JP2004155840A - Sealing resin composition and semiconductor-sealed device - Google Patents

Sealing resin composition and semiconductor-sealed device Download PDF

Info

Publication number
JP2004155840A
JP2004155840A JP2002320737A JP2002320737A JP2004155840A JP 2004155840 A JP2004155840 A JP 2004155840A JP 2002320737 A JP2002320737 A JP 2002320737A JP 2002320737 A JP2002320737 A JP 2002320737A JP 2004155840 A JP2004155840 A JP 2004155840A
Authority
JP
Japan
Prior art keywords
resin composition
semiconductor
inorganic filler
sealing resin
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002320737A
Other languages
Japanese (ja)
Inventor
Yuzuru Wada
譲 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Kyocera Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Chemical Corp filed Critical Kyocera Chemical Corp
Priority to JP2002320737A priority Critical patent/JP2004155840A/en
Publication of JP2004155840A publication Critical patent/JP2004155840A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing resin composition which especially has excellent crack resistance and excellent moisture-resistant reliability under high temperature on surface mounting, and to provide a semiconductor-sealed device sealed with the sealing resin composition. <P>SOLUTION: This sealing resin composition is characterized by comprising (A) an epoxy resin, (B) a phenolic resin curing agent, (C) an inorganic filler having an average particle diameter of ≤15μm and containing particles having particle diameters of 1 to 10μm in an amount of ≥30 wt. %, (D) a curing accelerator, and (E) a solid coupling agent comprising an imidazole compound carboxylic acid adduct represented by the formula [-C<SB>n</SB>H<SB>2n</SB>- is an alkylene; (n) is ≥1] as essential components, wherein the inorganic filler (C) is contained in an amount of 25 to 95 wt. % based on the resin composition. This semiconductor-sealed device is characterized by sealing a semiconductor chip with the cured product of the sealing resin composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高密着性、半田耐熱性に優れた封止用樹脂組成物および半導体封止装置に関する。
【0002】
【従来の技術】
半導体集積回路などを機械的、化学的作用から保護するために、封止用樹脂組成物が開発されてきた。近年、ICは高集積化に伴う大型化、多極化が進み、パッケージの形状も複雑化してきている。そのため、市場に大きなニーズのある表面実装対応半導体装置の製造には、高い半田耐熱性を有する封止樹脂が求められている。そこで、封止用樹脂組成物は、問題解決のために高密着化、高強度化、低吸水化のために無機充填剤の高充填化、密着付与剤の添加等を行ってきた。しかし、反面、成形時における不具合を生じやすいという結果が起きてきた。例えば、外部巣、内部巣の増加、ボンディングワイヤの変形、薄型パッケージにおける充填性不足という欠点である。また、半導体組立工程削減のため、事前にメッキを施したフレームを用いてモールドする手法が採られている。この結果、従来の密着付与剤の添加では、封止樹脂とリードフレームとの接着力が不足する事態が生じてきた。
【0003】
【発明が解決しようとする課題】
本発明の目的は、上記の欠点を解消するためになされたもので、特に表面実装時の高温下での耐クラック性および耐湿信頼性に優れた封止用樹脂組成物およびそれを用いて樹脂封止された半導体封止装置を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明者は、上記の目的を達成しようと鋭意研究を重ねた結果、特定のカップリング剤を配合することによって、上記の目的を達成できることを見出し、本発明を完成したものである。
【0005】
即ち、本発明は、
(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)平均粒径が15μm以下で1μm〜10μmの粒径のものの割合が30重量%以上である無機充填剤、(D)硬化促進剤および(E)次式で示されるイミダゾール化合物のカルボン酸付加物である固体のカップリング剤
【化3】

Figure 2004155840
(但し、式中の−C2n−はnが1以上のアルキレン基を表す)
を必須成分とし、前記(C)無機充填剤を樹脂組成物に対し25〜95重量%の割合で含有することを特徴とする封止用樹脂組成物であり、また、この封止用樹脂組成物の硬化物によって、半導体チップが封止されてなることを特徴とする半導体封止装置である。
【0006】
以下、本発明を詳細に説明する。
【0007】
本発明に用いる(A)エポキシ樹脂としては、1分子中にエポキシ基を少なくとも2個有する化合物であれば特に限定されない。具体的には、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールのノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニルアラルキルエポキシ樹脂、ビスフェノールAのグリシジルエーテル、テトラ(ヒドロキシフェニル)アルカンのエポキシ化物、ビスヒドロキシビフェニルのエポキシ化物等が挙げられる。
【0008】
本発明に用いる(B)フェノール樹脂硬化剤としては、エポキシ樹脂の硬化剤として用いられるフェノール樹脂であれば制限なく使用することができる。具体的には、例えば、フェノールノボラック樹脂、フェノールアラルキル型樹脂、ナフトールアラルキル型樹脂、ビフェニルアラルキルフェノール樹脂、トリフェニルメタン型フェノール樹脂等が挙げられる。
【0009】
本発明に用いる(C)無機充填剤としては、平均粒径が15μm以下で1μm〜10μmの粒径範囲のものの割合が30重量%以上のものであって、一般に使用されている材質のものが使用できるが、それらの中でも不純物濃度が低いシリカ粉末が好ましい。平均粒径が15μmを超えたり、1〜10μmの粒径範囲のものの割合が30重量%未満であると耐湿性および成形性が劣り好ましくない。また無機質充填剤の配合割合は、全体の樹脂組成物に対して25〜95重量%の割合で含有することが望ましい。その割合が25重量%未満では、樹脂組成物の吸湿率が大きくなり、はんだ浸漬後の耐湿性に劣り、また95重量%を超えると、極端に流動性が悪くなり、成形性に劣り好ましくない。
【0010】
本発明に用いる(D)硬化促進剤としては、DBU系硬化促進剤、リン系硬化促進剤、イミダゾール系硬化促進剤、その他の硬化促進剤等が広く使用され、これらは単独又は2種以上併用することができる。硬化促進剤の配合割合は、全体の樹脂組成物に対して0.01〜5重量%含有するように配合することが望ましい。その割合が0.01重量%未満では、樹脂組成物のゲルタイムが長く、硬化特性も悪くなり、また、5重量%を超えると極端に流動性が悪くなって成形性に劣り、さらに電気特性も悪く耐湿性に劣るので好ましくない。
【0011】
本発明に用いる(E)カップリング剤としては、前記化3で示されるイミダゾールシラン化合物のカルボン酸付加物が使用され、その他の公知のカップリング剤とも併用できる。イミダゾール基は反応性に富むためイミダゾールシランそのままの使用では、樹脂の保存安定性に悪影響を及ぼす。これを解決する手段として、あらかじめフタル酸等のカルボン酸とイミダゾール基とを付加させ使用することにより、保存安定性が良好になり、かつ、半田リフロー後の密着性も向上することができる。付加物が蟻酸、酢酸のような分子量が小さいものでは、付加物も液状になるため、フタル酸のように分子量が大きくかつ、1分子中に2つ以上のカルボン酸を有するものが好ましい。また、その付加物は固体であるため、組成物の混合時は、ドライブレンドにより容易に分散が可能である。これらは単独または2種以上混合して使用することができる。これらのカップリング剤の配合割合は、樹脂組成物全体の0.01〜5重量%であることが好ましい。0.01重量%未満では樹脂組成物の硬化特性が悪くなり、5重量%を超えると揮発成分の影響により外部巣が発生するなど成形性に劣り、さらに電気特性も悪くなり耐湿性に劣り好ましくない。
【0012】
本発明のエポキシ樹脂組成物は、前述したエポキシ樹脂、フェノール樹脂硬化剤、平均粒径15μm以下で1μm〜10μmの粒径のものの割合が30重量%以上の無機充填剤、硬化促進剤および特定のカップリング剤を必須成分とするが、本発明の目的に反しない限度において、また必要に応じて、例えば天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド類、エステル類、パラフィン類等の離型剤、三酸化アンチモン等の難燃剤、カーボンブラック、ベンガラ等の着色剤、ゴム系やシリコーン系の低応力付与剤等を適宜、添加配合することができる。
【0013】
本発明の封止用樹脂組成物を成形材料として調製する場合の一般的な方法としては、前述したエポキシ樹脂、フェノール樹脂、特定の無機充填剤、硬化促進剤、前述の式化3に示したイミダゾールシランとカルボン酸の付加物である固体のカップリング剤、その他成分を所定の組成比に選択した原料成分を配合し、ミキサー等によって十分均一に混合した後、さらに熱ロールによる溶融混合処理又はニーダ等による混練処理を行い、次いで冷却固化させ、適当な大きさに粉砕して成形材料とすることができる。こうして得られた成形材料は、半導体装置をはじめとする電子部品あるいは電気部品の、被覆、絶縁等に適用すれば、優れた特性と信頼性を付与させることができる。
【0014】
本発明の半導体封止装置は、上述した成形材料を用いて、半導体チップを封止することにより容易に製造することができる。封止を行う半導体チップとしては、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード等で特に限定されるものではない。封止の最も一般的な方法としては、低圧トランスファー成形法があるが、射出成形、圧縮成形、注型等による封止も可能である。成形材料は封止の際に加熱して硬化させ、最終的にはこの硬化物によって封止された半導体封止装置が得られる。加熱による硬化は、150℃以上に加熱して硬化させるのが望ましい。チップを搭載する基板としては、セラミックス、プラスティック、ポリイミドフィルム、リードフレームなどであるがこれらに限定されるものではない。
【0015】
【作用】
本発明の封止用樹脂組成物および半導体封止装置は、前述した特定のカップリング剤を用いたことにより、樹脂組成物の42アロイ、銅、パラジウム、金、ニッケルへの接着力が向上して、半田浸漬、半田リフロー後の樹脂クラックの発生がなくなり、耐湿性劣化が少なくなるものである。
【0016】
【実施例】
次に本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0017】
実施例1〜3および比較例1〜2
まず、表1に示す各成分が同表に示す割合で配合されてなるエポキシ樹脂組成物を、以下のようにして調製した(表中の配合量は、重量部を示す)。すなわち、初めにヘンシェルミキサー中で無機充填剤をシランカップリング剤で処理し、次いで他の成分を配合混合して60〜130℃の加熱ロールで混練し、冷却した後粉砕することにより、封止用樹脂組成物を得た。
【0018】
なお、表1に示した各成分としては、それぞれ以下に示すものを用いた。
【0019】
・エポキシ樹脂A:オルソクレゾールノボラックエポキシ樹脂(ESCN195XL、住友化学(株)製、当量198)、
・フェノール樹脂A:フェノールアラルキル樹脂(XL−225−3L、三井化学(株)製、当量172)、
・カップリング剤A:イミダゾールシラン(IS−1000、(株)日鉱マテリアルズ製)、
・カップリング剤B:カップリング剤Aとフタル酸の付加物、
・カップリング剤C:γ−グリシドキシプロピルトリメトキシシラン(A−187、日本ユニカー社製)、
・硬化促進剤:トリフェニルホスフィン、
・離型剤:カルナバワックス、
・顔料:カーボンブラック、
・充填剤:球状溶融シリカ粉(平均粒径13μm)。
【0020】
次いで、これらのエポキシ樹脂組成物についてそれぞれ下記のような評価試験を行った。
【0021】
(1) 耐湿信頼性を調べるために以下の試験を行った。すなわち、各エポキシ樹脂組成物を用い、試験用デバイスを封止した後、180℃で4時間アフターキュアを行った。次いで、このパッケージを85℃,相対湿度60%の雰囲気中に168時間放置して吸湿処理を行った後、これを最高温度260℃のIRリフロー炉に3回通した。この時点でパッケージのクラック発生率を調べた。さらに、このIRリフロー後のパッケージを127℃の飽和水蒸気雰囲気中に放置し不良(リーク不良、オープン不良)発生率を調べた。以上の結果を表2に示す。
【0022】
(2) 成形作業性を調べるために以下の試験を行った。すなわち、各エポキシ樹脂組成物を用いてダミーフレームを用いた連続成形を実施し、作業性および成形品外観を観察した。以上の測定結果を表3に示す。
【0023】
(3) 保存安定性を調べるために25℃,相対湿度50%の雰囲気中に放置して168時間までのスパイラルフローを調べた。0時間のときを100として経過時の残存率を観察した。スパイラルフローは、EMMI−1−66に準じて測定した。以上の測定結果を表4に示す。
【0024】
以上、表2、表3、表4に示されるように、本発明の実施例1〜3の樹脂組成物は、比較例1〜2の樹脂組成物に比べて高温下での耐クラック性およびその後の耐湿信頼性が良好であり、成形作業性も問題がないことが確認できた。
【0025】
【表1】
Figure 2004155840
【表2】
Figure 2004155840
【表3】
Figure 2004155840
【表4】
Figure 2004155840
【0026】
【発明の効果】
以上の説明および表2、3、4から明らかなように、本発明の封止用樹脂組成物の硬化物は、高温下での耐クラック性およびその後の耐湿信頼性が極めて良好であり、表面実装タイプの半導体装置の封止に好適である。また、本発明の封止用樹脂組成物で封止された半導体デバイスは、表面実装を行っても、その後の耐湿性は良好であり、高い信頼性を有するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing resin composition having excellent adhesion and soldering heat resistance, and a semiconductor sealing device.
[0002]
[Prior art]
BACKGROUND ART In order to protect semiconductor integrated circuits and the like from mechanical and chemical actions, sealing resin compositions have been developed. In recent years, ICs have become larger and more multi-polarized due to higher integration, and packages have become more complicated. For this reason, a sealing resin having high solder heat resistance is required for manufacturing a surface-mountable semiconductor device that has a great need in the market. Therefore, the sealing resin composition has been subjected to high adhesion, high strength, and high filling of an inorganic filler, addition of an adhesion imparting agent, and the like for solving problems. However, on the other hand, there has been a result that defects at the time of molding are likely to occur. For example, there are drawbacks such as an increase in outer nests and inner nests, deformation of bonding wires, and insufficient filling in thin packages. Further, in order to reduce the semiconductor assembly process, a method of molding using a frame that has been plated in advance has been adopted. As a result, with the addition of the conventional adhesion-imparting agent, a situation has arisen in which the adhesive strength between the sealing resin and the lead frame is insufficient.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned drawbacks, and particularly to a sealing resin composition excellent in crack resistance and humidity resistance under high temperature during surface mounting and a resin using the same. It is an object of the present invention to provide a sealed semiconductor sealing device.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by adding a specific coupling agent, thereby completing the present invention.
[0005]
That is, the present invention
(A) an epoxy resin, (B) a phenolic resin curing agent, (C) an inorganic filler having an average particle diameter of 15 μm or less and a particle diameter of 1 μm to 10 μm of 30% by weight or more, and (D) a curing accelerator. And (E) a solid coupling agent which is a carboxylic acid adduct of an imidazole compound represented by the following formula:
Figure 2004155840
(However, -C n H 2n- in the formula represents an alkylene group in which n is 1 or more.)
And a sealing resin composition containing the inorganic filler (C) at a ratio of 25 to 95% by weight based on the resin composition. A semiconductor sealing device characterized in that a semiconductor chip is sealed with a cured product.
[0006]
Hereinafter, the present invention will be described in detail.
[0007]
The epoxy resin (A) used in the present invention is not particularly limited as long as it is a compound having at least two epoxy groups in one molecule. Specifically, for example, phenol novolak type epoxy resin, cresol novolak type epoxy resin, naphthol novolak type epoxy resin, bisphenol A novolak type epoxy resin, biphenylaralkyl epoxy resin, bisphenol A glycidyl ether, tetra (hydroxyphenyl) Epoxy compounds of alkanes, epoxide compounds of bishydroxybiphenyl, and the like are included.
[0008]
As the phenol resin curing agent (B) used in the present invention, any phenol resin used as a curing agent for an epoxy resin can be used without limitation. Specifically, for example, a phenol novolak resin, a phenol aralkyl type resin, a naphthol aralkyl type resin, a biphenyl aralkyl phenol resin, a triphenylmethane type phenol resin, and the like are exemplified.
[0009]
As the inorganic filler (C) used in the present invention, those having an average particle diameter of 15 μm or less and a particle diameter in a range of 1 μm to 10 μm in a proportion of 30% by weight or more, and generally used materials are used. Among them, silica powder having a low impurity concentration is preferable. If the average particle diameter exceeds 15 μm or the proportion of particles having a particle diameter in the range of 1 to 10 μm is less than 30% by weight, the moisture resistance and the moldability are inferior. It is desirable that the inorganic filler be contained in a proportion of 25 to 95% by weight based on the entire resin composition. If the proportion is less than 25% by weight, the moisture absorption of the resin composition becomes large, and the moisture resistance after solder immersion is inferior. If it exceeds 95% by weight, the fluidity becomes extremely poor, and the moldability is inferior. .
[0010]
As the (D) curing accelerator used in the present invention, DBU-based curing accelerators, phosphorus-based curing accelerators, imidazole-based curing accelerators, and other curing accelerators are widely used, and these may be used alone or in combination of two or more. can do. The compounding ratio of the curing accelerator is desirably compounded so as to be contained in an amount of 0.01 to 5% by weight based on the whole resin composition. If the proportion is less than 0.01% by weight, the gel time of the resin composition will be long and the curing properties will be poor. If it exceeds 5% by weight, the fluidity will be extremely poor and the moldability will be poor, and the electrical properties will also be poor. It is not preferable because it is poor and has poor moisture resistance.
[0011]
As the (E) coupling agent used in the present invention, a carboxylic acid adduct of an imidazole silane compound represented by Chemical Formula 3 is used, and it can be used in combination with other known coupling agents. Since the imidazole group is highly reactive, use of imidazole silane as it is has an adverse effect on the storage stability of the resin. As a means for solving this problem, by preliminarily adding a carboxylic acid such as phthalic acid and an imidazole group for use, the storage stability is improved, and the adhesion after solder reflow can be improved. If the adduct is of low molecular weight, such as formic acid or acetic acid, the adduct will also be in a liquid state, and therefore it is preferable that the adduct has a large molecular weight, such as phthalic acid, and has two or more carboxylic acids in one molecule. Further, since the adduct is a solid, it can be easily dispersed by dry blending when mixing the composition. These can be used alone or in combination of two or more. The compounding ratio of these coupling agents is preferably 0.01 to 5% by weight of the whole resin composition. If the amount is less than 0.01% by weight, the curing properties of the resin composition deteriorate. If the amount exceeds 5% by weight, the moldability is poor due to the formation of external cavities due to the influence of volatile components, and the electrical properties also deteriorate, and the moisture resistance is poor. Absent.
[0012]
The epoxy resin composition of the present invention includes the above-described epoxy resin, phenol resin curing agent, an inorganic filler having an average particle diameter of 15 μm or less and a particle diameter of 1 μm to 10 μm of 30% by weight or more, a curing accelerator and a specific accelerator. The coupling agent is an essential component, but as far as it does not violate the purpose of the present invention, and if necessary, for example, natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, paraffins Release agents, such as antimony trioxide, flame retardants, such as antimony trioxide, coloring agents, such as carbon black and red iron oxide, and rubber-based or silicone-based low-stress imparting agents.
[0013]
As a general method for preparing the encapsulating resin composition of the present invention as a molding material, the above-described epoxy resin, phenol resin, specific inorganic filler, curing accelerator, and the above-mentioned formula 3 are used. A solid coupling agent, which is an adduct of imidazole silane and carboxylic acid, is mixed with raw materials selected in a predetermined composition ratio of other components, and then mixed sufficiently uniformly by a mixer or the like. A kneading process using a kneader or the like is performed, then solidified by cooling, and pulverized to an appropriate size to obtain a molding material. If the molding material thus obtained is applied to coating, insulation, and the like of electronic parts or electric parts such as semiconductor devices, excellent properties and reliability can be imparted.
[0014]
The semiconductor sealing device of the present invention can be easily manufactured by sealing a semiconductor chip using the molding material described above. The semiconductor chip for sealing is not particularly limited, for example, with an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and the like. The most common sealing method is a low-pressure transfer molding method, but sealing by injection molding, compression molding, casting or the like is also possible. The molding material is heated and cured at the time of sealing, and finally a semiconductor sealing device sealed with the cured product is obtained. Curing by heating is desirably performed by heating to 150 ° C. or higher. Examples of the substrate on which the chip is mounted include ceramics, plastics, polyimide films, and lead frames, but are not limited thereto.
[0015]
[Action]
The encapsulating resin composition and the semiconductor encapsulating device of the present invention improve the adhesive strength of the resin composition to 42 alloy, copper, palladium, gold, and nickel by using the specific coupling agent described above. Therefore, the occurrence of resin cracks after solder immersion and solder reflow is eliminated, and deterioration of moisture resistance is reduced.
[0016]
【Example】
Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
[0017]
Examples 1-3 and Comparative Examples 1-2
First, an epoxy resin composition in which the components shown in Table 1 were blended in the proportions shown in the table was prepared as follows (the blending amounts in the table indicate parts by weight). That is, first, the inorganic filler is treated with a silane coupling agent in a Henschel mixer, then the other components are mixed and mixed, kneaded with a heating roll at 60 to 130 ° C., cooled, and then pulverized to seal. A resin composition for use was obtained.
[0018]
The components shown in Table 1 were as follows.
[0019]
Epoxy resin A: ortho-cresol novolak epoxy resin (ESCN195XL, manufactured by Sumitomo Chemical Co., Ltd., equivalent 198),
-Phenol resin A: phenol aralkyl resin (XL-225-3L, manufactured by Mitsui Chemicals, Inc., equivalent 172),
-Coupling agent A: imidazole silane (IS-1000, manufactured by Nikko Materials Co., Ltd.),
-Coupling agent B: adduct of coupling agent A and phthalic acid,
-Coupling agent C: γ-glycidoxypropyltrimethoxysilane (A-187, manufactured by Nippon Unicar)
・ Curing accelerator: triphenylphosphine,
・ Release agent: carnauba wax,
・ Pigment: carbon black,
Filler: spherical fused silica powder (average particle size 13 μm).
[0020]
Next, the following evaluation tests were performed on these epoxy resin compositions.
[0021]
(1) The following test was conducted to examine the humidity resistance reliability. That is, after the test device was sealed using each epoxy resin composition, after-curing was performed at 180 ° C. for 4 hours. Next, the package was left in an atmosphere at 85 ° C. and a relative humidity of 60% for 168 hours to perform a moisture absorption treatment, and then passed through an IR reflow furnace at a maximum temperature of 260 ° C. three times. At this time, the crack occurrence rate of the package was examined. Further, the package after the IR reflow was left in a saturated steam atmosphere at 127 ° C., and the occurrence rate of defects (leak defect, open defect) was examined. Table 2 shows the above results.
[0022]
(2) The following test was performed to examine the molding workability. That is, continuous molding using a dummy frame was performed using each epoxy resin composition, and workability and appearance of the molded product were observed. Table 3 shows the above measurement results.
[0023]
(3) In order to examine the storage stability, the specimen was left in an atmosphere at 25 ° C. and a relative humidity of 50%, and the spiral flow up to 168 hours was examined. The remaining rate at the lapse of time was observed with the time at 0 hour as 100. Spiral flow was measured according to EMMI-1-66. Table 4 shows the above measurement results.
[0024]
As described above, as shown in Tables 2, 3, and 4, the resin compositions of Examples 1 to 3 of the present invention exhibited higher crack resistance and higher crack resistance at high temperatures than the resin compositions of Comparative Examples 1 and 2. The subsequent moisture resistance reliability was good, and it was confirmed that there was no problem in molding workability.
[0025]
[Table 1]
Figure 2004155840
[Table 2]
Figure 2004155840
[Table 3]
Figure 2004155840
[Table 4]
Figure 2004155840
[0026]
【The invention's effect】
As is clear from the above description and Tables 2, 3, and 4, the cured product of the encapsulating resin composition of the present invention has extremely good crack resistance at high temperatures and high reliability of moisture resistance thereafter, and has a high surface resistance. It is suitable for sealing a mounting type semiconductor device. The semiconductor device encapsulated with the encapsulating resin composition of the present invention has good moisture resistance and high reliability even after surface mounting.

Claims (2)

(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)平均粒径が15μm以下で1μm〜10μmの粒径のものの割合が30重量%以上である無機充填剤、(D)硬化促進剤および(E)次式で示されるイミダゾール化合物のカルボン酸付加物である固体のカップリング剤
Figure 2004155840
(但し、式中の−C2n−はnが1以上のアルキレン基を表す)
を必須成分とし、前記(C)無機充填剤を樹脂組成物に対し25〜95重量%の割合で含有することを特徴とする封止用樹脂組成物。
(A) an epoxy resin, (B) a phenolic resin curing agent, (C) an inorganic filler having an average particle diameter of 15 μm or less and a particle diameter of 1 μm to 10 μm of 30% by weight or more, and (D) a curing accelerator. And (E) a solid coupling agent which is a carboxylic acid adduct of an imidazole compound represented by the following formula:
Figure 2004155840
(However, -C n H 2n- in the formula represents an alkylene group in which n is 1 or more.)
Wherein the inorganic filler is contained in an amount of 25 to 95% by weight based on the resin composition.
(A)エポキシ樹脂、(B)フェノール樹脂硬化剤、(C)平均粒径が15μm以下で1μm〜10μmの粒径のものの割合が30重量%以上である無機充填剤、(D)硬化促進剤および(E)次式で示されるイミダゾール化合物のカルボン酸付加物である固体のカップリング剤
Figure 2004155840
(但し、式中の−C2n−はnが1以上のアルキレン基を表す)
を必須成分とし、前記(C)無機充填剤を樹脂組成物に対し25〜95重量%の割合で含有する封止用樹脂組成物の硬化物によって、半導体チップが封止されてなることを特徴とする半導体封止装置。
(A) an epoxy resin, (B) a phenolic resin curing agent, (C) an inorganic filler having an average particle diameter of 15 μm or less and a particle diameter of 1 μm to 10 μm of 30% by weight or more, and (D) a curing accelerator. And (E) a solid coupling agent which is a carboxylic acid adduct of an imidazole compound represented by the following formula:
Figure 2004155840
(However, -C n H 2n- in the formula represents an alkylene group in which n is 1 or more.)
And a semiconductor chip is sealed with a cured product of the sealing resin composition containing the inorganic filler in an amount of 25 to 95% by weight based on the resin composition. Semiconductor sealing device.
JP2002320737A 2002-11-05 2002-11-05 Sealing resin composition and semiconductor-sealed device Pending JP2004155840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320737A JP2004155840A (en) 2002-11-05 2002-11-05 Sealing resin composition and semiconductor-sealed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320737A JP2004155840A (en) 2002-11-05 2002-11-05 Sealing resin composition and semiconductor-sealed device

Publications (1)

Publication Number Publication Date
JP2004155840A true JP2004155840A (en) 2004-06-03

Family

ID=32801494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320737A Pending JP2004155840A (en) 2002-11-05 2002-11-05 Sealing resin composition and semiconductor-sealed device

Country Status (1)

Country Link
JP (1) JP2004155840A (en)

Similar Documents

Publication Publication Date Title
JPH093161A (en) Epoxy resin composition and semiconductor sealed device
JP2001106768A (en) Epoxy resin composition and semiconductor sealed device
JP2002060466A (en) Epoxy resin composition and sealed semiconductor device
JP2003277590A (en) Sealing resin composition and resin-sealed semiconductor device
JPH08245762A (en) Epoxy resin composition and sealed semiconductor device
JP2002249548A (en) Sealing resin composition and sealed semiconductor device
JP2004155840A (en) Sealing resin composition and semiconductor-sealed device
JP3142059B2 (en) Sealing resin composition and semiconductor sealing device
JP2004155839A (en) Sealing resin composition and resin sealing type semiconductor device
JPH08217850A (en) Epoxy resin composition and semi-conductor sealer
JPH11147940A (en) Epoxy resin composition and semiconductor device sealed therewith
JPH10204264A (en) Epoxy resin composition and semiconductor sealing device
JP2001192436A (en) Epoxy resin composition and semiconductor sealing apparatus
JP2000204138A (en) Sealing resin composition and sealed semiconductor device
JPH07304850A (en) Epoxy resin composition and semiconductor-sealing device
JPH10245472A (en) Epoxy resin composition, and semiconductor sealing device
JPH0753669A (en) Epoxy resin composition and sealed semiconductor device
JPH10114816A (en) Epoxy resin composition and sealed semiconductor device
JP2001206933A (en) Resin composition for sealing use and semiconductor- sealed device
JPH11106476A (en) Epoxy resin composition and sealed semiconductor device
JPH10231352A (en) Epoxy resin composition and sealed semiconductor device
JP2003321595A (en) Sealing resin composition and electronic part sealing device
JPH10292095A (en) Epoxy resin composition and semiconductor sealing device
JPH10231350A (en) Epoxy resin composition and sealed semiconductor device
JPH07242730A (en) Epoxy resin composition and sealed semiconductor device