JP2004154844A - Method of forming hole having less pore size variation by carbon dioxide laser - Google Patents

Method of forming hole having less pore size variation by carbon dioxide laser Download PDF

Info

Publication number
JP2004154844A
JP2004154844A JP2002324726A JP2002324726A JP2004154844A JP 2004154844 A JP2004154844 A JP 2004154844A JP 2002324726 A JP2002324726 A JP 2002324726A JP 2002324726 A JP2002324726 A JP 2002324726A JP 2004154844 A JP2004154844 A JP 2004154844A
Authority
JP
Japan
Prior art keywords
copper
copper foil
carbon dioxide
foil
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002324726A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Yasuo Tanaka
恭夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002324726A priority Critical patent/JP2004154844A/en
Publication of JP2004154844A publication Critical patent/JP2004154844A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method of forming a blind via hole and/or a through hole that have less pore size variation and excellent hole reliability by directly emitting carbon dioxide laser onto a copper-clad laminate which is stuck with a thin copper foil having a thickness of 2 μm or below. <P>SOLUTION: As a copper foil for the copper-clad laminate having at least two copper layers, a copper foil having a thickness of 3-5μm with a carrier metallic foil attached is used. After the lamination is formed, the carrier metallic foil is peeled off, the copper foil on the surface and the rear of the copper-clad plate is etched in the thickness direction to 2 μm or below, desirably 0.5-1.5 μm. As a result, the copper-clad laminate excellent in the tolerance of copper foil thickness is obtained. The laminate is then irradiated, directly from the above, with one energy selected from 3-19 mJ carbon dioxide laser energies; thus, the blind via hole and/or the through hole is formed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、小径のブラインドビア孔及び/又は貫通孔を形成する方法に関するものであり、得られた両面プリント配線板、多層プリント配線板は、小径の孔を有する、高密度の小型プリント配線板として、新規な半導体プラスチックパッケージ、マザーボード用等に使用される。
【0002】
【従来の技術】
従来、半導体プラスチックパッケージ等に用いられる高密度のプリント配線板において、ブラインドビア孔を形成する場合、表層の銅箔にあらかじめ所定の方法で所定の大きさの孔を銅箔をエッチング等で除去してあけておき、この部分に炭酸ガスレーザーを照射して絶縁層を加工してブラインドビア孔をあけていた(例えば、特許文献1−3参照。)。この場合、予め銅箔に孔をあけておく工程が必要であり、作業性が悪いなどの欠点があった。
【0003】
また、黒色酸化銅処理等の処理を銅箔表面に施し、この上から炭酸ガスレーザーを直接照射してブラインドビア孔をあける方法が知られている(例えば、特許文献4,5参照。)が、この場合、表面処理をこすったりすると表面処理が取れやすく、孔形状のばらつきが発生し易い欠点があった。
【0004】
更には、厚さ3〜7μmの薄い銅箔の上に数〜10μmの凹凸の多いメッキ層を付着させ、この上にレーザー光のエネルギーを吸収させる合成樹脂で被覆した後、レーザーをこの上から照射して孔あけする方法(例えば特許文献6参照。)等が知られているが、これは工程が長く、作業性に劣るものであった。
【0005】
一方、銅箔を12μm位の厚さのものを使用して得られた銅張板の銅箔をエッチングにて2m以下までしてから炭酸ガスレーザーで孔あけする方法があるが、これはエッチングする間に板の中央と端部の厚さがかなり差異が生じ、炭酸ガスレーザーの孔あけによるばらつきが生じ易く、更に細密回路を形成する場合にもエッチングばらつきを生じる等の欠点が見られた。
【0006】
【特許文献1】特公平4−3676号公報(第1−3頁)
【特許文献2】特許第2805242号公報(第1−5頁)
【特許文献3】特開2000−31640号公報(第1−6頁)
【特許文献4】特開昭61−99596号公報(第1−3頁)
【特許文献5】特開昭61−176186号公報(第1−3頁)
【特許文献6】特許第2881515号公報(第1−3頁)
【0007】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決した、極薄銅箔張板の銅箔厚さばらつきが小さく、且つ炭酸ガスレーザーによる孔径ばらつきに優れた孔形成方法を提供する。即ち、厚さ2μm以下のばらつきが小さい極薄銅箔張板を提供し、これを用いることにより炭酸ガスレーザーによる孔あけにおいて孔形状が安定した小径のブラインドビア孔及び/又は貫通孔を形成することができるものである。
【0008】
【発明が解決するための手段】
キャリア金属箔に付着させた厚さが3 ̄5μmの一般の銅箔を少なくとも最外層に張ってから、キャリア金属箔を剥離後、この銅張板の表層銅箔を厚さ2μm以下までエッチングしてから、この表面に銅箔を加工するに十分な炭酸ガスレーザーのパルスエネルギーから選ばれる1つのエネルギー、好適には3〜19mJから選ばれるエネルギーを直接照射してブラインドビア孔及び/又は貫通孔を形成する。得られた銅張板はその後に一般のプリント配線板製造工程を通して加工し、高密度プリント配線板とする。
【0009】
【発明の実施の形態】
本発明は、炭酸ガスレーザーを用いて、2層以上の銅の層を有する銅張板に小径のブラインドビア孔及び/又は貫通孔を形成する方法である。両面銅張板、多層銅張板の少なくとも最外層の銅箔は、キャリア金属箔が付着した厚さ3 ̄5μmの一般の銅箔を用いたもので作製された両面銅張板、多層銅張板であり、積層成形後に表層のキャリア金属箔を除去し、これをエッチングで2μm以下まで薄くした後に、この表面の銅箔の上に炭酸ガスレーザーを直接照射することによってブラインドビア孔及び/又は貫通孔を形成する。
【0010】
キャリア金属箔は一般に公知のものが使用でき、例えばアルミニウム、銅箔等が好適に使用される。このキャリア金属箔はエッチングして溶解除去する方法、手で剥離する方法等、手段は選ばないが、作業性を考えると、手で剥離する方法が良い。しかしながら、手で剥離しにくい場合、エッチングで溶解除去する。
【0011】
本発明で使用する、キャリア金属箔に接着した一般の銅箔は、一般に公知のものが挙げられる。例えば、三井金属のMicro−thin箔、Super−thin箔等が使用できる。銅箔の厚さは3 ̄5μmであり、銅箔のシャイニー面は一般に公知の防錆処理が施されたもの或いは無処理の平滑な表面のものであり、この表面に薬液を均一に吹き付けて溶解し、厚さ2.0μm以下、好ましくは0.5〜1.5μmとする。又、エッチングで薄くした銅箔上には炭酸ガスレーザー孔あけ用の処理は施さない。
【0012】
本発明で使用する銅張板は、2層以上の銅の層を有する銅張板であり、熱硬化性樹脂銅張積層板としては、無機、有機基材の公知の熱硬化性銅張積層板、その多層銅張板、表層に樹脂付き銅箔シートを使用した多層銅張板等、一般に公知の構成の多層銅張板、また、ポリイミドフィルム、ポレエステルフィルム、ポリパラバン酸フィルム、全芳香族ポリアミドフィルム、液晶ポリエステルフィルム等の基材の銅張板が挙げられる。
【0013】
基材補強銅張積層板は、まず補強基材に熱硬化性樹脂組成物を含浸、乾燥させてBステージとし、プリプレグを作成する。次に、このプリプレグを所定枚数重ね、その外側にキャリア金属箔付き薄銅箔を配置して、加熱、加圧下に積層成形し、銅張積層板とする。多層銅張板は、この両面銅張積層板の銅箔を加工して回路を形成し、銅箔表面を処理して内層板を作製し、この外側にプリプレグ、またはBステージ樹脂シートをおいて、キャリア金属箔付き薄銅箔をその外側に配置し、積層成形するか、或いはキャリア金属箔付き薄銅箔付きBステージ樹脂シートを内層板の外側に配置し、積層成形して多層銅張板とする。
【0014】
基材としては、一般に公知の、有機、無機の織布、不織布が使用できる。具体的には、無機の繊維としては、具体的にはE、S、D、M、NEガラス等の繊維等が挙げられる。又、有機繊維としては、全芳香族ポリアミド、液晶ポリエステル等一般に公知の繊維等が挙げられる。これらは、混抄でも良い。また、フィルム基材も挙げられる。
【0015】
本発明使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種類以上が組み合わせて使用される。出力の高い炭酸ガスレーザー照射による加工でのスルーホール形状の点からは、ガラス転移温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル樹脂組成物が好適である。
【0016】
本発明の好適な熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3−又は1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−又は2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−ジシアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモー4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類、シアナト化ポリフェニレンエーテル樹脂等である。これらの公知のBr付加化合物も挙げられる。
【0017】
これらのほかに特公昭41−1928、同43−18468、同44−4791、同45−11712、同46−41112、同47−26853及び特開昭51−63149等に記載の多官能性シアン酸エステル化合物類も用いられ得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
【0018】
エポキシ樹脂としては、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、エポキシ化ポリフェニレンエーテル樹脂、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。また、これらの公知のBr付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
【0019】
ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57−005406 に記載の末端三重結合のポリイミド類が挙げられる。
【0020】
これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。
【0021】
本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン、ブタジエン−スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン−イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン−プロピレン共重合体、4−フッ化エチレン−6−フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。
【0022】
特に孔形状を良好にするためは無機の充填剤が好適に添加される。例えば、シリカ、球状シリカ、アルミナ、タルク、焼成タルク、ウォラストナイト、合成雲母、水酸化アルミニウム等の一般に公知のものが使用される。更に、これらの針状のもの等、公知の形状のものも使用できる。
【0023】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
【0024】
炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。エネルギーは特に限定はないが、好適には3〜19mJにてパルス発振で銅箔上に直接照射して孔をあける。エネルギーは表層の銅箔の厚さによって適宜選択する。エネルギーは孔あけ途中で適宜変換しても良い。
【0025】
表面の銅箔をエッチングする溶液は特に限定はないが、例えば、特開平02−22887、同02−22896、同02−25089、同02−25090、同02−59337、同02−60189、同02−166789、同03−25995、同03−60183、同03−94491、同04−199592、同04−263488で開示された、薬品で金属表面を溶解除去する方法(SUEP法と呼ぶ)による。エッチング速度は、一般には0.02〜1.0μm/秒 で行う。
【0026】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2−ビス(4−シアナトフェニル)プロパン900部、ビス(4−マレイミドフェニル)メタン100部を150℃に溶融させ、撹拌しながら4時間反応させ、プレポリマーを得た。これをメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解した。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、ジャパンエポキシレジン<株>製)400部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN−220F、住友化学工業<株>製)600部を加え、均一に溶解混合した。更に触媒としてオクチル酸亜鉛0.4部を加え、溶解混合し、これに無機充填剤(商品名:焼成タルク、日本タルク<株>製)1000部を加え、均一撹拌混合してワニスAを得た。このワニスを厚さ60μmのガラス織布に含浸し150℃で乾燥して、ゲル化時間(at170℃)110秒、樹脂組成物の含有量が60重量%のプリプレグ(プリプレグB)を作成した。厚さ35μmのキャリア銅箔の片面に5μmの電解銅箔を付着させた銅箔(商品名:Micro−thin 、三井金属<株>製)を密着させて張ったものを上記プリプレグB5枚の両面に配置し、200℃、20kgf/cm、30mmHg以下の真空下で2時間積層成形し、両面銅張積層板Cを得た。
【0027】
この銅張積層板Cの両面の35μmのキャリア銅板を剥離し、両面の銅箔をSUEP法にて厚さ1.9μmまでエッチングした。一方、金属化合物粉としてMgO(54重量%)、SiO (46重量%)からなる混合物粉(平均粒子径:0.9μm)を、水溶性ポリエステル樹脂を水とメタノール混合溶剤に溶解したワニスに加え、均一に攪拌混合してワニスDを得た。このワニスDを、厚さ50μmのアルミニウム箔の片面に塗布、乾燥してバックアップシートEとした。このバックアップシートEを上記両面銅張板の裏面に樹脂層が銅箔側を向くように置き、100℃のホットロールで、線圧4kgf/cmでラミネートして貼り付けた後、この表面の銅箔上に出力10mJで3ショット照射して、孔径100μmの貫通孔をあけた。バックアップシートを剥離後、これをプラズマ装置の中に入れ、処理後に15μmの銅メッキを施した後、定法にて実施例1と同様にこの両面に回路を形成し、プリント配線板とした。評価結果を表1に示す。
【0028】
(実施例2)
エポキシ樹脂(商品名:エピコート5045、ジャパンエポキシレジン<株>製)700部、及びエポキシ樹脂(商品名:ESCN220F)300部、ジシアンジアミド35部、2−エチル−4−メチルイミダゾール1部をメチルエチルケトンとジメチルホルムアミドの混合溶剤に溶解し、さらに実施例1の焼成タルクを800部を加え、強制撹拌して均一分散し、ワニスFを得た。これを厚さ20μmのガラス織布に含浸、乾燥して、ゲル化時間150秒、樹脂組成物含有量70重量%のプリプレグ(プリプレグG)及びゲル化時間178秒、樹脂組成物含有量80重量%のプリプレグ(プリプレグH)を作成した。このプリプレグGを4枚使用し、厚さ12μmの一般の電解銅箔を両面に置き、190℃、20kgf/cm、30mmHg以下の真空下で2時間積層成形して両面銅張積層板Iを作製した。
【0029】
この両面に回路を形成し、黒色酸化銅処理を施し、この両面に上記プリプレグHを各1枚配置し、その外側に厚さ3μmの一般の電解銅箔のシャイニー面側に35μmのキャリア電解銅箔を接着して張った銅箔(Super thin銅箔、三井金属<株>製)を配置して同様に積層成形し、4層板を作製した。キャリア銅箔を剥離後、表層の3μm銅箔をSUEP法で1.0μmまで薄くした後、炭酸ガスレーザーエネルギー7mJで1ショット照射して、孔径100μmのブラインドビア孔をあけた。デスミア処理後に、無電解銅メッキを0.5μm付着させてから、この上にパターンメッキ用レジストを厚さ20μm付着させ、ネガフィルムを上に配置後にUV照射、現像して幅20μm、スペース40μmとし、これに電解銅メッキを厚さ19μm付着させ、メッキレジストを除去後にフラッシュエッチングにてエッチングして、ライン/スペース=30/30μmの回路を作製し、プリント配線板とした。評価結果を表1に示す。
【0030】
(比較例1)
実施例1のプリプレグB5枚の両面に厚さ12μmの一般の電解銅箔を配置し、同様に積層成形して両面銅張積層板を作製した。この銅箔表層に何も処理を施さずに同様に炭酸ガスレーザーを照射したが、ビームが反射し、孔はあかなかった。
【0031】
(比較例2)
比較例1において、銅箔表面に黒色酸化銅処理を施したものの表面を布で擦ってから、この上から同様に実施例1と同じ炭酸ガスレーザーエネルギーで孔あけを行ったが、87%の孔が孔径100±20μmであり、その他は孔径がこれより小さかったり、あいていないものが見られた。
【0032】
(比較例3)
実施例2において、4層板の表層に12μmの一般の電解銅箔を使用して得られたサイズ500x500mmの4層銅張板を塩化第二鉄溶液にて銅箔の厚さ1.0μmまでエッチングしたところ、中央部は1.0±0.3μmであったが、端部の方は銅箔がエッチング除去されて絶縁層が露出していた。
【0033】

Figure 2004154844
【0034】
<測定方法>
1)表層銅箔のエッチング公差 :エッチング後に、目標エッチング残存銅箔厚さに対するMAX.の公差を表示した。
2)表面銅箔貫通率 :ワークサイズ250mm角内に、孔を1mm間隔で900孔/ブロック として70ブロック作製し(孔計63,000孔)、表面の銅箔を貫通した孔径が100±10μmの数を数え、%で表示した。
3)ガラス転移温度 :JIS C6481のDMA法に準じて測定した。
4)耐マイグレーション性 :各実施例、比較例において、孔径100±20μmのブラインドビア孔又は貫通孔を孔壁間150μmとなるように2列並行して1000孔あけ、この表裏にランド径200μmを作製し、これを表裏交互につないで、85℃・85%RH・50VDC印加し、絶縁抵抗値を測定した。
【0035】
【発明の効果】
キャリア金属箔付きの厚さ3 ̄5μmの一般銅箔を張った銅張板の表面のキャリア金属箔を剥離後、表層の銅箔厚さを2μm以下、好適には0.5 ̄1.5μmにエッチングし、この銅表面に銅箔を加工するに十分なパルスエネルギー、好適には3〜19mJから選ばれる1つのエネルギーを直接照射してブラインドビア孔及び/又は貫通孔を形成することにより、エッチング後の銅箔の厚み公差に優れた銅張板を得ることができて細密の回路が形成でき、且つ得られた孔は孔径ばらつきが小さく、孔信頼性に優れたものが得られた。
【図面の簡単な説明】
【図1】(1) 5μmの銅箔断面
(2) エッチングして2μmとした銅箔断面
(3) エッチングして1μmとした銅箔断面[0001]
[Industrial application fields]
The present invention relates to a method for forming a small-diameter blind via hole and / or a through-hole, and the obtained double-sided printed wiring board and multilayer printed wiring board have small-diameter holes and are high-density small-sized printed wiring boards. As a new semiconductor plastic package, used for motherboards, etc.
[0002]
[Prior art]
Conventionally, when forming a blind via hole in a high-density printed wiring board used for a semiconductor plastic package or the like, the copper foil on the surface layer is removed in advance by etching the copper foil with a predetermined size by a predetermined method. The insulating layer was processed by irradiating this portion with a carbon dioxide laser to open a blind via hole (see, for example, Patent Documents 1-3). In this case, there is a drawback in that a process for making a hole in the copper foil in advance is necessary, and workability is poor.
[0003]
Further, there is known a method in which black copper oxide treatment or the like is performed on the surface of the copper foil, and a blind via hole is formed by directly irradiating a carbon dioxide laser from the surface (see, for example, Patent Documents 4 and 5). In this case, if the surface treatment is rubbed, it is easy to remove the surface treatment and the hole shape is likely to vary.
[0004]
Furthermore, after depositing a plating layer with many irregularities of several to 10 μm on a thin copper foil having a thickness of 3 to 7 μm, and covering it with a synthetic resin that absorbs the energy of laser light, the laser is applied from above. There are known methods of irradiating and drilling holes (for example, see Patent Document 6), but this is a long process and inferior in workability.
[0005]
On the other hand, there is a method of drilling with a carbon dioxide gas laser after etching the copper foil of a copper clad plate obtained using a copper foil having a thickness of about 12 μm to 2 m or less by etching. In the meantime, the thickness of the center and the edge of the plate differed considerably, and variations due to the drilling of the carbon dioxide laser were likely to occur. Furthermore, there were defects such as etching variations when forming fine circuits. .
[0006]
[Patent Document 1] Japanese Patent Publication No. 4-3676 (page 1-3)
[Patent Document 2] Japanese Patent No. 2805242 (page 1-5)
[Patent Document 3] Japanese Unexamined Patent Publication No. 2000-31640 (page 1-6)
[Patent Document 4] JP-A-61-99596 (page 1-3)
[Patent Document 5] JP-A-61-176186 (page 1-3)
[Patent Document 6] Japanese Patent No. 2881515 (page 1-3)
[0007]
[Problems to be solved by the invention]
The present invention provides a hole forming method that solves the above-described problems and has a small variation in copper foil thickness of an ultrathin copper foil-clad plate and an excellent variation in hole diameter by a carbon dioxide gas laser. That is, an ultra-thin copper foil-clad plate having a small variation of 2 μm or less in thickness is provided, and by using this, a small-diameter blind via hole and / or a through-hole having a stable hole shape is formed in drilling with a carbon dioxide laser. It is something that can be done.
[0008]
[Means for Solving the Invention]
After a general copper foil with a thickness of 3-5 μm attached to the carrier metal foil is stretched at least on the outermost layer, the carrier metal foil is peeled off, and then the surface copper foil of this copper clad plate is etched to a thickness of 2 μm or less. After that, the blind via hole and / or the through hole is directly irradiated with one energy selected from carbon dioxide laser pulse energy sufficient to process the copper foil on the surface, preferably 3-19 mJ. Form. The obtained copper-clad board is then processed through a general printed wiring board manufacturing process to obtain a high-density printed wiring board.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a method of forming a small-diameter blind via hole and / or a through-hole in a copper-clad plate having two or more copper layers using a carbon dioxide laser. At least the outermost copper foil of the double-sided copper-clad plate or multilayer copper-clad plate is a double-sided copper-clad plate or multilayer copper-clad made of a general copper foil having a thickness of 3 to 5 μm with a carrier metal foil attached thereto. After removing the carrier metal foil on the surface layer after laminating and thinning it to 2 μm or less by etching, blind via holes and / or by directly irradiating a carbon dioxide laser on the copper foil on the surface A through hole is formed.
[0010]
Generally well-known thing can be used for carrier metal foil, For example, aluminum, copper foil, etc. are used suitably. The carrier metal foil can be removed by etching, a method of peeling off by hand, a method of peeling by hand, etc., but considering the workability, a method of peeling by hand is preferable. However, if it is difficult to peel off by hand, it is dissolved and removed by etching.
[0011]
As the general copper foil adhered to the carrier metal foil used in the present invention, generally known ones can be mentioned. For example, Mitsui Metals' micro-thin foil, super-thin foil, or the like can be used. The thickness of the copper foil is 3 to 5 μm, and the shiny surface of the copper foil is generally subjected to a known antirust treatment or a non-treated smooth surface, and a chemical solution is sprayed uniformly on this surface. Dissolve to a thickness of 2.0 μm or less, preferably 0.5 to 1.5 μm. Further, the carbon dioxide laser drilling process is not performed on the copper foil thinned by etching.
[0012]
The copper-clad plate used in the present invention is a copper-clad plate having two or more copper layers. As the thermosetting resin copper-clad laminate, a known thermosetting copper-clad laminate of inorganic and organic substrates is used. Board, multilayer copper clad board, multilayer copper clad board using resin-coated copper foil sheet on the surface layer, etc., generally known multilayer copper clad board, polyimide film, polyester film, polyparabanic acid film, wholly aromatic Examples thereof include copper-clad plates of base materials such as polyamide films and liquid crystal polyester films.
[0013]
In the base material reinforced copper clad laminate, first, a reinforced base material is impregnated with a thermosetting resin composition and dried to form a B stage to prepare a prepreg. Next, a predetermined number of the prepregs are stacked, and a thin copper foil with a carrier metal foil is disposed outside the prepreg, and laminated and formed under heating and pressure to obtain a copper-clad laminate. The multilayer copper-clad plate is a circuit formed by processing the copper foil of this double-sided copper-clad laminate, the copper foil surface is processed to produce an inner layer plate, and a prepreg or B-stage resin sheet is placed outside this A thin copper foil with a carrier metal foil is placed on the outside and laminated, or a B stage resin sheet with a thin copper foil with a carrier metal foil is placed on the outside of the inner plate and laminated to form a multilayer copper clad plate And
[0014]
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specific examples of the inorganic fiber include fibers such as E, S, D, M, NE glass, and the like. Examples of organic fibers include generally known fibers such as wholly aromatic polyamides and liquid crystal polyesters. These may be mixed papers. Moreover, a film base material is also mentioned.
[0015]
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specific examples include epoxy resins, polyfunctional cyanate resins, polyfunctional maleimide-cyanate resins, polyfunctional maleimide resins, unsaturated group-containing polyphenylene ether resins, and the like. Are used in combination. From the viewpoint of through-hole shape in processing by high-power carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable, moisture resistance, migration resistance, electrical characteristics after moisture absorption, etc. From this point, a polyfunctional cyanate ester resin composition is preferred.
[0016]
The polyfunctional cyanate ester compound which is a preferred thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-2, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato) Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolaks with cyanogen halides, It is Anat polyphenylene ether resin. These known Br addition compounds are also mentioned.
[0017]
In addition to these, polyfunctional cyanic acids described in JP-B-41-1928, JP-A-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-A-47-26853, and JP-A-51-63149 Ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
[0018]
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by the reaction of a hydroxyl group-containing silicon resin with an epohalohydrin, and the like. Moreover, these well-known Br addition resin, phosphorus containing epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.
[0019]
As the polyimide resin, generally known resins can be used. Specific examples include a reaction product of a polyfunctional maleimide and a polyamine, and a terminal triple bond polyimide described in JP-B-57-005406.
[0020]
These thermosetting resins may be used alone, but may be used in appropriate combination in consideration of balance of characteristics.
[0021]
In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubber such as polymer, polyisoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin Styrene-isoprene rubber, acrylic rubber, core-shell rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymer; polycarbonate, polyphenylene ether, polysulfone, Esters, high molecular weight prepolymers or oligomers such as polyphenylene sulfide; polyurethane and the like are exemplified, are appropriately used. In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic properties Various additives such as an imparting agent are used in appropriate combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.
[0022]
In particular, an inorganic filler is preferably added in order to improve the pore shape. For example, generally known materials such as silica, spherical silica, alumina, talc, calcined talc, wollastonite, synthetic mica, and aluminum hydroxide are used. Furthermore, those having a known shape such as these needle-like ones can also be used.
[0023]
Although the thermosetting resin composition of the present invention itself is cured by heating, the curing rate is slow and the workability, economy, etc. are inferior, so that a known thermosetting catalyst can be used for the thermosetting resin used. . The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.
[0024]
The carbon dioxide laser generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength region. The energy is not particularly limited, but preferably the hole is formed by direct irradiation on the copper foil by pulse oscillation at 3 to 19 mJ. The energy is appropriately selected depending on the thickness of the surface copper foil. The energy may be appropriately converted during drilling.
[0025]
The solution for etching the copper foil on the surface is not particularly limited. For example, JP-A Nos. 02-22887, 02-22896, 02-25089, 02-25090, 02-59337, 02-60189, 02 166789, 03-25959, 03-60183, 03-94491, 04-199959, 04-263488, and a method of dissolving and removing a metal surface with a chemical (referred to as a SUEP method). The etching rate is generally 0.02 to 1.0 μm / second.
[0026]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
(Example 1)
900 parts of 2,2-bis (4-cyanatophenyl) propane and 100 parts of bis (4-maleimidophenyl) methane were melted at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer. This was dissolved in a mixed solvent of methyl ethyl ketone and dimethylformamide. 400 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.) and 600 parts of cresol novolac type epoxy resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) are added. , Uniformly dissolved and mixed. Furthermore, 0.4 parts of zinc octylate as a catalyst was added and dissolved and mixed. To this, 1000 parts of an inorganic filler (trade name: calcined talc, manufactured by Nippon Talc Co., Ltd.) was added and stirred uniformly to obtain varnish A. It was. The varnish was impregnated into a 60 μm thick glass woven fabric and dried at 150 ° C. to prepare a prepreg (prepreg B) having a gelation time (at 170 ° C.) of 110 seconds and a resin composition content of 60% by weight. A copper foil (trade name: Micro-thin, manufactured by Mitsui Kinzoku Co., Ltd.) with a 5 μm electrolytic copper foil adhered to one side of a 35 μm thick carrier copper foil is attached to both sides of the above prepreg B5. And laminated for 2 hours under a vacuum of 200 ° C., 20 kgf / cm 2 and 30 mmHg or less to obtain a double-sided copper-clad laminate C.
[0027]
The 35 μm carrier copper plates on both sides of this copper clad laminate C were peeled off, and the copper foils on both sides were etched to a thickness of 1.9 μm by the SUEP method. On the other hand, a mixture powder (average particle size: 0.9 μm) composed of MgO (54 wt%) and SiO 2 (46 wt%) as a metal compound powder is applied to a varnish obtained by dissolving a water-soluble polyester resin in water and a methanol mixed solvent. In addition, the mixture was uniformly stirred and mixed to obtain varnish D. This varnish D was applied to one side of an aluminum foil having a thickness of 50 μm and dried to obtain a backup sheet E. This backup sheet E was placed on the back surface of the double-sided copper-clad plate so that the resin layer faced the copper foil side, laminated with a hot roll at 100 ° C. with a linear pressure of 4 kgf / cm, and then the copper on this surface Three-shot irradiation was performed on the foil at an output of 10 mJ to form a through hole having a hole diameter of 100 μm. After peeling off the backup sheet, this was put in a plasma apparatus, and after processing, copper plating of 15 μm was performed. Then, a circuit was formed on both sides in the same manner as in Example 1 to obtain a printed wiring board. The evaluation results are shown in Table 1.
[0028]
(Example 2)
700 parts of epoxy resin (trade name: Epicoat 5045, manufactured by Japan Epoxy Resins Co., Ltd.), 300 parts of epoxy resin (trade name: ESCN220F), 35 parts of dicyandiamide, 1 part of 2-ethyl-4-methylimidazole and methyl ethyl ketone and dimethyl Dissolved in a mixed solvent of formamide, 800 parts of the calcined talc of Example 1 was further added, and the mixture was forcibly stirred and uniformly dispersed to obtain varnish F. This was impregnated into a glass woven fabric having a thickness of 20 μm and dried to obtain a gel time of 150 seconds, a prepreg having a resin composition content of 70% by weight (prepreg G), a gel time of 178 seconds, and a resin composition content of 80%. % Prepreg (prepreg H) was prepared. Four prepregs G were used, a general electrolytic copper foil having a thickness of 12 μm was placed on both sides, and laminate molding was performed for 2 hours under a vacuum of 190 ° C., 20 kgf / cm 2 , 30 mmHg or less. Produced.
[0029]
Circuits are formed on both sides, black copper oxide treatment is performed, one prepreg H is placed on each side, and 35 μm carrier electrolytic copper is placed on the outer side of a general electrolytic copper foil having a thickness of 3 μm on the shiny surface side. A copper foil (Super thin copper foil, manufactured by Mitsui Kinzoku Co., Ltd.) stretched by adhering the foil was placed and laminated in the same manner to prepare a four-layer board. After peeling the carrier copper foil, the surface 3 μm copper foil was thinned to 1.0 μm by the SUEP method, and then one shot was irradiated with a carbon dioxide laser energy of 7 mJ to form blind via holes with a hole diameter of 100 μm. After desmearing, 0.5 μm of electroless copper plating is deposited, and then a resist for pattern plating is deposited thereon with a thickness of 20 μm. Then, electrolytic copper plating was deposited to a thickness of 19 μm, and after removing the plating resist, etching was performed by flash etching to produce a circuit of line / space = 30/30 μm to obtain a printed wiring board. The evaluation results are shown in Table 1.
[0030]
(Comparative Example 1)
A general electrolytic copper foil having a thickness of 12 μm was placed on both surfaces of the five prepregs B of Example 1, and was similarly laminated to produce a double-sided copper-clad laminate. The surface of the copper foil was irradiated with a carbon dioxide laser in the same manner without any treatment, but the beam was reflected and no holes were formed.
[0031]
(Comparative Example 2)
In Comparative Example 1, the surface of the copper foil treated with black copper oxide was rubbed with a cloth, and then the same carbon dioxide laser energy as in Example 1 was used to make a hole from above, but 87% The pores had a pore diameter of 100 ± 20 μm, and other pores with smaller or no pore diameter were observed.
[0032]
(Comparative Example 3)
In Example 2, a 4-layer copper-clad plate having a size of 500 × 500 mm obtained by using a general electrolytic copper foil of 12 μm for the surface layer of a 4-layer plate was made up to a thickness of 1.0 μm with a ferric chloride solution. When the etching was performed, the central portion was 1.0 ± 0.3 μm, but the copper foil was removed by etching at the end portion to expose the insulating layer.
[0033]
Figure 2004154844
[0034]
<Measurement method>
1) Etching tolerance of surface layer copper foil: After etching, MAX. Tolerances are displayed.
2) Surface copper foil penetration rate: 70 blocks were prepared with a hole size of 900 holes / block at intervals of 1 mm within a 250 mm square workpiece size (hole gauge 63,000 holes), and the hole diameter penetrating the surface copper foil was 100 ± 10 μm Was counted and displayed in%.
3) Glass transition temperature: Measured according to the DMA method of JIS C6481.
4) Migration resistance: In each of the examples and comparative examples, 1000 via holes were formed in parallel in two rows so that blind holes or through holes with a hole diameter of 100 ± 20 μm were 150 μm between the hole walls. It was fabricated and connected alternately on the front and back sides, and 85 ° C./85% RH / 50 VDC was applied to measure the insulation resistance value.
[0035]
【The invention's effect】
After peeling the carrier metal foil on the surface of the copper-clad plate with a 3-5 μm thick general copper foil with a carrier metal foil, the thickness of the surface copper foil is 2 μm or less, preferably 0.5 to 1.5 μm To form a blind via hole and / or a through hole by directly irradiating with a pulse energy sufficient to process a copper foil on the copper surface, preferably one energy selected from 3 to 19 mJ, A copper-clad plate excellent in thickness tolerance of the copper foil after etching could be obtained, a fine circuit could be formed, and the obtained holes had small hole diameter variations and excellent hole reliability.
[Brief description of the drawings]
FIG. 1 (1) 5 μm copper foil section (2) Etching to 2 μm copper foil section (3) Etching to 1 μm copper foil section

Claims (2)

キャリア金属箔付きの厚さ3〜5μmの薄銅箔を最外層に張って得られた銅張板のキャリア金属箔を剥離後、表層の銅箔を厚さ2μm以下までエッチングし、この表面から、銅箔を加工するに十分な炭酸ガスレーザーのパルスエネルギーから選ばれる1つのエネルギーをパルス発振により直接照射し、少なくとも2層以上の銅張板にブラインドビア孔及び/又は貫通孔を形成することを特徴とする炭酸ガスレーザーによる孔の形成方法。After peeling the carrier metal foil of the copper-clad plate obtained by stretching a thin copper foil with a thickness of 3 to 5 μm with a carrier metal foil on the outermost layer, the surface copper foil is etched to a thickness of 2 μm or less, and from this surface , One energy selected from the pulse energy of a carbon dioxide gas laser sufficient to process the copper foil is directly irradiated by pulse oscillation to form blind via holes and / or through holes in at least two layers of copper-clad plates A method of forming holes by a carbon dioxide laser characterized by the above. 該炭酸ガスエネルギーのパルスエネルギーが1〜19mJである請求項1記載の炭酸ガスレーザーによる孔の形成方法。2. The method for forming holes by a carbon dioxide laser according to claim 1, wherein the pulse energy of the carbon dioxide energy is 1 to 19 mJ.
JP2002324726A 2002-11-08 2002-11-08 Method of forming hole having less pore size variation by carbon dioxide laser Pending JP2004154844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324726A JP2004154844A (en) 2002-11-08 2002-11-08 Method of forming hole having less pore size variation by carbon dioxide laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324726A JP2004154844A (en) 2002-11-08 2002-11-08 Method of forming hole having less pore size variation by carbon dioxide laser

Publications (1)

Publication Number Publication Date
JP2004154844A true JP2004154844A (en) 2004-06-03

Family

ID=32804181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324726A Pending JP2004154844A (en) 2002-11-08 2002-11-08 Method of forming hole having less pore size variation by carbon dioxide laser

Country Status (1)

Country Link
JP (1) JP2004154844A (en)

Similar Documents

Publication Publication Date Title
WO2010073952A1 (en) Copper foil with resin
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP2003251757A (en) B-stage resin composition sheet having heat resistant film base material for lamination
JP2004235194A (en) Auxiliary sheet for boring holes with carbon-dioxide gas laser
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP2003238772A (en) Curable resin composition and sheet of b-stage resin composition
JP2004154844A (en) Method of forming hole having less pore size variation by carbon dioxide laser
JP2004165411A (en) Method of manufacturing extremely thin copper foil-plated board excellent in thickness uniformity of copper foil
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2001262372A (en) Double-face treated copper foil suitable for carbon- dioxide laser perforating
JP2005288714A (en) B-stage resin composition sheet and manufacturing method of copper clad laminate using it
JP2003246843A (en) Curable resin composition
JP2004319888A (en) Multilayer printed circuit board
JP2004281872A (en) Method for forming hole by laser
JP2004154843A (en) Method of forming hole by carbon dioxide laser
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2001347596A (en) Metal foil-clad sheet suitable for carbon dioxide laser perforation, and printed wiring board using the same
JP2004165255A (en) B stage resin composition sheet filled with heat-resistant film base superior in adhesion to resin
JP2001347598A (en) Copper-clad sheet suitable for carbon dioxide laser perforation, and high density printed wiring board using the same
JP2004230391A (en) Auxiliary sheet for carbon dioxide laser boring
JP2001135911A (en) Boring method on copper-plated board with carbon dioxide
JP2003251739A (en) Sheet of b-stage resin composition with metal leaf containing base material for additive
JP2003298243A (en) Multilayer printed-wiring board