (ja)
Other versions
JP2003132887A (en
Inventor
洋 樋口
正弥 宇賀治
修二 伊藤
宏夢 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001330661A priority Critical patent/JP3971911B2/en
Publication of JP2003132887A publication Critical patent/JP2003132887A/en
Application granted granted Critical
Publication of JP3971911B2 publication Critical patent/JP3971911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高容量で、薄型化が可能な固体リチウム二次電池およびその製造方法に関する。
【0002】
【従来の技術】
全固体電池の製法としては、既に半導体で培われた薄膜プロセスが導入されたことによって、リチウムポリマー電池よりも薄型化が可能な厚さ25μm程度の全固体電池が紹介されている(米国特許第5338625号)。なかでも、薄膜プロセスによってそれぞれの電池構成要素が薄型化された全固体電池は、連続的に積層させることによって、従来の電池の数倍のエネルギー密度が期待できることから注目されている。
【0003】
【発明が解決しようとする課題】
電池構成要素が薄膜化されても、充放電時においては、正・負極活物質がリチウムを高密度、かつ高速にインターカレートできること、および固体電解質がリチウムイオンに対して高いイオン伝導性を示すことが基本的に必要であり、このことは従来と変わりがない。電極活物質に使用される材料のうち比較的利用割合が高いコバルト酸リチウムLiCoO2は、インターカレーションに結晶構造を必要とする。LiCoO2は、菱面体晶系の結晶構造をとる。結晶内のLi、Co、Oの各原子は、c軸に対してほぼ垂直な層を構成しており、Li層はO層に挟まれた部分に位置している。Liは、Li層内のみを移動することができ、通常はO層を飛び越えて移動することができないという特徴がある。
【0004】
全固体リチウム二次電池が動作するためは、正極活物質中のリチウムイオンが固体電解質との間で移動可能でなければならない。
電池構成要素を、スパッタ、熱蒸着、イオンプレーティング、電子ビーム蒸着、レーザーアブレーション、CVDを始めとする一般的な気相製膜プロセスで作製すると、正極活物質層、固体電解質層、および負極活物質層が平面的な積層構造を構成することになる。LiCoO2を薄膜化した場合、c軸配向する傾向が強いため、前述のLi層の大半は固体電解質に接触しないことから、正極活物質−固体電解質間におけるLiイオンの授受がスムーズに行われない。ここで、c軸配向とは、LiCoO2の場合、(003)面配向に相当する。その結果、全固体リチウム二次電池の出力電流が低く抑えられることとなる。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するために、コバルト酸リチウム結晶のc軸を基板の法線に対して傾斜させるのである。すなわち、本発明の固体リチウム二次電池は、導電性基板上にLiCoO2からなる膜状の正極活物質層、膜状の固体電解質層および膜状の負極活物質層が順次形成された固体リチウム二次電池において、前記正極活物質層のLiCoO2のc軸が前記基板の法線に対して少なくとも60°傾いていることを特徴とする。
【0006】
本発明は、導電性基板上にLiCoO2からなる膜状の正極活物質層、膜状の固体電解質層および膜状の負極活物質層をこの順序で積層形成する工程を有する固体リチウム二次電池の製造方法であって、前記正極活物質層を形成する工程が、リチウムソース材料およびコバルトソース材料を前記基板上に供給してLiCoO2を気相製膜法によって形成する工程であり、かつ正極活物質層の膜形成初期段階においては、前記両ソース材料を前記基板の法線となす角60〜90°の範囲の入射角にて前記基板へ供給することを特徴とする固体リチウム二次電池の製造方法を提供する。
【0007】
【発明の実施の形態】
本発明は、コバルト酸リチウムは、これを気相製膜法によって形成する際、そのソース材料のガスが被製膜基板に入射する方向とは逆の方向にc軸を向けた状態で結晶成長する性質があることを見出したことに基づいている。これを応用して、膜形成材料の原子ないし分子からなるガスの飛散方向を被製膜基板面に対して平行あるいはそれに近い角度とすることで、膜自体がc軸配向しないようにすることが可能になる。
本発明は、膜形成の初期段階においては、ソース材料を基板の法線となす角60〜90°の範囲の入射角にて前記基板へ供給することにより、コバルト酸リチウム層を形成する。本発明の方法によれば、コバルト酸リチウムの結晶成長方向であるc軸が被製膜基板面に対して傾くため、正極活物質層表面にLiイオンが授受可能な部分が形成される。すなわち、正極活物質層の電解質層と接する面にLiCoO2の(101)面および(104)面が露出することとなる。これによってLiイオンの授受が容易となり、出力電流の増大した固体リチウム二次電池を提供することができる。
【0008】
本発明は、上記のように、正極活物質層の膜形成初期段階においては、両ソース材料を被製膜基板の法線となす角60〜90°の範囲の入射角にて前記基板へ供給することを特徴とする。ここに、膜形成の初期段階とは、正極活物質層が少なくとも0.2μmの厚みに達するまでの段階である。それ以後は、ソース材料の前記基板への入射角は60°未満に変更しても良い。
正極活物質層の膜形成初期段階における前記ソース材料の入射角θは、70〜90°が好ましい。入射角θが70°未満の場合には、まだ若干の(003)面配向の傾向が残っていて、放電容量が小さくなる傾向がある。70〜90°の範囲において125mA・h/g以上の放電容量を得ることが可能となる。製膜速度は、ソース材料の入射角θの増加とともに減少する。特に、80°を越えると、膜がポーラスになる傾向が見られるため70〜80°の範囲がより好ましい。
【0009】
ソース材料の被製膜基板への入射角は、ソース材料と被製膜基板との相対位置や両者間のシャッタの位置などにより制御できるほか、被製膜基板に向けて供給されるソース材料をキャリアガスにより被製膜基板の表面とほぼ平行に流れるように制御することができる。
ここに用いるキャリアガスとしては、ヘリウム、ネオン、アルゴン、キセノン、窒素、および酸素からなる群より選択される。
【0010】
LiCoO2のソース材料としては、LiCoO2そのものを用いることも可能ではある。しかし、LiとCoの蒸気圧の差に起因すると思われる原子比Li/Coが時間とともに変動するので、LiとCoのそれぞれを別々のソース材料から供給することによって安定した膜形成を図る。この場合、Liソース材料には、金属リチウム、Li2O、LiO、LiOHなど、Coソース材料には金属コバルト、CoO、Co34、Co23などがそれぞれ使用できる。これらの材料は、目標とするLiCoO2正極活物質層を構成する元素で構成されている。これらについては、電子ビーム照射によって蒸発し、すべてのLiソース材料とCoソース材料の組み合わせにおいてLiCoO2層を形成することが確認された。また、LiPO4、Li2CO3などのリチウム塩をLiソース材料に用いてもLiCoO2層を形成することができる。
以下に、本発明の実施の形態を説明する。
【0011】
《実施の形態1》
図1は本実施の形態の製膜装置の概略構成を示す。
真空容器8の中に挿入された被製膜基板1は、基板ホルダー2によって支持されている。その下方のやや前方には、ソース材料3を入れたるつぼ4がセットされている。るつぼ4内のソース材料3は、電子銃5から発射される電子ビームを受けて昇温、蒸発し、被製膜基板1の表面に正極活物質層を形成する。シャッター6は、実験上必要な治具であって、これが開いた時に製膜される。ガス導入管7、排気管9、メインバルブ10はいずれも装置の基本となる器具であり、これらを調整することによって製膜条件を調整する。
【0012】
図2はソース材料および被製膜基板の位置関係を示す。リチウムソース材料およびコバルトソース材料をそれぞれ入れたるつぼ3aおよび3bの二源ソースが用いられる。両るつぼの中心を結ぶ線の中点を0点とし、そこからx方向およびz方向にずれた位置に被製膜基板1がセットされる。両るつぼ3aおよび3bから蒸発するソース材料は、被製膜基板1にその法線とのなす角θの入射角をもって供給される。基板ホルダー2は、その位置を調整することにより、ソース材料の基板1への入射角θを変えることができる。この例では、ガス導入管7から導入されるガスの流れによって前記のソース材料の入射角は影響されない。
【0013】
《実施の形態2》
図3は本実施の形態の製膜装置の概略構成を示す。
真空容器28の中に挿入された被製膜基板21は、基板ホルダー22によって水平に支持されている。その下方のやや前方には、ソース材料23を入れたるつぼ24がセットされている。ソース材料23は、電子銃25から照射される電子ビームを受けて昇温、蒸発し、被製膜基板21の表面に向かう。このとき、ガス導入管27からのガスは、排気管29に向けて被製膜基板21に対して平行に流れるように設計されている。シャッター26は、これが開いた時にソース材料が被製膜基板側に供給される。被製膜基板に向かうソース材料は、ガス導入管27からのガスにより進路を被製膜基板に沿うように変えられるので、ソース材料の被製膜基板への入射角は90°に近くなる。ガス導入管27、排気管29、およびメインバルブ30などを調整することによって、製膜条件を調整することができる。図では1つのソース材料のみを示しているが、実施の形態1と同様に、二源ソースを用いる。
【0014】
《実施の形態3》
図4は本実施の形態の製膜装置の概略構成を示す。
この製膜装置は、実施の形態2の装置を一部変更したものである。基板ホルダー22bは、その位置を調整することにより、ソース材料の基板21への見かけの入射角θ’を変えることができる。また、ガス導入管27bおよび排出管29bの開口部を基板21上の対向する位置におき、導入管27bからのガスを基板に平行に流し、入射角θ’で基板に向かうソース材料の進路を若干変更させる。
【0015】
《実施の形態4》
図5は本実施の形態の製膜装置の概略構成を示す。
被製膜基板31は、真空容器40の中にある巻きだしロール32に巻きつけてあり、製膜中に製膜ドラム33を経由して巻き取りロール34に巻き取られる。被製膜基板31は、集電体としての導電性を持つものが好ましいが、高抵抗のシートに導電性皮膜を形成したものも使用可能である。アルミニウム、銅、ステンレス鋼など、既に金属箔として量産されているものを使用すると低コスト化が可能である。
製膜ドラム33の下方には、ソース材料35を入れたるつぼ36が設けてあり、ソース材料は電子銃37から発射される電子ビームを受けて昇温、蒸発し、被製膜基板31の表面に正極活物質層を形成する。遮蔽板38はソース材料35から被製膜基板31への材料の入射角度を制限するためのものであり、そのアパーチャ39の位置と間隔を調節することによって被製膜基板への入射角を変えることができる。真空容器40には、バルブ42を有する管41が設けてある。図では1つのソース材料のみを示しているが、実施の形態1と同様に、二源ソースを用いる。
【0016】
以上の実施の形態に示すようにして形成される正極活物質層は、図6に示すような断面構造を持っている。本発明は、LiCoO2はこれを気相製膜するためのソースが飛来する方向に結晶成長する性質があることを発見したことに基づいている。すなわち、被製膜基板11にその法線12とのなす角θの入射角にてソース材料を供給することによって、LiCoO2の結晶のc軸が図の矢印15に示す方向に成長し、(003)面がその方向に積層された正極活物質層14が形成される。一方、Liイオンを授受する(101)面および(104)面は、図の矢印16に示す方向に配向する。これによって、Liイオンを授受する(101)面および(104)面が正極の電解質側の表面に露出することとなる。
【0017】
図7は、最も基本的なリチウム二次電池の断面構造図である。被製膜基板として用いられた正極集電体51の上に正極活物質層52、固体電解質層53、負極活物質層54、負極集電体55をこの順序で積層したものである。正極集電体51および正極活物質層52が負極活物質層54および負極集電体55に接触しないように、固体電解質層53を形成することが必要である。これらを製膜する際のパターニング方法としては、製膜時に金属マスクを用いることが望ましい。
【0018】
【実施例】
以下、本発明の実施例を説明する。
《実施例1》
本実施例では、図1および図2に示すような構成の製膜装置を用いた。製膜中の被製膜基板へのソース材料の入射角θを一定にした条件下で、入射角θの値と得られた正極活物質層の配向性の関係を調べるために、θの値を40°から90°まで5°刻みで変え、得られた正極活物質層の結晶軸の向きをX線回折分析で調べた。
被製膜基板1には大きさ100×100mm、厚さ20μmの銅箔、ソース材料には金属リチウムと金属コバルトの二源ソースを用いた。ソースサイズは径10mmの円形とし、2つのソースの中心間距離は30mmとした。被製膜基板1は、その下側端面がソースから150mm上方となる位置(z=150mm)で、x軸方向に10mm離れた位置に設置した。大きさ10×10mmの穴が空いたステンレス鋼箔を被製膜基板1の上にかぶせた状態で製膜を行うことにより、被製膜基板1上に大きさ10×10mmのコバルト酸リチウム膜を形成した。
【0019】
製膜条件は、Arと酸素の流量比率を1:1、雰囲気圧力5×10-2Pa、電子ビームの全照射強度は10kV、250mA、リチウムとコバルトへの電子ビーム照射量は、照射時間100msecを0.1:0.9の割合に時間分割することによって調節した。製膜時間は、シャッターの開放時間で決定した。ソース材料の基板への入射角θと製膜時間を表1に示す。この製膜プロセスを実施して、約1μmの膜厚のコバルト酸リチウム膜を形成した。
得られた膜のX線回折パターンを分析し、(003)面による回折強度に対する(101)面および(104)面による回折強度の比率[101]/[003]および[104]/[003]をそれぞれ算出し、結果を表1に併記した。(104)面による回折強度はθ=60°付近から増大する一方、(003)面による回折強度は減少する傾向があり、結晶のc軸が徐々に基板の法線方向からずれていく傾向があることが分かる。
【0020】
得られた膜の上にLi3PO4をターゲットとするスパッタ法によって固体電解質Li3PO3Nの膜を厚さ1μmで形成した。これの製膜雰囲気は窒素、圧力は5Pa、入力パワー200W、製膜時間は35時間である。製膜に際して大きさ20×20mmの穴が空いたステンレス鋼箔を被製膜基板1の上にかぶせた状態で製膜を行うことにより、被製膜基板1上の大きさ10×10mmのコバルト酸リチウム膜の上に大きさ20×20mmのLi3PO3N膜を得た。
さらに、前記の固体電解質膜上に金属リチウム膜を電子ビーム蒸着によって厚さ0.5μm形成した。形成時の雰囲気はAr、圧力は5×10-2Pa、電子ビームの照射強度が10kV、40mA、照射時間は30秒である。製膜に際して大きさ14×14mmの穴が空いたステンレス鋼箔を被製膜基板1の上にかぶせた状態で製膜を行うことにより、被製膜基板1上の大きさ20×20mmのLi3PO3N膜上に大きさ14×14mmの金属リチウム膜を得た。
【0021】
この金属リチウム膜上に負極集電体としてのCuを電池ビーム蒸着によって厚さ10μm形成した。形成時の雰囲気はAr、圧力は5×10-2Pa、電子ビームの照射強度は10kV、150mA、照射時間は5分である。製膜に際して大きさ18×18mmの穴が空いたステンレス鋼箔を被製膜基板1の上にかぶせた状態で製膜を行うことにより、大きさ14×14mmの金属リチウムの上に大きさ18×18mmのCu膜を得た。
以上の工程を経て、図7に示す構造のリチウム二次電池を得た。
得られた全固体リチウム二次電池の性能を検証するため、20Cのレートで充放電し、5サイクル目の放電容量を測定した。
【0022】
【表1】

Figure 0003971911
【0023】
《実施例2》
本実施例では、被製膜基板に対するソース材料の入射角度θを製膜中に変化させて、結晶の配向に与える影響を調べた。これにより、製膜の初期段階の入射角度が結晶の配向に与える効果を示す。
図1および図2に示す製膜装置を用いた。被製膜基板には厚さ20μmの銅箔、ソース材料にはリチウムとコバルトの二源ソースを用いた。タブレット成型した2種類のソース材料に対して、それぞれ適当な強度の電子ビームを照射してそれぞれを加熱して蒸発させた。
大きさ10×10mmの穴が空いたステンレス鋼箔を被製膜基板の上にかぶせた状態で製膜プロセスを実施することによって、大きさ10×10mmのコバルト酸リチウムを形成した。製膜条件は、Arと酸素の流量比率を1:1、雰囲気圧力5×10-2Pa、電子ビームの全照射強度が10kV、250mA、リチウムとコバルトへの電子照射量は、照射時間100msecを0.1:0.9の割合に時間分割することによって調節した。製膜時間は、シャッターの開放時間で決定した。製膜の初期段階のθと製膜時間を表2に示す。
【0024】
まず、入射角θ0で時間t0だけ製膜して約0.5μm厚の膜を形成した後、さらに入射角を0°にして時間t1だけ製膜することによって、約1μmの膜厚のコバルト酸リチウム膜を形成した。得られた膜のX線回折パターンを分析し、(003)による回折強度に対する(101)面および(104)面による回折強度の比率をそれぞれ算出し、結果を表2に併記した。(104)面による回折強度はθ0=60°付近から増大し、(003)面による回折強度は減少する傾向があり、実施例1と同様に結晶のc軸が徐々に基板の法線方向からずれていく傾向があることが分かる。
実施例1と同様にして、正極活物質層の上にLi3PO3N膜、金属リチウム膜、およびCu膜を形成して、図7に示す構造のリチウム二次電池を得た。
得られた全固体リチウム二次電池の性能を検証するため、20Cのレートで充放電し、5サイクル目の放電容量を測定した。
【0025】
【表2】
Figure 0003971911
【0026】
《実施例3》
本実施例では、図3に示す製膜装置を用い、製膜中に被製膜基板面に平行に流すガスの流量および種類を変えて、得られるコバルト酸リチウムの結晶軸の配向性を調べた。
図3のように、るつぼ24から供給されるソース材料の被製膜基板21への入射角θがほぼ0°であるように設計された装置において、被製膜基板21付近にガス導入管27と排気管29を配置し、被製膜基板21に平行にガス流を発生させることが結晶軸の配向性に与える効果を示す。
【0027】
被製膜基板21に厚さ20μmの銅箔、ソース材料23にリチウムとコバルトの二源ソースをそれぞれ用いた。タブレット成型した2種類のソース材料に対して、それぞれ適当な強度の電子ビームを照射してそれぞれを加熱して蒸発させた。大きさ10×10mmの穴が空いたステンレス鋼箔を被製膜基板の上にかぶせた状態で製膜プロセスを実施することによって、大きさ10×10mmのコバルト酸リチウムを形成した。製膜条件は、Arまたは窒素と酸素の流量比率1:1、雰囲気圧力5×10-2Pa、電子ビームの全照射強度が10kV、250mA、リチウムとコバルトへの電子照射量は照射時間100msecを0.1:0.9の割合に時間分割することによって調節した。製膜時間は、シャッターの開放時間で決定した。ガス導入管27からのガス流量を表3に示す。容器内の圧力は、メインバルブ30の開度によって調整した。本実施例では、表面が平滑な被製膜基板の他、実施例5と同様にして表面を粗面化した被製膜基板についても評価した。
【0028】
得られた膜のX線回折パターンを分析し、(003)面による回折強度に対する(101)面および(104)面による回折強度の比率をそれぞれ算出し、結果を表3に併記した。(104)面による回折強度は総ガス流量が10sccm付近から増大し、(003)面による回折強度は減少する傾向がある。そして、総ガス流量の増大、すなわちソース材料の入射角の増大に伴い、実施例1と同様に、結晶のc軸が徐々に基板の法線方向からずれていくことが分かる。
実施例1と同様にして、正極活物質層の上にLi3PO3N膜、金属リチウム膜、およびCu膜を形成して、図7に示す構造のリチウム二次電池を得た。
得られた全固体リチウム二次電池の性能を検証するため、20Cのレートで充放電し、5サイクル目の放電容量を測定した。
【0029】
【表3】
Figure 0003971911
【0030】
《実施例4》
本実施例では、図4に示す製膜装置を用い、製膜中に被製膜基板面に平行にガスを流した状態で、るつぼから基板に向けて供給するソース材料の角度θ’を変えて得られるコバルト酸リチウムの結晶軸の配向性を調べた。
製膜条件は、Arと酸素の流量比率を1:1とし、総流量60sccmで被製膜基板と平行に流したこと、および角度θ’を0°から90°まで15°間隔で変えたこと以外は、実施例1と同じである。得られた膜のX線回折パターンを分析し、(003)面による回折強度に対する(101)面および(104)面による回折強度の比率をそれぞれ算出し、結果を表4に併記した。角度θ’の増大に伴い(104)面および(101)面による回折強度が増大し、(003)面による回折強度は減少する傾向があり、加えて、被製膜基板面に平行なガス流が付加されたことによって(003)面の配向がしにくくなっていることが実施例1との比較で分かる。上記の条件においては、ソース材料の被製膜基板への実際の入射角はθ’より若干小さくなる。
【0031】
実施例1と同様にして、正極活物質層の上にLi3PO3N膜、金属リチウム膜、およびCu膜を形成して、図7に示す構造のリチウム二次電池を得た。
得られた全固体リチウム二次電池の性能を検証するため、20Cのレートで充放電し、5サイクル目の放電容量を測定した。
本実施例により得られた電池の放電容量は、0°≦θ’≦45°の範囲で、(104)面および(101)面による回折強度の増加、(003)面による回折強度の減少に伴って、増大する傾向がみられ、放電容量がθ’と相関関係を有していることが分かる。また、実施例1においては、θ<60°では放電容量が90mA・h/g以下であったが、本実施例では被製膜基板面に平行なガス流があることによってすべてのθ’で放電容量が90mA・h/gを越えている。
【0032】
【表4】
Figure 0003971911
【0033】
《実施例5》
本実施例では、被製膜基板表面に凹凸をつけて粗面にした場合の特性を評価した。すなわち、被製膜基板の表面に凹凸を設けた場合の入射角θの値と配向性の関係を調べるために、θの値を0°から90°まで10°刻みで変えた場合の正極活物質層の結晶軸の向きをX線回折分析で調べた。
被製膜基板に凹凸を設けた以外は、実施例1と全く同一の条件で正極活物質層を製膜した。被製膜基板は、粒径5μmの炭酸カルシウム砥粒を用いてサンドブラスト処理した。最大15μm程度の凹凸が発生している。サンドブラスト処理の後、ジエチルエーテル中で20分間超音波洗浄することで砥粒の残留を抑制した。
【0034】
上記のように表面に凹凸を設けた被製膜基板に製膜した厚さ1μmのコバルト酸リチウム膜のX線回折パターンを分析し、(003)による回折強度に対する(101)面および(104)面による回折強度の比率をそれぞれ算出し、結果を表5に併記した。入射角θの増大に伴い(104)面による回折強度はθ=25°付近から増大し、逆に(003)面による回折強度は減少する傾向があり、結晶のc軸が徐々に基板の法線方向からずれていく傾向がある。そして、その傾向は実施例1と比較して低入射角側にシフトしていることから、基板表面に凹凸を加えたことによって、基板の法線方向への(003)面の配向が抑制され、(104)面が配向しやすくなったと考えられる。
実施例1と同様にして、正極活物質層の上にLi3PO3N膜、金属リチウム膜、およびCu膜を形成して、図7に示す構造のリチウム二次電池を得た。
得られた全固体リチウム二次電池の性能を検証するため、20Cのレートで充放電し、5サイクル目の放電容量を測定した。
【0035】
【表5】
Figure 0003971911
【0036】
【発明の効果】
以上のように本発明は、被製膜基板に飛来するソース材料の入射角度を制御することによって、基板上に形成されるコバルト酸リチウムからなる正極活物質膜の配向性を制御することが可能となり、放電性能の向上した固体リチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例における正極活物質の膜形成装置の概略構成を示す縦断面図である。
【図2】同装置のソース材料および被製膜基板の位置関係を示す略図である。
【図3】本発明の他の実施例における正極活物質の膜形成装置の概略構成を示す縦断面図である。
【図4】本発明のさらに他の実施例における正極活物質の膜形成装置の概略構成を示す縦断面図である。
【図5】本発明のさらに他の実施例における正極活物質の膜形成装置の概略構成を示す縦断面図である。
【図6】正極活物質形成時の結晶成長の様子を示す概念図である。
【図7】リチウム二次電池の縦断面図である。
【符号の説明】
1 被製膜基板
2 基板ホルダー
3 ソース材料
4 るつぼ
5 電子銃
6 シャッター
7 ガス導入管
8 真空容器
9 排気管
10 メインバルブ
51 正極集電体
52 正極活物質層
53 固体電解質層
54 負極活物質層
55 負極集電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid lithium secondary battery having a high capacity and capable of being thinned, and a method for manufacturing the same.
[0002]
[Prior art]
As a method for producing an all-solid-state battery, an all-solid-state battery having a thickness of about 25 μm, which can be made thinner than a lithium polymer battery by introducing a thin film process already cultivated with semiconductors, has been introduced (US Pat. 5338625). In particular, an all-solid battery in which each battery component is thinned by a thin film process is attracting attention because it can be expected to have an energy density several times that of a conventional battery by continuously laminating it.
[0003]
[Problems to be solved by the invention]
Even when the battery components are made thin, the positive and negative electrode active materials can intercalate lithium at high density and at high speed during charging and discharging, and the solid electrolyte exhibits high ionic conductivity with respect to lithium ions. Is basically necessary, and this is the same as before. Among the materials used for the electrode active material, lithium cobaltate LiCoO 2 having a relatively high utilization rate requires a crystal structure for intercalation. LiCoO 2 has a rhombohedral crystal structure. Each atom of Li, Co, and O in the crystal forms a layer substantially perpendicular to the c-axis, and the Li layer is located in a portion sandwiched between the O layers. Li is characterized in that it can move only within the Li layer, and normally cannot jump over the O layer.
[0004]
In order for the all-solid lithium secondary battery to operate, the lithium ions in the positive electrode active material must be movable between the solid electrolyte.
When battery components are produced by a general vapor deposition process including sputtering, thermal evaporation, ion plating, electron beam evaporation, laser ablation, and CVD, a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material are produced. The material layer constitutes a planar laminated structure. When LiCoO 2 is thinned, since the tendency to c-axis orientation is strong, most of the above-mentioned Li layer does not come into contact with the solid electrolyte, so that the exchange of Li ions between the positive electrode active material and the solid electrolyte is not smoothly performed. . Here, the c-axis orientation corresponds to (003) plane orientation in the case of LiCoO 2 . As a result, the output current of the all solid lithium secondary battery can be kept low.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention tilts the c-axis of the lithium cobalt oxide crystal with respect to the normal line of the substrate. In other words, solid-state lithium secondary battery of the present invention, film-like cathode active material layer made of LiCoO 2 on the conductive substrate, a film-like solid-solid lithium electrolyte layer and film-like negative electrode active material layer are sequentially formed In the secondary battery, the LiCoO 2 c-axis of the positive electrode active material layer is inclined at least 60 ° with respect to the normal line of the substrate.
[0006]
The present invention, film-like cathode active material layer made of LiCoO 2 on the conductive substrate, a film-like solid electrolyte layer and a film-like solid-state lithium secondary battery having a negative electrode active material layer laminating formed in this order The step of forming the positive electrode active material layer is a step of supplying a lithium source material and a cobalt source material onto the substrate to form LiCoO 2 by a vapor deposition method, and the positive electrode In the initial stage of film formation of the active material layer, the solid lithium secondary battery is characterized in that both the source materials are supplied to the substrate at an incident angle in the range of 60 to 90 ° with the normal of the substrate. A manufacturing method is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, when lithium cobaltate is formed by vapor deposition, crystal growth is performed with the c-axis directed in the direction opposite to the direction in which the gas of the source material is incident on the deposition substrate. It is based on the finding that there is a nature to do. By applying this, it is possible to prevent the film itself from being c-axis oriented by setting the gas scattering direction of the film-forming material atoms or molecules to be parallel to or close to the film substrate surface. It becomes possible.
In the present invention, in the initial stage of film formation, a lithium cobalt oxide layer is formed by supplying a source material to the substrate at an incident angle in the range of 60 to 90 ° with the normal of the substrate. According to the method of the present invention, the c-axis, which is the crystal growth direction of lithium cobaltate, is inclined with respect to the film-formed substrate surface, so that a portion capable of giving and receiving Li ions is formed on the surface of the positive electrode active material layer. That is, the (101) plane and (104) plane of LiCoO 2 are exposed on the surface of the positive electrode active material layer in contact with the electrolyte layer. This facilitates the exchange of Li ions, and can provide a solid lithium secondary battery with an increased output current.
[0008]
As described above, according to the present invention, in the initial stage of film formation of the positive electrode active material layer, both source materials are supplied to the substrate at an incident angle in the range of 60 to 90 ° with the normal line of the film formation substrate. It is characterized by doing. Here, the initial stage of film formation is a stage until the positive electrode active material layer reaches a thickness of at least 0.2 μm. Thereafter, the angle of incidence of the source material on the substrate may be changed to less than 60 °.
The incident angle θ of the source material in the initial stage of film formation of the positive electrode active material layer is preferably 70 to 90 °. When the incident angle θ is less than 70 °, a slight tendency of (003) plane orientation still remains and the discharge capacity tends to decrease. A discharge capacity of 125 mA · h / g or more can be obtained in the range of 70 to 90 °. The film forming speed decreases with an increase in the incident angle θ of the source material. In particular, if it exceeds 80 °, the film tends to be porous, and therefore a range of 70 to 80 ° is more preferable.
[0009]
The angle of incidence of the source material on the film formation substrate can be controlled by the relative position between the source material and the film formation substrate, the position of the shutter between the two, and the source material supplied toward the film formation substrate. The carrier gas can be controlled so as to flow substantially parallel to the surface of the film formation substrate.
The carrier gas used here is selected from the group consisting of helium, neon, argon, xenon, nitrogen, and oxygen.
[0010]
The source material of LiCoO 2, there is also possible to use LiCoO 2 itself. However, since the atomic ratio Li / Co, which seems to be due to the difference in vapor pressure between Li and Co, varies with time, stable film formation is achieved by supplying Li and Co from different source materials. In this case, metallic lithium, Li 2 O, LiO, LiOH or the like can be used as the Li source material, and metallic cobalt, CoO, Co 3 O 4 , Co 2 O 3 or the like can be used as the Co source material. These materials are composed of elements constituting a target LiCoO 2 positive electrode active material layer. These were evaporated by electron beam irradiation, to form a LiCoO 2 layer was confirmed in every combination of Li source material and Co source material. The LiCoO 2 layer can also be formed by using a lithium salt such as LiPO 4 or Li 2 CO 3 as the Li source material.
Hereinafter, embodiments of the present invention will be described.
[0011]
Embodiment 1
FIG. 1 shows a schematic configuration of the film forming apparatus of the present embodiment.
The substrate 1 to be deposited inserted into the vacuum vessel 8 is supported by the substrate holder 2. A crucible 4 in which the source material 3 is placed is set slightly below the front. The source material 3 in the crucible 4 is heated and evaporated by receiving an electron beam emitted from the electron gun 5 to form a positive electrode active material layer on the surface of the substrate 1 to be deposited. The shutter 6 is a jig necessary for experiments, and is formed when the shutter 6 is opened. The gas introduction pipe 7, the exhaust pipe 9, and the main valve 10 are all basic equipment of the apparatus, and the film forming conditions are adjusted by adjusting these.
[0012]
FIG. 2 shows the positional relationship between the source material and the film formation substrate. A dual source of crucibles 3a and 3b containing a lithium source material and a cobalt source material, respectively, is used. The midpoint of the line connecting the centers of both crucibles is set to 0, and the film-forming substrate 1 is set at a position shifted from that in the x and z directions. The source material evaporating from both crucibles 3a and 3b is supplied to the film-forming substrate 1 with an incident angle of an angle θ formed with the normal line. The substrate holder 2 can change the incident angle θ of the source material to the substrate 1 by adjusting its position. In this example, the incident angle of the source material is not affected by the flow of gas introduced from the gas introduction pipe 7.
[0013]
<< Embodiment 2 >>
FIG. 3 shows a schematic configuration of the film forming apparatus of the present embodiment.
The film forming substrate 21 inserted into the vacuum container 28 is supported horizontally by the substrate holder 22. A crucible 24 into which the source material 23 is placed is set slightly below the front. The source material 23 receives the electron beam irradiated from the electron gun 25, rises in temperature and evaporates, and moves toward the surface of the film formation substrate 21. At this time, the gas from the gas introduction pipe 27 is designed to flow in parallel to the film formation substrate 21 toward the exhaust pipe 29. When the shutter 26 is opened, the source material is supplied to the film formation substrate side. Since the source material directed to the film formation substrate can be changed in the path along the film formation substrate by the gas from the gas introduction pipe 27, the incident angle of the source material to the film formation substrate is close to 90 °. The film forming conditions can be adjusted by adjusting the gas introduction pipe 27, the exhaust pipe 29, the main valve 30, and the like. Although only one source material is shown in the figure, a two-source source is used as in the first embodiment.
[0014]
<< Embodiment 3 >>
FIG. 4 shows a schematic configuration of the film forming apparatus of the present embodiment.
This film forming apparatus is a partial modification of the apparatus of the second embodiment. By adjusting the position of the substrate holder 22b, the apparent incident angle θ ′ of the source material to the substrate 21 can be changed. Further, the openings of the gas introduction pipe 27b and the discharge pipe 29b are placed at opposing positions on the substrate 21, the gas from the introduction pipe 27b flows in parallel to the substrate, and the path of the source material toward the substrate at the incident angle θ ′ Change it slightly.
[0015]
<< Embodiment 4 >>
FIG. 5 shows a schematic configuration of the film forming apparatus of the present embodiment.
The film forming substrate 31 is wound around a winding roll 32 in the vacuum container 40, and is wound around a winding roll 34 via a film forming drum 33 during film formation. The film-forming substrate 31 is preferably one having conductivity as a current collector, but one having a conductive film formed on a high-resistance sheet can also be used. The cost can be reduced by using a metal foil already mass-produced such as aluminum, copper, and stainless steel.
Below the film forming drum 33, a crucible 36 in which a source material 35 is placed is provided. The source material receives an electron beam emitted from an electron gun 37, evaporates and evaporates, and the surface of the film forming substrate 31. A positive electrode active material layer is formed on the substrate. The shielding plate 38 is for limiting the incident angle of the material from the source material 35 to the film forming substrate 31, and the incident angle to the film forming substrate is changed by adjusting the position and interval of the aperture 39. be able to. The vacuum vessel 40 is provided with a tube 41 having a valve 42. Although only one source material is shown in the figure, a two-source source is used as in the first embodiment.
[0016]
The positive electrode active material layer formed as shown in the above embodiment has a cross-sectional structure as shown in FIG. The present invention is based on the discovery that LiCoO 2 has the property of crystal growth in the direction in which the source for vapor deposition of the LiCoO 2 comes in. That is, by supplying a source material to the film-formed substrate 11 at an incident angle of an angle θ with the normal line 12, the c-axis of the LiCoO 2 crystal grows in the direction indicated by the arrow 15 in the figure, The positive electrode active material layer 14 having a (003) plane laminated in that direction is formed. On the other hand, the (101) plane and (104) plane that give and receive Li ions are oriented in the direction indicated by the arrow 16 in the figure. As a result, the (101) plane and (104) plane for transferring Li ions are exposed on the surface of the positive electrode on the electrolyte side.
[0017]
FIG. 7 is a cross-sectional structure diagram of the most basic lithium secondary battery. A positive electrode active material layer 52, a solid electrolyte layer 53, a negative electrode active material layer 54, and a negative electrode current collector 55 are laminated in this order on a positive electrode current collector 51 used as a film formation substrate. It is necessary to form the solid electrolyte layer 53 so that the positive electrode current collector 51 and the positive electrode active material layer 52 do not contact the negative electrode active material layer 54 and the negative electrode current collector 55. As a patterning method for forming these films, it is desirable to use a metal mask during film formation.
[0018]
【Example】
Examples of the present invention will be described below.
Example 1
In this example, a film forming apparatus having a structure as shown in FIGS. 1 and 2 was used. In order to investigate the relationship between the value of the incident angle θ and the orientation of the obtained positive electrode active material layer under the condition that the incident angle θ of the source material to the deposition substrate during film formation is constant, the value of θ Was changed in increments of 5 ° from 40 ° to 90 °, and the orientation of the crystal axis of the obtained positive electrode active material layer was examined by X-ray diffraction analysis.
The film-formed substrate 1 was a copper foil having a size of 100 × 100 mm and a thickness of 20 μm, and the source material was a two-source source of metallic lithium and metallic cobalt. The source size was a circle with a diameter of 10 mm, and the distance between the centers of the two sources was 30 mm. The substrate 1 to be deposited was placed at a position where the lower end surface is 150 mm above the source (z = 150 mm) and 10 mm away in the x-axis direction. By depositing a stainless steel foil having a hole with a size of 10 × 10 mm on the film-forming substrate 1, a lithium cobalt oxide film having a size of 10 × 10 mm is formed on the film-forming substrate 1. Formed.
[0019]
The film forming conditions are Ar: oxygen flow rate ratio 1: 1, atmospheric pressure 5 × 10 −2 Pa, total electron beam irradiation intensity 10 kV, 250 mA, and electron beam dose to lithium and cobalt are irradiation time 100 msec. Was adjusted by time division into a ratio of 0.1: 0.9. The film formation time was determined by the shutter opening time. Table 1 shows the incident angle θ of the source material to the substrate and the film formation time. This film forming process was carried out to form a lithium cobalt oxide film having a thickness of about 1 μm.
The X-ray diffraction pattern of the obtained film was analyzed, and the ratio of the diffraction intensity by the (101) plane and the (104) plane to the diffraction intensity by the (003) plane [101] / [003] and [104] / [003] And the results are shown in Table 1. While the diffraction intensity due to the (104) plane increases from around θ = 60 °, the diffraction intensity due to the (003) plane tends to decrease, and the c-axis of the crystal tends to gradually shift from the normal direction of the substrate. I understand that there is.
[0020]
A solid electrolyte Li 3 PO 3 N film having a thickness of 1 μm was formed on the obtained film by sputtering using Li 3 PO 4 as a target. The film forming atmosphere is nitrogen, the pressure is 5 Pa, the input power is 200 W, and the film forming time is 35 hours. By forming a film in a state where a stainless steel foil having a hole of 20 × 20 mm in size is placed on the substrate 1 to be formed, cobalt having a size of 10 × 10 mm on the substrate 1 is formed. A Li 3 PO 3 N film having a size of 20 × 20 mm was obtained on the lithium acid film.
Further, a metal lithium film having a thickness of 0.5 μm was formed on the solid electrolyte film by electron beam evaporation. The atmosphere during the formation is Ar, the pressure is 5 × 10 −2 Pa, the irradiation intensity of the electron beam is 10 kV, 40 mA, and the irradiation time is 30 seconds. By forming a film in a state where a stainless steel foil having a hole of 14 × 14 mm in size is placed on the film formation substrate 1 during film formation, a Li of 20 × 20 mm on the film formation substrate 1 is formed. A metallic lithium film having a size of 14 × 14 mm was obtained on the 3 PO 3 N film.
[0021]
On this metal lithium film, Cu as a negative electrode current collector was formed to a thickness of 10 μm by battery beam evaporation. The atmosphere during the formation is Ar, the pressure is 5 × 10 −2 Pa, the irradiation intensity of the electron beam is 10 kV, 150 mA, and the irradiation time is 5 minutes. By forming a film in a state where a stainless steel foil having a hole having a size of 18 × 18 mm is formed on the substrate 1 to be formed, a size 18 is formed on the metal lithium having a size of 14 × 14 mm. A Cu film of × 18 mm was obtained.
Through the above steps, a lithium secondary battery having a structure shown in FIG. 7 was obtained.
In order to verify the performance of the obtained all-solid lithium secondary battery, charging and discharging were performed at a rate of 20 C, and the discharge capacity at the fifth cycle was measured.
[0022]
[Table 1]
Figure 0003971911
[0023]
Example 2
In this example, the influence on the crystal orientation was examined by changing the incident angle θ of the source material to the film formation substrate during film formation. This shows the effect of the incident angle at the initial stage of film formation on the crystal orientation.
The film forming apparatus shown in FIGS. 1 and 2 was used. A copper foil having a thickness of 20 μm was used as a film formation substrate, and a two-source source of lithium and cobalt was used as a source material. Two types of tablet-shaped source materials were each irradiated with an electron beam having an appropriate intensity and heated to evaporate.
Lithium cobaltate having a size of 10 × 10 mm was formed by carrying out a film-forming process in a state where a stainless steel foil having a hole having a size of 10 × 10 mm was placed on the substrate to be formed. The film forming conditions are as follows: the flow ratio of Ar to oxygen is 1: 1, the atmospheric pressure is 5 × 10 −2 Pa, the total irradiation intensity of the electron beam is 10 kV, 250 mA, and the electron irradiation amount to lithium and cobalt is 100 msec. Adjustments were made by time division into a ratio of 0.1: 0.9. The film formation time was determined by the shutter opening time. Table 2 shows θ in the initial stage of film formation and the film formation time.
[0024]
First, after forming a film having a thickness of about 0.5 μm at an incident angle θ 0 for a time t 0, the film is formed only for a time t 1 by setting the incident angle to 0 °, thereby forming a film thickness of about 1 μm. The lithium cobalt oxide film was formed. The X-ray diffraction pattern of the obtained film was analyzed, the ratio of the diffraction intensity by the (101) plane and the (104) plane to the diffraction intensity by (003) was calculated, and the results are also shown in Table 2. The diffraction intensity due to the (104) plane tends to increase from around θ 0 = 60 °, and the diffraction intensity due to the (003) plane tends to decrease, and the c-axis of the crystal gradually becomes the normal direction of the substrate as in Example 1. It can be seen that there is a tendency to deviate from.
In the same manner as in Example 1, a Li 3 PO 3 N film, a metal lithium film, and a Cu film were formed on the positive electrode active material layer to obtain a lithium secondary battery having the structure shown in FIG.
In order to verify the performance of the obtained all-solid lithium secondary battery, charging and discharging were performed at a rate of 20 C, and the discharge capacity at the fifth cycle was measured.
[0025]
[Table 2]
Figure 0003971911
[0026]
Example 3
In this example, using the film forming apparatus shown in FIG. 3, the orientation of the crystal axis of the obtained lithium cobalt oxide was investigated by changing the flow rate and type of gas flowing in parallel to the film formation substrate surface during film formation. It was.
As shown in FIG. 3, in an apparatus designed so that the incident angle θ of the source material supplied from the crucible 24 to the film formation substrate 21 is approximately 0 °, the gas introduction tube 27 is provided near the film formation substrate 21. And an exhaust pipe 29, and generating a gas flow parallel to the film-forming substrate 21 has an effect on the orientation of the crystal axis.
[0027]
A copper foil having a thickness of 20 μm was used for the film-formed substrate 21, and a two-source source of lithium and cobalt was used for the source material 23. Two types of tablet-shaped source materials were each irradiated with an electron beam having an appropriate intensity and heated to evaporate. Lithium cobaltate having a size of 10 × 10 mm was formed by carrying out a film-forming process in a state where a stainless steel foil having a hole having a size of 10 × 10 mm was placed on the substrate to be formed. The film forming conditions are Ar or nitrogen / oxygen flow ratio 1: 1, atmospheric pressure 5 × 10 −2 Pa, total electron beam irradiation intensity 10 kV, 250 mA, and electron irradiation amount to lithium and cobalt with irradiation time 100 msec. Adjustments were made by time division into a ratio of 0.1: 0.9. The film formation time was determined by the shutter opening time. Table 3 shows gas flow rates from the gas introduction pipe 27. The pressure in the container was adjusted by the opening degree of the main valve 30. In this example, in addition to the film-forming substrate having a smooth surface, the film-forming substrate having a roughened surface as in Example 5 was also evaluated.
[0028]
The X-ray diffraction pattern of the obtained film was analyzed, and the ratio of the diffraction intensity by the (101) plane and the (104) plane to the diffraction intensity by the (003) plane was calculated, respectively, and the results are also shown in Table 3. The diffraction intensity due to the (104) plane tends to increase from around 10 sccm, and the diffraction intensity due to the (003) plane tends to decrease. It can be seen that as the total gas flow rate increases, that is, the incident angle of the source material increases, the c-axis of the crystal gradually deviates from the normal direction of the substrate as in Example 1.
In the same manner as in Example 1, a Li 3 PO 3 N film, a metal lithium film, and a Cu film were formed on the positive electrode active material layer to obtain a lithium secondary battery having the structure shown in FIG.
In order to verify the performance of the obtained all-solid lithium secondary battery, charging and discharging were performed at a rate of 20 C, and the discharge capacity at the fifth cycle was measured.
[0029]
[Table 3]
Figure 0003971911
[0030]
Example 4
In this embodiment, the film forming apparatus shown in FIG. 4 is used, and the angle θ ′ of the source material supplied from the crucible toward the substrate is changed in a state in which a gas flows in parallel to the surface of the film forming substrate during film formation. The orientation of the crystal axis of the lithium cobaltate obtained was investigated.
The film forming conditions were as follows: the flow ratio of Ar and oxygen was 1: 1, the flow was parallel to the film forming substrate at a total flow rate of 60 sccm, and the angle θ ′ was changed from 0 ° to 90 ° at 15 ° intervals. Except for this, this is the same as Example 1. The X-ray diffraction pattern of the obtained film was analyzed, and the ratio of the diffraction intensity by the (101) plane and the (104) plane to the diffraction intensity by the (003) plane was calculated, respectively, and the results are also shown in Table 4. As the angle θ ′ increases, the diffraction intensity due to the (104) plane and the (101) plane tends to increase, and the diffraction intensity due to the (003) plane tends to decrease. In addition, the gas flow parallel to the film formation substrate surface It can be seen from comparison with Example 1 that the (003) plane is difficult to be aligned due to the addition of. Under the above conditions, the actual incident angle of the source material to the film formation substrate is slightly smaller than θ ′.
[0031]
In the same manner as in Example 1, a Li 3 PO 3 N film, a metal lithium film, and a Cu film were formed on the positive electrode active material layer to obtain a lithium secondary battery having the structure shown in FIG.
In order to verify the performance of the obtained all-solid lithium secondary battery, charging and discharging were performed at a rate of 20 C, and the discharge capacity at the fifth cycle was measured.
The discharge capacity of the battery obtained in this example is within the range of 0 ° ≦ θ ′ ≦ 45 °, and increases the diffraction intensity due to the (104) plane and (101) plane, and decreases the diffraction intensity due to the (003) plane. Along with this, it can be seen that the discharge capacity has a correlation with θ ′. In Example 1, when θ <60 °, the discharge capacity was 90 mA · h / g or less. However, in this example, there was a gas flow parallel to the surface of the substrate to be deposited, so that all θ ′ The discharge capacity exceeds 90 mA · h / g.
[0032]
[Table 4]
Figure 0003971911
[0033]
Example 5
In this example, the characteristics were evaluated when the surface of the substrate to be deposited was roughened with irregularities. In other words, in order to investigate the relationship between the value of the incident angle θ and the orientation when the surface of the film formation substrate is provided with unevenness, the positive electrode active when the value of θ is changed from 0 ° to 90 ° in 10 ° increments. The direction of the crystal axis of the material layer was examined by X-ray diffraction analysis.
A positive electrode active material layer was formed under exactly the same conditions as in Example 1 except that the film formation substrate was provided with unevenness. The film formation substrate was sandblasted using calcium carbonate abrasive grains having a particle size of 5 μm. Concavities and convexities of up to about 15 μm are generated. After sandblasting, ultrasonic cleaning in diethyl ether for 20 minutes suppressed the residual abrasive grains.
[0034]
As described above, an X-ray diffraction pattern of a 1 μm-thick lithium cobalt oxide film formed on a film-formed substrate having an uneven surface was analyzed, and the (101) plane and (104) with respect to the diffraction intensity according to (003). The ratio of the diffraction intensity by the surface was calculated, and the results are shown in Table 5. As the incident angle θ increases, the diffraction intensity due to the (104) plane increases from around θ = 25 °, and conversely, the diffraction intensity due to the (003) plane tends to decrease. There is a tendency to deviate from the line direction. And since the tendency has shifted to the low incident angle side as compared with Example 1, the orientation of the (003) plane in the normal direction of the substrate is suppressed by adding irregularities to the substrate surface. , (104) plane is considered to be easily oriented.
In the same manner as in Example 1, a Li 3 PO 3 N film, a metal lithium film, and a Cu film were formed on the positive electrode active material layer to obtain a lithium secondary battery having the structure shown in FIG.
In order to verify the performance of the obtained all-solid lithium secondary battery, charging and discharging were performed at a rate of 20 C, and the discharge capacity at the fifth cycle was measured.
[0035]
[Table 5]
Figure 0003971911
[0036]
【The invention's effect】
As described above, the present invention can control the orientation of the positive electrode active material film made of lithium cobaltate formed on the substrate by controlling the incident angle of the source material flying to the deposition substrate. Thus, a solid lithium secondary battery with improved discharge performance can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a positive electrode active material film forming apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a positional relationship between a source material and a film formation substrate of the apparatus.
FIG. 3 is a longitudinal sectional view showing a schematic configuration of a positive electrode active material film forming apparatus according to another embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing a schematic configuration of a positive electrode active material film forming apparatus in still another embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing a schematic configuration of a film forming apparatus for a positive electrode active material according to still another embodiment of the present invention.
FIG. 6 is a conceptual diagram showing a state of crystal growth when forming a positive electrode active material.
FIG. 7 is a longitudinal sectional view of a lithium secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Film substrate 2 Substrate holder 3 Source material 4 Crucible 5 Electron gun 6 Shutter 7 Gas introduction tube 8 Vacuum vessel 9 Exhaust tube 10 Main valve 51 Positive electrode current collector 52 Positive electrode active material layer 53 Solid electrolyte layer 54 Negative electrode active material layer 55 Negative electrode current collector

Claims (9)

導電性基板上にLiCoO2からなる膜状の正極活物質層、膜状の固体電解質層および膜状の負極活物質層が順次形成された固体リチウム二次電池であって、前記正極活物質LiCoO2のc軸が前記基板の法線に対して少なくとも60°傾いていることを特徴とする固体リチウム二次電池。Conductive membrane of the positive electrode active material layer made of LiCoO 2 on a substrate, film-like solid electrolyte layer and film-like negative electrode active material layer is a solid-state lithium secondary batteries which are sequentially formed, the positive electrode active material LiCoO A solid lithium secondary battery, wherein the c-axis of 2 is inclined at least 60 ° with respect to the normal line of the substrate. 導電性基板上にLiCoO2からなる膜状の正極活物質層、膜状の固体電解質層および膜状の負極活物質層をこの順序で積層形成する工程を有する固体リチウム二次電池の製造方法であって、前記正極活物質層を形成する工程が、リチウムソース材料およびコバルトソース材料を前記基板上に供給してLiCoO2を気相製膜法によって形成する工程であり、かつ正極活物質層の膜形成初期段階においては、前記両ソース材料を前記基板の法線となす角60〜90°の範囲の入射角にて前記基板へ供給することを特徴とする固体リチウム二次電池の製造方法。 Film-like cathode active material layer made of LiCoO 2 on a conductive substrate, a negative electrode active material layer of the membrane-like solid electrolyte layer and a membrane in the method for manufacturing a solid-state lithium secondary battery comprising the step of laminated in this order The step of forming the positive electrode active material layer is a step of supplying a lithium source material and a cobalt source material onto the substrate to form LiCoO 2 by vapor deposition, and forming the positive electrode active material layer. In the initial stage of film formation, the source material is supplied to the substrate at an incident angle in the range of 60 to 90 ° with the normal of the substrate. 前記膜形成の初期段階が、正極活物質層が少なくとも0.2μmの厚みに達するまでの段階である請求項1記載の固体リチウム二次電池の製造方法。  The method for producing a solid lithium secondary battery according to claim 1, wherein the initial stage of film formation is a stage until the positive electrode active material layer reaches a thickness of at least 0.2 μm. 前記基板に向けて供給されるソース材料をキャリアガスにより前記基板の表面とほぼ平行に流れるように制御することを特徴とする請求項2記載の固体リチウム二次電池の製造方法。  3. The method for producing a solid lithium secondary battery according to claim 2, wherein the source material supplied toward the substrate is controlled to flow substantially parallel to the surface of the substrate by a carrier gas. 前記キャリアガスが、ヘリウム、ネオン、アルゴン、キセノン、窒素、および酸素からなる群より選択される請求項記載の固体リチウム二次電池の製造方法。The method for producing a solid lithium secondary battery according to claim 4 , wherein the carrier gas is selected from the group consisting of helium, neon, argon, xenon, nitrogen, and oxygen. 前記基板がその表面に凹凸を有する請求項2または3記載の固体リチウム二次電池の製造方法。  The manufacturing method of the solid lithium secondary battery of Claim 2 or 3 with which the said board | substrate has an unevenness | corrugation in the surface. 前記Liソース材料が金属リチウム、Li2O、LiO、およびLiOHからなる群より選択され、コバルトソース材料が金属コバルト、CoO、Co34、およびCo23からなる群より選択される請求項2〜6のいずれかに記載の固体リチウム二次電池の製造方法。The Li source material is selected from the group consisting of metallic lithium, Li 2 O, LiO, and LiOH, and the cobalt source material is selected from the group consisting of metallic cobalt, CoO, Co 3 O 4 , and Co 2 O 3. Item 7. A method for producing a solid lithium secondary battery according to any one of Items 2 to 6. 前記正極活物質層と前記固体電解質層との間におけるLiイオンの授受が、前記固体電解質層の表面で行われる、請求項1記載の固体リチウム二次電池。The solid lithium secondary battery according to claim 1, wherein exchange of Li ions between the positive electrode active material layer and the solid electrolyte layer is performed on a surface of the solid electrolyte layer. 前記正極活物質層と前記固体電解質層とが接する面に、LiCoOOn the surface where the positive electrode active material layer and the solid electrolyte layer are in contact with each other, LiCoO 22 の(101)面および(104)面が露出している、請求項1記載の固体リチウム二次電池。The solid lithium secondary battery according to claim 1, wherein the (101) plane and the (104) plane are exposed.
JP2001330661A 2001-10-29 2001-10-29 Solid lithium secondary battery and manufacturing method thereof Expired - Lifetime JP3971911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330661A JP3971911B2 (en) 2001-10-29 2001-10-29 Solid lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330661A JP3971911B2 (en) 2001-10-29 2001-10-29 Solid lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003132887A JP2003132887A (en) 2003-05-09
JP3971911B2 true JP3971911B2 (en) 2007-09-05

Family

ID=19146360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330661A Expired - Lifetime JP3971911B2 (en) 2001-10-29 2001-10-29 Solid lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3971911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660264B2 (en) 2013-08-29 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
US10403929B2 (en) 2017-11-30 2019-09-03 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005017512D1 (en) * 2004-12-08 2009-12-17 Symmorphix Inc DEPOSIT OF LICOO2
JP5072248B2 (en) * 2006-03-28 2012-11-14 日立マクセルエナジー株式会社 Non-aqueous secondary battery and method of using the same
JP5129530B2 (en) * 2007-08-24 2013-01-30 インフィニット パワー ソリューションズ, インコーポレイテッド LiCoO2 deposition
JP5211721B2 (en) * 2008-01-31 2013-06-12 トヨタ自動車株式会社 All-solid lithium secondary battery
JP2009301850A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Lithium secondary battery
US20100159333A1 (en) * 2008-12-24 2010-06-24 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, and a lithium secondary battery
EP2369666B1 (en) * 2008-12-24 2018-09-12 NGK Insulators, Ltd. Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries
US20100159326A1 (en) * 2008-12-24 2010-06-24 Ngk Insulators, Ltd. Plate-like particle for cathode active material of a lithium secondary battery, a cathode active material film of a lithium secondary battery, and a lithium secondary battery
EP2369663A1 (en) 2008-12-24 2011-09-28 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
EP2369664B1 (en) 2008-12-24 2015-02-25 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method and lithium secondary batteries
EP2369662A1 (en) 2008-12-24 2011-09-28 NGK Insulators, Ltd. Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
WO2010074313A1 (en) 2008-12-24 2010-07-01 日本碍子株式会社 Plate-shaped particles for positive electrode active material of lithium secondary batteries, films of said material as well as lithium secondary batteries
JP5149920B2 (en) * 2010-02-05 2013-02-20 トヨタ自動車株式会社 Method for producing electrode for lithium secondary battery
JP2012003880A (en) * 2010-06-15 2012-01-05 Ngk Insulators Ltd Plate-like particle for positive electrode active material of lithium secondary battery and film of the same, as well as lithium secondary battery
JP2010219064A (en) 2010-06-18 2010-09-30 Ngk Insulators Ltd Manufacturing method of cathode active material for lithium secondary battery
US8709662B2 (en) 2010-06-18 2014-04-29 Ngk Insulators, Ltd. Method for producing cathode active material for a lithium secondary battery
JP6129853B2 (en) 2012-09-04 2017-05-17 日本碍子株式会社 Positive electrode active material for lithium secondary battery
WO2014061399A1 (en) 2012-10-15 2014-04-24 日本碍子株式会社 Positive active material for lithium secondary battery, and positive electrode obtained using same
JP2014212010A (en) * 2013-04-18 2014-11-13 日本碍子株式会社 Solid electrolyte/electrode composite and battery using the same
JP5807193B2 (en) 2013-08-29 2015-11-10 パナソニックIpマネジメント株式会社 All-solid lithium secondary battery
JP5789796B2 (en) * 2013-08-29 2015-10-07 パナソニックIpマネジメント株式会社 All-solid lithium secondary battery
KR102435473B1 (en) 2015-08-04 2022-08-23 삼성전자주식회사 Cathode including sintered poly crystalline material, secondary battery including the cathode, and method of manufacturing the cathode
WO2017146088A1 (en) * 2016-02-24 2017-08-31 日本碍子株式会社 Plate-shaped lithium composite oxide
EP3352255B1 (en) * 2016-04-25 2020-04-15 NGK Insulators, Ltd. Positive electrode
KR102327924B1 (en) 2016-04-25 2021-11-18 엔지케이 인슐레이터 엘티디 positive pole
WO2018025594A1 (en) * 2016-08-02 2018-02-08 日本碍子株式会社 All-solid-state lithium battery
WO2018025649A1 (en) * 2016-08-02 2018-02-08 日本碍子株式会社 All-solid-state lithium cell
JP6906523B2 (en) * 2016-08-02 2021-07-21 日本碍子株式会社 How to use all-solid-state lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660264B2 (en) 2013-08-29 2017-05-23 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
US10403929B2 (en) 2017-11-30 2019-09-03 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP2003132887A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP3971911B2 (en) Solid lithium secondary battery and manufacturing method thereof
JP7383749B2 (en) Ex-situ solid electrolyte interface modification using chalcogenides for lithium metal anodes
TWI762679B (en) Olefin separator free li-ion battery
JP5095412B2 (en) LiCoO2 deposition
US7824801B2 (en) Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
US6402796B1 (en) Method of producing a thin film battery
JP4027966B2 (en) LITHIUM SECONDARY BATTERY ANODE, PROCESS FOR PRODUCING THE SAME, AND LITHIUM SECONDARY BATTERY HAVING A LITHIUM SECONDARY BATTERY ANODE
US7851089B2 (en) Electrode plate for battery and lithium secondary battery including the same
US7816032B2 (en) Energy device and method for producing the same
JP6768713B2 (en) Battery separator with dielectric coating
US11876231B2 (en) Diffusion barrier films enabling the stability of lithium
JP2022529995A (en) Surface protection of lithium metal anode
WO2007046322A1 (en) Battery
JP6513221B2 (en) Method and coating equipment
Yoon et al. Structural and electrochemical properties of vanadium oxide thin films grown by dc and rf reactive sputtering at room temperature
JP2008045213A (en) DEPOSITION OF LiCoO2
JP2021536106A (en) Ceramic coating on battery separator
JP2024023195A (en) Ultrathin ceramic coating for battery separator
CN114094111A (en) Lithium supplement current collector, preparation method of lithium supplement current collector, negative electrode and lithium ion battery
JP3979800B2 (en) Apparatus and method for forming electrode for lithium secondary battery
JP2007220450A (en) Negative electrode pate for lithium secondary battery and lithium secondary battery using it
JPH08287901A (en) Manufacture of positive electrode for lithium secondary battery
TWI719346B (en) Apparatus of reactive cathodic arc evaporator for plating lithium-compound thin film and method thereof
JP2005243371A (en) Positive electrode and rolling-type electrochemistry element using it
JP2003308832A (en) Method of manufacturing electrode for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

EXPY Cancellation because of completion of term