JP2003251757A - B-stage resin composition sheet having heat resistant film base material for lamination - Google Patents

B-stage resin composition sheet having heat resistant film base material for lamination

Info

Publication number
JP2003251757A
JP2003251757A JP2002053654A JP2002053654A JP2003251757A JP 2003251757 A JP2003251757 A JP 2003251757A JP 2002053654 A JP2002053654 A JP 2002053654A JP 2002053654 A JP2002053654 A JP 2002053654A JP 2003251757 A JP2003251757 A JP 2003251757A
Authority
JP
Japan
Prior art keywords
resin composition
heat
resistant film
stage resin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002053654A
Other languages
Japanese (ja)
Inventor
Morio Take
杜夫 岳
Nobuyuki Ikeguchi
信之 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002053654A priority Critical patent/JP2003251757A/en
Priority to US10/368,370 priority patent/US6866919B2/en
Priority to TW92103639A priority patent/TWI228454B/en
Publication of JP2003251757A publication Critical patent/JP2003251757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adhesive sheet for producing a printed wiring board excellent in heat resistance, elasticity, and reliability by a lamination molding method. <P>SOLUTION: A B-stage resin composition layer is adhered to both sides of a heat resistant film base material. As the B-stage resin composition, a curable resin composition containing a resin composition incorporated with 15-500 pts.wt. of an epoxy resin (b) liquid at room temperature per 100 pts.wt. of a multifunctional cyanate monomer and the cyanate prepolymer (a) and 0.005-10 pts.wt. of a heat-curing catalyst per 100 pts.wt. of (a+b) as an indispensable component is used. A multi-layer printed wiring board, which is high in adhesive force to copper, mechanical strength, etc., resistant to warpage and torsion, and excellent in heat resistance, z-directional migration resistance, etc., can be produced. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層プリント配線板を
積層によって作製する多層プリント配線板用耐熱フィル
ム基材入りBステージ樹脂組成物シートに関するもので
あり、このシートを多層積層時に回路基板間或いは表層
に用いることにより、銅接着力、耐熱性、特にZ方向の
絶縁信頼性等に優れた高密度多層プリント配線板を作製
可能であり、得られた多層プリント配線板は、高密度の
小型プリント配線板として、半導体チップを搭載し、小
型、軽量の新規な半導体プラスチックパッケージ用等に
主に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a B-stage resin composition sheet containing a heat-resistant film base material for a multilayer printed wiring board, which is produced by laminating a multilayer printed wiring board, and is used for stacking circuit boards between circuit boards during multilayer lamination. Alternatively, by using it for the surface layer, it is possible to produce a high-density multilayer printed wiring board excellent in copper adhesive strength, heat resistance, especially insulation reliability in the Z direction, and the obtained multilayer printed wiring board has a high density and a small size. As a printed wiring board, a semiconductor chip is mounted, and it is mainly used for small and lightweight novel semiconductor plastic packages.

【0002】[0002]

【従来の技術】近年、ますます小型、薄型、軽量化する
電子機器において、高密度の多層プリント配線板が使用
されるようになってきている。この多層プリント配線板
は、ますます薄くなってきており、内層銅箔と外層銅箔
との絶縁層間距離が20〜30μmの多層プリント配線板が
製造されてきている。従来はビルドアップ積層用Bステ
ージ樹脂組成物シートとしての基材としてガラス繊維織
布、不織布、或いは有機繊維織布、不織布が使用されて
きているが、薄い基材を作製するのに限度があり、この
基材の表裏に樹脂層を十分形成できないために、積層成
形後には内層銅箔と外層銅箔に基材が接触して、Z方向
の耐マイグレーション性、吸湿後の半田耐熱性等に劣
り、高密度多層プリント配線板として信頼性に問題があ
った。
2. Description of the Related Art In recent years, high density multilayer printed wiring boards have come to be used in electronic devices that are becoming smaller, thinner and lighter. This multilayer printed wiring board is becoming thinner and thinner, and a multilayer printed wiring board having an insulating interlayer distance between an inner copper foil and an outer copper foil of 20 to 30 μm has been manufactured. Conventionally, a glass fiber woven fabric, a non-woven fabric, or an organic fiber woven fabric, a non-woven fabric has been used as a base material as a B-stage resin composition sheet for build-up lamination, but there is a limit in producing a thin base material. Since the resin layer cannot be sufficiently formed on the front and back surfaces of this base material, the base material comes into contact with the inner layer copper foil and the outer layer copper foil after the lamination molding, and the migration resistance in the Z direction, the solder heat resistance after moisture absorption, etc. Inferiorly, there was a problem in reliability as a high-density multilayer printed wiring board.

【0003】又、離型フイルム或いは銅箔にBステージ
樹脂組成物を付着させた接着シートが使用されている
が、これらは高密度多層プリント配線板を製造する場
合、絶縁層間が薄い場合、Z方向の耐マイグレーション
性等の信頼性に劣り、問題のあるものであった。更に電
気的特性、耐熱性等にも劣り、高密度プリント配線板と
して使用するのに限度があった。加えて、内層板が薄い
場合、この両側に基材補強の無いアディティブ用接着剤
シートを使用すると、ビルドアップして多層にしたプリ
ント配線板は曲げ強度、引張り強度等の機械的強度、弾
性率(剛性)が劣り、反りも発生し易く、成形後の厚み
ばらつきも大きく、アッセンブリ等の工程で不良の原因
となっていた。
Also, an adhesive sheet in which a B-stage resin composition is adhered to a release film or a copper foil is used, but these are used when manufacturing a high-density multilayer printed wiring board, when the insulating layer is thin, and when Z is used. There was a problem in that the reliability such as the migration resistance in the direction was poor. Furthermore, the electrical properties and heat resistance were poor, and there was a limit to use as a high-density printed wiring board. In addition, if the inner layer board is thin, if adhesive adhesive sheets without base material reinforcement are used on both sides, the build-up multilayer printed wiring board has a mechanical strength such as bending strength, tensile strength, elastic modulus, etc. (Rigidity) is inferior, warpage is likely to occur, thickness variation after molding is large, and this is a cause of defects in processes such as assembly.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の問題
点を解決した、多層プリント配線板の機械的強度が高
く、銅接着力、耐熱性等に優れ、信頼性にも優れた高密
度多層プリント配線板を従来のプリプレグ同様に積層し
て製造するための耐熱フィルム基材入りBステージ樹脂
組成物シートを提供するものである。特に耐熱フィルム
を使用することによりZ方向の絶縁性に優れ、耐マイグ
レーション性等の信頼性に優れた多層プリント配線板が
作製できる。
DISCLOSURE OF THE INVENTION The present invention, which solves the above problems, has a high density in which a multilayer printed wiring board has high mechanical strength, copper adhesion, heat resistance and the like, and is also highly reliable. The present invention provides a B-stage resin composition sheet containing a heat-resistant film substrate for laminating and manufacturing a multilayer printed wiring board in the same manner as a conventional prepreg. In particular, by using a heat-resistant film, it is possible to produce a multilayer printed wiring board having excellent insulation properties in the Z direction and reliability such as migration resistance.

【0005】[0005]

【発明が解決するための手段】本発明は、基板上に導体
回路と層間樹脂絶縁層とを同時に、又は順次積層して多
層プリント配線板を製造するための接着シートとして耐
熱フィルムを基材にしたBステージ樹脂組成物シートを
用いることで、本発明に至った。
The present invention uses a heat-resistant film as a base material as an adhesive sheet for producing a multilayer printed wiring board by simultaneously or sequentially laminating a conductor circuit and an interlayer resin insulation layer on a substrate. The present invention was achieved by using the B-stage resin composition sheet described above.

【0006】[0006]

【発明の実施の形態】この内層基板に接着させる耐熱フ
ィルム基材入りBステージ樹脂組成物シートは耐熱フィ
ルムの両面に硬化性樹脂組成物を付着したものであり、
この両面に離型フィルム付きのもの、何も付着しないも
の等を適宜選択して使用し、最外層には金属箔を使用す
る。成形後の絶縁層間を20〜30μmとする場合、耐熱フ
ィルムは好適には厚さ4〜20μm、更に好適には厚さ4.5
〜12μmの耐熱フィルムを使用する。この耐熱フィルム
の両面には同一組成のBステージ樹脂組成物を使用して
も良いし、又、別組成のBステージ樹脂組成物を付着さ
せたものでも良い。
BEST MODE FOR CARRYING OUT THE INVENTION The B-stage resin composition sheet containing a heat-resistant film base material to be adhered to this inner layer substrate comprises a heat-resistant film and a curable resin composition adhered to both sides thereof,
Those with release films on both sides, those with no release film, etc. are appropriately selected and used, and a metal foil is used as the outermost layer. When the insulating layer after molding is 20 to 30 μm, the heat-resistant film preferably has a thickness of 4 to 20 μm, and more preferably a thickness of 4.5.
Use a heat-resistant film of ~ 12μm. The B-stage resin composition having the same composition may be used on both surfaces of this heat-resistant film, or the B-stage resin composition having a different composition may be attached to both surfaces.

【0007】又、耐熱フィルムに付着させる樹脂組成物
として、(a)多官能性シアン酸エステルモノマー、該シ
アン酸エステルプレポリマー100重量部に対し、(b)室温
で液状のエポキシ樹脂15〜500重量部を配合し、(c)熱硬
化触媒を、(a+b)100重量部に対し0.005〜10重量部配合
した樹脂組成物を必須成分とする硬化性樹脂組成物を用
いるのが耐熱性、信頼性等を向上させるのに好ましい。
この基材入りBステージ樹脂組成物シートは、耐熱フィ
ルム基材が入っているために、特に薄い内層板を使用し
てビルドアップして得られたプリント配線板は、基材が
入っていない従来のBステージ樹脂組成物シート使用の
プリント配線板に比べて機械的強度が高く、ソリ・ネジ
レが小さく、積層時の成形厚みに優れたものが得られ、
CSP等の薄型の高密度プリント配線板に適したものが得
られた。又、Z方向が耐熱フィルムで遮断されているた
めにZ方向の絶縁信頼性が高く、耐マイグレーション性
に非常に優れたプリント配線板が得られた。
Further, as a resin composition to be adhered to the heat resistant film, (a) a polyfunctional cyanate ester monomer and 100 parts by weight of the cyanate ester prepolymer, (b) an epoxy resin 15 to 500 which is liquid at room temperature. It is heat resistant to use a curable resin composition containing (b) 100 parts by weight of (c) thermosetting catalyst and 0.005 to 10 parts by weight of (c) thermosetting catalyst as an essential component. It is preferable for improving reliability and the like.
Since the B-stage resin composition sheet containing a base material contains a heat-resistant film base material, a printed wiring board obtained by build-up using a thin inner layer board has no base material. In comparison with the printed wiring board using the B-stage resin composition sheet, the mechanical strength is higher, the warp and twist are less, and the molding thickness when laminated is excellent,
A product suitable for thin high-density printed wiring boards such as CSP was obtained. Further, since the Z-direction is blocked by the heat-resistant film, the insulation reliability in the Z-direction is high, and a printed wiring board having excellent migration resistance was obtained.

【0008】本発明の耐熱フィルムに付着させる樹脂組
成物としては、特に限定はないが、具体的には、エポキ
シ樹脂、ポリイミド樹脂、多官能性シアン酸エステル樹
脂、マレイミド樹脂、2重結合付加ポリフェニレンエー
テル樹脂、エポキシ化或いはシアナト化ポリフェニレン
エーテル樹脂等公知のものが挙げられ、これらは1種或
いは2種以上が組み合わせて使用される。この中で、耐
マイグレーション性、耐熱性等、吸湿後の耐熱性等の点
から多官能性シアン酸エステル樹脂が好ましい。特に、
好適には(a)多官能性シアン酸エステルモノマー、該シ
アン酸エステルプレポリマー 100重量部に対し、(b)室
温で液状のエポキシ樹脂を15〜500重量部配合し、(c)熱
硬化触媒をこの(a+b)成分100重量部に対し0.005〜10重
量部配合した樹脂組成物を必須成分とした熱硬化性樹脂
組成物を用いる。この組成物を用いることにより、耐熱
フィルムに付着させた場合でも樹脂の屈曲性等に優れ、
樹脂が割れて剥落しにくいものが得られる。
The resin composition to be adhered to the heat-resistant film of the present invention is not particularly limited, but specifically, epoxy resin, polyimide resin, polyfunctional cyanate ester resin, maleimide resin, double bond-added polyphenylene. Known resins such as ether resins and epoxidized or cyanated polyphenylene ether resins can be used, and these can be used alone or in combination of two or more. Among these, polyfunctional cyanate ester resins are preferable from the viewpoints of migration resistance, heat resistance, heat resistance after moisture absorption, and the like. In particular,
Suitably, (a) a polyfunctional cyanate ester monomer, and 100 parts by weight of the cyanate ester prepolymer, (b) 15 to 500 parts by weight of a liquid epoxy resin at room temperature is blended, and (c) a thermosetting catalyst. A thermosetting resin composition containing as an essential component a resin composition prepared by mixing 0.005 to 10 parts by weight with respect to 100 parts by weight of the component (a + b) is used. By using this composition, even when attached to a heat-resistant film, excellent flexibility of the resin,
It is possible to obtain a resin that is difficult to be broken and peeled off.

【0009】本発明で好適に使用される多官能性シアン
酸エステル化合物とは、分子内に2個以上のシアナト基
を有する化合物である。具体的に例示すると、1,3-又は
1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼ
ン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナト
ナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシ
アナトビフェニル、ビス(4-ジシアナトフェニル)メタ
ン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス
(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4
-シアナトフェニル)エーテル、ビス(4-シアナトフェニ
ル)チオエーテル、ビス(4-シアナトフェニル)スルホ
ン、トリス(4-シアナトフェニル)ホスファイト、トリス
(4-シアナトフェニル)ホスフェート、およびノボラック
とハロゲン化シアンとの反応により得られるシアネート
類等である。
The polyfunctional cyanate ester compound preferably used in the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3-or
1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene , 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis
(3,5-dibromo-4-cyanatophenyl) propane, bis (4
-Cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, tris (4-cyanatophenyl) phosphite, tris
Examples thereof include (4-cyanatophenyl) phosphate, and cyanates obtained by reacting novolac with cyanogen halide.

【0010】これらのほかに特公昭41-1928、同43-1846
8、同44-4791、同45-11712、同46-41112、同47-26853及
び特開昭51-63149等に記載の多官能性シアン酸エステル
化合物類も用いら得る。また、これら多官能性シアン酸
エステル化合物のシアナト基の三量化によって形成され
るトリアジン環を有する分子量400〜6,000 のプレポリ
マーが使用される。このプレポリマーは、上記の多官能
性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸
等の酸類;ナトリウムアルコラート等、第三級アミン類
等の塩基;炭酸ナトリウム等の塩類等を触媒として重合
させることにより得られる。このプレポリマー中には一
部未反のモノマーも含まれており、モノマーとプレポリ
マーとの混合物の形態をしており、このような原料は本
発明の用途に好適に使用される。一般には可溶な有機溶
剤に溶解させて使用する。これらの臭素付加化合物、液
状の樹脂等も使用できる。
In addition to these, Japanese Patent Publications 41-1928 and 43-1846
8, polyfunctional cyanate ester compounds described in JP-A-51-63149 and JP-A-44-4791, JP-A-45-11712, JP-A-46-41112 and JP-A-47-26853 can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 and having a triazine ring formed by trimerizing the cyanato group of these polyfunctional cyanate ester compounds is used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate ester monomer using, for example, acids such as mineral acid and Lewis acid; bases such as sodium alcoholate and tertiary amines; salts such as sodium carbonate as a catalyst. It is obtained by The prepolymer also contains some unreacted monomer and is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the purpose of the present invention. Generally, it is used by dissolving it in a soluble organic solvent. These bromine addition compounds, liquid resins and the like can also be used.

【0011】室温で液状のエポキシ樹脂としては、一般
に公知のものが使用可能である。具体的には、ビスフェ
ノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、脂環式エポ
キシ樹脂、ポリエーテルポリオールのジグリシジル化
物、酸無水物のエポキシ化物等が単独或いは2種以上組
み合わせて使用される。使用量は、多官能性シアン酸エ
ステル化合物、該シアン酸エステルプレポリマー 100重
量部に対し、15〜500重量部、好ましくは20〜300重量部
である。室温で液状とは、室温(25℃)で破砕できない
ものを言う。
As the epoxy resin which is liquid at room temperature, generally known epoxy resins can be used. Specifically, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, an alicyclic epoxy resin, a diglycidylated product of a polyether polyol, an epoxidized product of an acid anhydride, etc., or a combination of two or more thereof. Used. The amount used is 15 to 500 parts by weight, preferably 20 to 300 parts by weight, based on 100 parts by weight of the polyfunctional cyanate ester compound and the cyanate ester prepolymer. Liquid at room temperature refers to substances that cannot be crushed at room temperature (25 ° C).

【0012】これらの液状エポキシ化合物以外に、公知
の室温で破砕できる固形の上記エポキシ樹脂、更にはク
レゾールノボラック型エポキシ樹脂、ビフェニル型エポ
キシ樹脂、ナフタレン型エポキシ樹脂等が難溶性樹脂と
して単独或いは2種以上組み合わせて使用される。
In addition to these liquid epoxy compounds, known solid epoxy resins which can be crushed at room temperature, further cresol novolac type epoxy resins, biphenyl type epoxy resins, naphthalene type epoxy resins, etc., are used alone or in combination of two kinds. The above is used in combination.

【0013】本発明の熱硬化性樹脂組成物には、組成物
本来の特性が損なわれない範囲で、所望に応じて上記以
外の種々の添加物を配合することができる。これらの添
加物としては、各種樹脂類、この樹脂類の公知の臭素、
燐化合物、公知の無機、有機の充填剤、染料、顔料、増
粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感
剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の
各種添加剤が、所望に応じて適宜組み合わせて用いられ
る。必要により、反応基を有する化合物は公知の硬化
剤、触媒が適宜配合される。
The thermosetting resin composition of the present invention may contain various additives other than those mentioned above, if desired, within a range in which the original properties of the composition are not impaired. As these additives, various resins, known bromine of these resins,
Phosphorus compounds, known inorganic and organic fillers, dyes, pigments, thickeners, lubricants, defoamers, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, and thixotropic properties. Various additives such as agents are appropriately combined and used as desired. If necessary, a known curing agent and a catalyst may be appropriately added to the compound having a reactive group.

【0014】本発明の熱硬化性樹脂組成物は、それ自体
は加熱により硬化するが硬化速度が遅く、作業性、経済
性等に劣るため使用した熱硬化性樹脂に対して公知の熱
硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量
部に対し、0.005〜10重量部、好ましくは0.01〜5重量%
である。
The thermosetting resin composition of the present invention is itself hardened by heating, but has a slow curing rate and is inferior in workability and economical efficiency. Therefore, a known thermosetting catalyst is used for the thermosetting resin used. Can be used. The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5% by weight, based on 100 parts by weight of the thermosetting resin.
Is.

【0015】本発明の各成分を均一に混練する方法は、
一般に公知の方法が使用され得る。例えば、各成分を配
合後、三本ロールにて、室温或いは加熱下に混練する
か、ボールミル、ライカイ機等、一般に公知のものが使
用される。また、溶剤を添加して加工法に合う粘度とし
て使用する。
The method of uniformly kneading each component of the present invention is
Generally known methods can be used. For example, after the respective components are blended, they are kneaded with a triple roll at room temperature or under heating, or generally known ones such as a ball mill and a liquor machine are used. In addition, a solvent is added to obtain a viscosity suitable for the processing method.

【0016】又、耐熱フィルム基材入りのBステージ樹
脂組成物シートの耐熱フィルム基材は、種類、厚さには
特に制限はなく公知のものが使用できる。具体的には、
ポリイミド(カプトン)フィルム、ポリパラバン酸フィ
ルム、液晶ポリエステルフィルム、全芳香族ポリアミド
フィルム等が使用される。厚さは目的により適宜選択す
る。ラミネート成形後の絶縁層間の厚みを20〜40μm位
に薄くするためには、好適には厚さ4〜20μmの耐熱フィ
ルムを使用する。耐熱フィルムの表面に接着剤樹脂層を
形成する場合、無処理でも良いが、好適にはコロナ処
理、プラズマ処理、低紫外線処理、薬液処理、サンドブ
ラスト処理等の処理を行い、樹脂との接着性を向上させ
る。
The heat-resistant film base material of the B-stage resin composition sheet containing the heat-resistant film base material is not particularly limited in type and thickness, and known ones can be used. In particular,
Polyimide (Kapton) film, polyparabanic acid film, liquid crystal polyester film, wholly aromatic polyamide film and the like are used. The thickness is appropriately selected depending on the purpose. In order to reduce the thickness between insulating layers after laminating to about 20 to 40 μm, a heat resistant film having a thickness of 4 to 20 μm is preferably used. When the adhesive resin layer is formed on the surface of the heat-resistant film, it may be untreated, but it is preferably subjected to treatments such as corona treatment, plasma treatment, low ultraviolet ray treatment, chemical treatment, and sandblast treatment to improve adhesion with the resin. Improve.

【0017】耐熱フィルム基材入りBステージ樹脂組成
物シートの製造方法は特に限定はないが、例えば耐熱フ
ィルム基材の片面に樹脂組成物ワニスを塗布、乾燥して
Bステージとした後、この反対面に再度塗布、乾燥して
耐熱フィルムの両面にBステージ樹脂組成物層を形成す
る方法、耐熱フィルム基材の片面に樹脂組成物ワニスを
塗布、乾燥してBステージとした後、もう一方の片面に
離型フィルム付きBステージ樹脂組成物シートをラミネ
ートして接着させる方法、耐熱フィルムの両面に離型フ
ィルム付きBステージ樹ス脂組成物シートを配置し、一
度にラミネートして接着させる方法等で両面にBステー
ジ樹脂組成物層が形成された耐熱フィルム基材入りBス
テージ樹脂組成物シートを作製する。製造方法は必ずし
もこの方法に限定されるものではない。
The method for producing the B-stage resin composition sheet containing the heat-resistant film substrate is not particularly limited, but for example, after coating the resin composition varnish on one surface of the heat-resistant film substrate and drying it to the B-stage, the opposite process is performed. Method of forming a B-stage resin composition layer on both surfaces of a heat-resistant film by re-coating on one side and drying, and coating a resin composition varnish on one surface of a heat-resistant film base material and drying to make B-stage, A method of laminating and adhering a B-stage resin composition sheet with a release film on one side, a method of arranging a B-stage resin composition sheet with a release film on both sides of a heat-resistant film and laminating and adhering at once Then, a B-stage resin composition sheet containing a heat-resistant film substrate having B-stage resin composition layers formed on both sides is prepared. The manufacturing method is not necessarily limited to this method.

【0018】耐熱フィルムにBステージ樹脂組成物層を
付着させる場合、方法は公知の方法が使用できる。例え
ば、耐熱フィルム上に直接ロールコーター等で塗布、乾
燥してBステージ化する公知の方法で形成する。この場
合樹脂組成物中に少量の溶剤が残存しても良い。樹脂組
成物の厚みは特に限定はないが、一般的には5〜100μ
m、好ましくは6〜50μm、更に好適には7〜20μmとす
る。この厚みは積層に使用する内層板の銅箔の厚み、銅
残存率、外層に使用する銅箔の凹凸により適宜選択す
る。例えば、内層板の銅箔の厚みが12μmで銅残率50%で
あれば、耐熱フィルム上の樹脂層厚みは6μmより厚く、
例えば10μm付着させる。又、外層の銅箔の凸部先端よ
りは樹脂層を厚く形成する。
When the B-stage resin composition layer is attached to the heat resistant film, a known method can be used. For example, it is formed by a known method in which it is directly coated on a heat-resistant film by a roll coater or the like, dried and converted into a B stage. In this case, a small amount of solvent may remain in the resin composition. The thickness of the resin composition is not particularly limited, but generally 5 to 100 μ
m, preferably 6 to 50 μm, and more preferably 7 to 20 μm. This thickness is appropriately selected depending on the thickness of the copper foil of the inner layer plate used for lamination, the copper residual rate, and the unevenness of the copper foil used for the outer layer. For example, if the thickness of the copper foil of the inner layer plate is 12 μm and the copper residual ratio is 50%, the resin layer thickness on the heat resistant film is thicker than 6 μm,
For example, 10 μm is attached. Further, the resin layer is formed thicker than the tip of the convex portion of the outer layer copper foil.

【0019】耐熱フィルム基材両面の樹脂層は同じ厚み
でも良く、異なっていても良い。例えば外層側の樹脂層
を5〜10μmとし、内層側に付着させる樹脂層を10〜100
μmとすることにより、全体厚みを薄くできる。この場
合、外層側は金属箔の凹凸が耐熱フィルムまで到達せ
ず、内層側は耐熱フィルムに内層銅箔が接触しない厚み
とする。
The resin layers on both sides of the heat-resistant film substrate may have the same thickness or different thicknesses. For example, the resin layer on the outer layer side is 5 to 10 μm, and the resin layer attached to the inner layer side is 10 to 100 μm.
The thickness of μm can reduce the overall thickness. In this case, the thickness of the outer layer side is such that the unevenness of the metal foil does not reach the heat resistant film, and the inner layer side is such that the inner layer copper foil does not contact the heat resistant film.

【0020】本発明の積層用耐熱フィルム基材入りBス
テージ樹脂組成物シートを用いて多層化する場合、銅張
積層板や耐熱フィルム基材補強銅張シート等を用いて導
体回路を形成した内層板を使用して、導体に公知の表面
処理を施した後、又は両面粗化箔を使用した内層用回路
板の表裏或いは回路板間に上記耐熱フィルム基材入りB
ステージ樹脂組成物シートを配置し、公知の方法にて加
熱、加圧、好適には真空下に積層成形或いはラミネート
して硬化させる。
When the B-stage resin composition sheet containing a heat-resistant film base material for lamination of the present invention is used for multilayering, a copper clad laminate or a heat-resistant film base material-reinforced copper clad sheet is used as an inner layer to form a conductor circuit. After the conductor is subjected to a known surface treatment using a board, or the above heat-resistant film base material is included between the front and back surfaces or the circuit board of the inner layer circuit board using the double-sided roughening foil B
The stage resin composition sheet is placed, and laminated or molded by heating, pressurizing, and preferably under vacuum by a known method to cure.

【0021】本発明で得られた耐熱フィルム基材入りB
ステージ樹脂組成物シートの両面に離型フィルムが付着
している場合、この離型フィルムを剥がして内層板の上
に配置するか、片面の離型フィルムを剥離後に内層板の
上に配置し、加熱、加圧下に加熱ロールでラミネート接
着し、離型フィルムを剥離して内層板或いは金属箔をそ
の上に配置して積層成形する。
B containing heat-resistant film substrate obtained in the present invention
When the release film is attached to both surfaces of the stage resin composition sheet, the release film is peeled off and placed on the inner layer plate, or the release film on one side is placed on the inner layer plate after peeling, It is laminated and bonded with a heating roll under heating and pressure, the release film is peeled off, the inner layer plate or the metal foil is placed thereon, and laminated molding is performed.

【0022】使用する金属箔は特に限定はなく、具体的
にはアルミニウム箔、銅箔、ニッケル箔等が挙げられる
が、銅箔が好適に使用される。金属箔は一般に凹凸が形
成されたものが接着力の向上の点から好適に使用され
る。金属箔の厚みは特に限定はないが、一般には3〜35
μmを使用する。
The metal foil to be used is not particularly limited, and specific examples thereof include aluminum foil, copper foil, nickel foil and the like, but copper foil is preferably used. Generally, a metal foil having irregularities is preferably used from the viewpoint of improving the adhesive force. The thickness of the metal foil is not particularly limited, but generally 3 to 35
Use μm.

【0023】本発明の多層化する際の積層成形条件は、
特に限定はないが、一般には温度100〜250℃、圧力5〜5
0kgf/cm2 、時間は0.5〜3時間である。又、真空下に積
層成形するのが好ましい。装置は真空ラミネータプレ
ス、一般の多段真空プレス等、公知のものが使用でき
る。真空ラミネータプレスの場合は、硬化が不足する場
合には、オーブン等で後硬化する。
The lamination molding conditions for forming the multi-layer of the present invention are as follows:
Although not particularly limited, generally, the temperature is 100 to 250 ° C, the pressure is 5 to 5
0 kgf / cm 2, time is 0.5 to 3 hours. Further, it is preferable to carry out lamination molding under vacuum. A known device such as a vacuum laminator press or a general multi-stage vacuum press can be used as the device. In the case of a vacuum laminator press, if curing is insufficient, it is post-cured in an oven or the like.

【0024】本発明で使用する離型フィルムは特に限定
はないが、具体的にはポリエチレンテレフタレート(PE
T)フィルム、ポリプロピレンフィルム、ポリ-4-メチル
ペンテン-1フィルム等、公知のものが使用できる。これ
らは離型剤処理をしたもの、帯電防止処理をしたものが
好適に使用される。
The release film used in the present invention is not particularly limited, but specifically, polyethylene terephthalate (PE
Known materials such as T) film, polypropylene film and poly-4-methylpentene-1 film can be used. Those treated with a release agent and those treated with an antistatic agent are preferably used.

【0025】[0025]

【実施例】以下に実施例、比較例で本発明を具体的に説
明する。尚、特に断らない限り、『部』は重量部を表
す。 実施例1 2,2-ビス(4-シアナトフェニル)プロパンモノマーを400
部を150℃に溶融させ、撹拌しながら4時間反応させ、平
均分子量1,900のプレポリマーを得た。これをメチルエ
チルケトンに溶解し、ワニスAとした。これに室温で液
状のエポキシ樹脂として、ビスフェノールA型エポキシ
樹脂(商品名::エピコート828、ジャパンエポキシレジ
ン<株>製)100部、ビスフェノールF型エポキシ樹脂
(商品名:EXA830LVP、大日本インキ化学工業<株>製)1
50部、ノボラック型エポキシ樹脂(商品名:DEN438、ダウ
ケミカル<株>製)150部、室温で液状のエポキシ樹脂と
して、クレゾールノボラック型エポキシ樹脂(商品名:E
SCN220F、住友化学工業<株>製)200部を配合し、熱硬化
触媒としてアセチルアセトン鉄0.3部をメチルエチルケ
トンに溶解して加えた。これにタルク(平均粒径1.8μ
m.Max..粒径4.2μm)400部を加え、良く攪拌混合して均
一なワニスBにした。
The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise specified, “part” means part by weight. Example 1 400 of 2,2-bis (4-cyanatophenyl) propane monomer
Parts were melted at 150 ° C. and reacted for 4 hours with stirring to obtain a prepolymer having an average molecular weight of 1,900. This was dissolved in methyl ethyl ketone to obtain varnish A. As a liquid epoxy resin at room temperature, 100 parts of bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resins Co., Ltd.), bisphenol F type epoxy resin (trade name: EXA830LVP, Dainippon Ink and Chemicals) (Made by <shares>) 1
50 parts, novolac type epoxy resin (trade name: DEN438, manufactured by Dow Chemical Co., Ltd.) 150 parts, cresol novolac type epoxy resin (trade name: E as liquid epoxy resin at room temperature
SCN220F, manufactured by Sumitomo Chemical Co., Ltd.) (200 parts) was mixed, and 0.3 part of iron acetylacetone as a thermosetting catalyst was dissolved in methyl ethyl ketone and added. Talc (average particle size 1.8μ
m.Max .. particle size 4.2 μm) 400 parts and well mixed with stirring to form a uniform varnish B.

【0026】このワニスBを連続的に厚さ25μmの表面平
滑な離型PETフィルムCの片面に塗布、乾燥してゲル化
時間58秒、厚さ18μmのBステージ樹脂層を形成し、乾
燥ゾーンを出てきた時に樹脂面に厚さ20μmのポリプロ
ピレン保護フィルムを当て、100℃、線圧4kgf/cmでラミ
ネートし、離型フィルム付きBステージ樹脂組成物シー
トDを作製した。又、ワニスBを連続的に厚さ25μmの表
面平滑な離型PETフィルムEの片面に塗布、乾燥してゲル
化時間55秒、厚さ7μmのBステージ樹脂層を形成し、乾
燥ゾーンを出てきた時に樹脂面に厚さ20μmのポリプロ
ピレン保護フィルムを当て、100℃、線圧4kgf/cmでラミ
ネートし、離型フィルム付きBステージ樹脂組成物シー
トFを作製した。以上の離型フィルム付きBステージ樹
脂組成物シートD及びFを厚さ10μmのポリイミドフィ
ルムの両面をプラズマ処理した面にそれぞれ保護フィル
ムを剥離しながら配置し、90℃、5kgf/cmの線圧で連続
的にラミネートして一体化し、樹脂層厚さ35μmの耐熱
フィルム基材入り離型フィルム付きBステージ樹脂組成
物シートGを作製した。
This varnish B was continuously applied to one surface of a release PET film C having a smooth surface having a thickness of 25 μm and dried to form a B stage resin layer having a gelling time of 58 seconds and a thickness of 18 μm, and a drying zone. Then, a polypropylene protective film having a thickness of 20 μm was applied to the resin surface and laminated at 100 ° C. and a linear pressure of 4 kgf / cm to prepare a B-stage resin composition sheet D with a release film. In addition, the varnish B was continuously applied to one surface of the release PET film E having a smooth surface with a thickness of 25 μm and dried to form a B-stage resin layer having a gelation time of 55 seconds and a thickness of 7 μm, and then exited the drying zone. At that time, a polypropylene protective film having a thickness of 20 μm was applied to the resin surface and laminated at 100 ° C. at a linear pressure of 4 kgf / cm to prepare a B-stage resin composition sheet F with a release film. The above B-stage resin composition sheets D and F with a release film were placed on both sides of a polyimide film having a thickness of 10 μm while the protective films were peeled off on both sides, and at 90 ° C. and a linear pressure of 5 kgf / cm. A B-stage resin composition sheet G with a release film containing a heat-resistant film substrate having a resin layer thickness of 35 μm was produced by continuously laminating and integrating.

【0027】一方、内層板として絶縁層厚さ0.2mm、12
μm両面銅箔のBTレジン銅張積層板(商品名:CCL-HL83
0、三菱ガス化学<株>製 )に銅残率30%の回路を形成
し、黒色酸化銅処理を銅箔に施した内層板の両面に、上
記耐熱フィルム基材入り離型フィルム付きBステージ樹
脂組成物シートGの片面の離型フィルムCを剥離しなが
ら樹脂層が内層板側を向くように両面に配置し、90℃、
5kgf/cmの加熱ロールでラミネート接着後、表面の離型
フィルムを剥離し、この両外側に厚さ12μmでシャイニ
ー面にニッケル処理を施した電解銅箔を配置してプレス
装置に仕込んだ後、110℃・30分+200℃・90分、5kgf/c
m2・20分+20kgf/cm2・最後まで、真空度30mmHg以下で2
時間積層成形し、4層の多層板 H を得た。この絶縁層
間の厚みはほぼ20μmであった。この表面に炭酸ガスレ
ーザー出力12mJで1ショット直接照射して孔径100μmの
ブラインドビア孔をあけた。表層の銅箔をエッチングし
て厚さ4μmまで薄くすると同時にブラインドビア孔部の
銅箔バリを除去し、デスミア処理後、無電解銅メッキを
0.7μm、電気銅メッキを15μm付着させ、その後、定法
にて回路を形成し、黒色酸化銅処理後に同様に上記耐熱
フィルム基材入り離型フィルム付きBステージ樹脂組成
物シートGを配置し、同様に加工して6層プリント配線板
を作製した。評価結果を表1に示す。
On the other hand, as the inner layer plate, the insulating layer thickness is 0.2 mm, 12
BT resin copper clad laminate with μm double-sided copper foil (Product name: CCL-HL83
0, manufactured by Mitsubishi Gas Chemical Co., Inc.), a circuit with a copper residual rate of 30% was formed, and the black heat-treated copper foil was applied to the copper foil on both sides of the inner layer plate, and the B stage with release film containing the above heat-resistant film substrate. While peeling off the release film C on one surface of the resin composition sheet G, the resin layers are arranged on both surfaces so that the resin layer faces the inner layer plate side, and 90 ° C.
After laminating adhesion with a heating roll of 5 kgf / cm, peeling off the release film on the surface, after placing electrolytic copper foil with nickel treatment on the shiny surface with a thickness of 12 μm on both outsides and charging it into a press machine, 110 ℃ ・ 30 minutes + 200 ℃ ・ 90 minutes, 5kgf / c
m2 · 20 minutes + 20kgf / cm2 · 2 to the end at a vacuum degree of 30mmHg or less
Laminate molding was performed for a time to obtain a multi-layer plate H having four layers. The thickness between the insulating layers was about 20 μm. This surface was directly irradiated with 1 shot of carbon dioxide laser output of 12 mJ to form a blind via hole having a hole diameter of 100 μm. The copper foil on the surface layer is etched to a thickness of 4 μm and at the same time the copper foil burr in the blind via holes is removed, and after desmearing, electroless copper plating is performed.
0.7 μm, 15 μm of electrolytic copper plating are adhered, then a circuit is formed by a conventional method, and after the black copper oxide treatment, the B-stage resin composition sheet G with a release film containing the heat-resistant film substrate is arranged in the same manner. Then, a 6-layer printed wiring board was produced. The evaluation results are shown in Table 1.

【0028】実施例2 ビスフェノールA型エポキシ樹脂(商品名:エピコ−ト1
001、油化シェルエポキシ<株>製)500部、フェノールノ
ボラック型エポキシ樹脂(商品名:DEN438、ダウケミカ
ル<株>製造)450部、イミダゾール系硬化剤(商品名:2
E4MZ、四国化成<株>製)30部、タルク(平均粒径1.8μ
m、Max.粒径4.2μm)400部を加え、3本ロールにて良く
均一分散し、ワニス I とした。このワニス I を連続的
に厚さ25μmの表面平滑な離型PETフィルムJに塗布、乾
燥して樹脂組成物厚さ23μm、ゲル化時間が65秒のBス
テージ樹脂組成物層Kを形成した。これを厚さ4.5μmの
全芳香族ポリアミド(アラミド)フィルムの両面に配置
し、連続的に温度100℃、線圧5kgf/cmの加熱ロールにて
ラミネートし、耐熱フィルム基材入り離型フィルム付き
Bステージ樹脂組成物シート L を作製した。この絶縁
層厚みは約50μmであった。
Example 2 Bisphenol A type epoxy resin (trade name: Epicort 1
001, Yuka Shell Epoxy Co., Ltd.) 500 parts, phenol novolac type epoxy resin (trade name: DEN438, Dow Chemical Co., Ltd.) 450 parts, imidazole-based curing agent (trade name: 2)
E4MZ, Shikoku Kasei Co., Ltd. 30 parts, talc (average particle size 1.8μ)
m, Max. particle size 4.2 μm) 400 parts were added and well dispersed with 3 rolls to form a varnish I. This varnish I was continuously applied to a release PET film J having a smooth surface with a thickness of 25 μm and dried to form a B-stage resin composition layer K having a resin composition thickness of 23 μm and a gelation time of 65 seconds. This is placed on both sides of a 4.5 μm-thick wholly aromatic polyamide (aramid) film and continuously laminated with a heating roll at a temperature of 100 ° C. and a linear pressure of 5 kgf / cm, with a release film containing a heat-resistant film base material. A B-stage resin composition sheet L was produced. The thickness of this insulating layer was about 50 μm.

【0029】一方、厚さ0.2mm、12μm両面銅箔のエポキ
シ系銅張積層板(商品名:CCL-EL170、三菱ガス化学<株
>製)回路を形成し、導体に黒色酸化銅処理した内層板M
を作製後、この両面に上記耐熱フィルム基材入り離型フ
ィルム付きBステージ樹脂組成物シート L の片面の離
型PETフィルムJを剥離して配置し、温度100℃、線圧5kg
f/cmの加熱ロールにてラミネートし、耐熱フィルム基材
入り離型フィルム付きBステージ樹脂組成物シートが両
面に付着した内層板Nを作製した。又、同様に内層板M
の片面に耐熱フィルム基材入り離型フィルム付きBステ
ージ樹脂組成物シート Lが付着した内層板Oを作製し
た。内層板Mの上に内層板Oの耐熱フィルム基材入り離
型フィルム付きBステージ樹脂組成物シート Lの付着
していない面を向け、付着した離型フィルムJを剥離し
て配置し、これらの内層板の最外側に厚さ12μmでシャ
イニー面にニッケル処理を施した電解銅箔を配置してプ
レス装置に仕込んだ後、110℃・30分+180℃・90分、5k
gf/cm2・15分+20kgf/cm2・最後まで、真空度30mmHg以
下で2時間積層成形し、6層の多層板Pを得た。この内
層板間の絶縁層厚みはほぼ30μmであった。この表面か
ら、炭酸ガスレーザー出力12mJで1ショット照射して孔
径100μmのブラインドビア孔をあけた。表層の銅箔をエ
ッチングして厚さ3μmまで溶解するとともに、孔部に発
生した銅箔バリを溶解除去した。ブラインドビア孔底部
の残存樹脂層をデスミア処理して除去した後、無電解銅
メッキを0.7μm、更に電気銅メッキを15μm付着させ、
定法にて回路を形成してプリント配線板とした。評価結
果を表1に示す。
On the other hand, an epoxy-based copper-clad laminate of 0.2 mm thick and 12 μm double-sided copper foil (trade name: CCL-EL170, Mitsubishi Gas Chemical Co., Ltd.
>) Inner layer board M that forms a circuit and has the conductor treated with black copper oxide
After the above, the release PET film J on one side of the B-stage resin composition sheet L with a release film containing the heat-resistant film base is peeled off and placed on both sides, and the temperature is 100 ° C and the linear pressure is 5 kg.
It was laminated with a f / cm heating roll to prepare an inner layer plate N having a release film-containing B-stage resin composition sheet with a heat-resistant film substrate attached on both sides. Also, similarly, the inner layer plate M
An inner layer plate O having a B-stage resin composition sheet L with a release film containing a heat-resistant film substrate attached to one surface of was prepared. The B-stage resin composition sheet L with the release film containing the heat-resistant film substrate of the inner layer plate O is directed onto the inner layer plate M with the non-adhered surface thereof, and the attached release film J is peeled off and placed. After placing an electrolytic copper foil with a thickness of 12 μm and a nickel treatment on the shiny surface on the outermost side of the inner layer plate and charging it in a press machine, 110 ℃ ・ 30 minutes + 180 ℃ ・ 90 minutes, 5k
gf / cm2 · 15 minutes + 20 kgf / cm2 · Laminate molding was performed at a vacuum degree of 30 mmHg or less for 2 hours until the end to obtain a multilayer P of 6 layers. The thickness of the insulating layer between the inner layer plates was about 30 μm. From this surface, a blind via hole having a hole diameter of 100 μm was opened by irradiating one shot with a carbon dioxide gas laser output of 12 mJ. The copper foil on the surface layer was etched to dissolve it to a thickness of 3 μm, and the copper foil burr generated in the holes was removed by dissolution. After removing the residual resin layer at the bottom of the blind via hole by desmearing, 0.7 μm electroless copper plating and 15 μm electrolytic copper plating were deposited,
A circuit was formed by a conventional method to obtain a printed wiring board. The evaluation results are shown in Table 1.

【0030】比較例1、2 実施例1でワニスBを用い、実施例2でワニス I を使用
し、これらを用いて離型フィルム上に付着するBステー
ジの樹脂層の厚さを、実施例1は35μm、実施例2は50
μm付着させてそれぞれ同様に離型フィルム付きBステ
ージ樹脂組成物シートを作製し、実施例1、2において
耐熱フィルム基材を使用せず、この離型フィルム付きB
ステージ樹脂組成物シートのみを使用して同様に積層成
形し、同様に6層の多層プリント配線板とし、これを比
較例1、2とした。この評価結果を表1に示す。
Comparative Examples 1 and 2 Varnish B was used in Example 1, and varnish I was used in Example 2. Using these, the thickness of the resin layer of the B stage adhered on the release film was measured. 1 is 35 μm, and Example 2 is 50 μm
A B-stage resin composition sheet with a release film was prepared in the same manner by adhering μm, and the heat-resistant film base material was not used in Examples 1 and 2 and the release film B
Similarly, using only the stage resin composition sheet, lamination molding was performed to obtain a multilayer printed wiring board having 6 layers, which were set as Comparative Examples 1 and 2. The evaluation results are shown in Table 1.

【0031】比較例3 実施例1において、ワニスBを厚さ20μmのガラス織布
に含浸、乾燥して総厚さ(ガラス織布+樹脂組成物層)
45μm、ゲル化時間(170℃)が85秒のプリプレグQを作
製した。このプリプレグを各1枚内層板の両側に配置
し、この両外側に厚さ12μmでシャイニー面にニッケル
処理を施した電解銅箔を配置してプレス装置に仕込んだ
後、同一の条件で積層成形し、4層の多層板を作製し、
更に同様にして6層の多層プリント配線板を作製した。
この評価結果を表1に示す。
Comparative Example 3 In Example 1, a glass woven cloth having a thickness of 20 μm was impregnated with varnish B and dried to obtain a total thickness (glass woven cloth + resin composition layer).
A prepreg Q having 45 μm and a gelation time (170 ° C.) of 85 seconds was produced. These prepregs are placed on both sides of each inner layer board, and on both sides, 12 μm thick electrolytic copper foil with nickel treatment on the shiny surface is placed and placed in a press machine, and then laminated under the same conditions. Then, make a multilayer board of 4 layers,
Further, a 6-layer multilayer printed wiring board was prepared in the same manner.
The evaluation results are shown in Table 1.

【0032】比較例4 実施例2のワニス I を使用し、厚さ27μmのガラス織布
に含浸、乾燥して総厚さ(ガラス織布+樹脂組成物層)
50μm、ゲル化時間(170℃)が88秒のプリプレグRを作
製した。このプリプレグを各1枚内層板の両側に配置
し、この両外側に厚さ12μmでシャイニー面にニッケル
処理を施した電解銅箔を配置してプレス装置に仕込んだ
後、同一の条件で積層成形し、4層の多層板を作製し、
更に同様にして6層の多層プリント配線板を作製した。
この評価結果を表1に示す。
Comparative Example 4 Using the varnish I of Example 2, a glass woven cloth having a thickness of 27 μm was impregnated and dried to obtain a total thickness (glass woven cloth + resin composition layer).
A prepreg R having 50 μm and a gelation time (170 ° C.) of 88 seconds was prepared. These prepregs are placed on both sides of each inner layer board, and on both sides, 12 μm thick electrolytic copper foil with nickel treatment on the shiny surface is placed and placed in a press machine, and then laminated under the same conditions. Then, make a multilayer board of 4 layers,
Further, a 6-layer multilayer printed wiring board was prepared in the same manner.
The evaluation results are shown in Table 1.

【0033】 (表1) 項目 実施例 比較例 1 2 1 2 3 4 銅接着力 (kgf/cm) 1.40 1.48 1.40 1.49 1.43 1.48 半田耐熱性 異常なし 異常なし 異常なし 一部膨れ 一部膨れ 一部膨れ ガラス転移温度 DMA (℃) 208 165 210 158 209 167 弾性率25℃ (kgf/mm2) 1579 1378 995 791 1990 1899 ソリ・ネジレ(mm) 1.5 1.8 4.6 5.7 1.5 1.6 厚みバラツキ (μm) 4.8 5.0 9.8 12.9 ー ー 耐マイグレーション性 (Ω) 常態 5x1013 5x1013 6x1013 6x1013 7x1013 6x101 3 100hrs. 5x1011 8x1010 6x1010 8x108 6x109 1x108 500hrs. 3x1011 4x1010 <108 <108 <108 <108 (Table 1) Item Example Comparative Example 1 2 1 2 3 4 Copper adhesion (kgf / cm) 1.40 1.48 1.40 1.49 1.43 1.48 Soldering heat resistance No abnormality No abnormality No abnormality Partial swelling Partial swelling Glass transition temperature DMA (℃) 208 165 210 158 209 167 Elastic modulus 25 ℃ (kgf / mm 2 ) 1579 1378 995 791 1990 1899 Warp / twist (mm) 1.5 1.8 4.6 5.7 1.5 1.6 Thickness variation (μm) 4.8 5.0 9.8 12.9 chromatography over migration resistance (Omega) normal 5x10 13 5x10 13 6x10 13 6x10 13 7x10 13 6x10 1 3 100hrs. 5x10 11 8x10 10 6x10 10 8x10 8 6x10 9 1x10 8 500hrs. 3x10 11 4x10 10 <10 8 <10 8 <10 8 <10 8

【0034】<測定方法> 1)銅接着力: JIS C6481に準じて測定した。 2)半田耐熱性: 6層のプリント配線板をプレッシャクッ
カー試験処理(PCT:121℃・203kPa・4hrs.)後に260℃の
半田中に30sec.浸漬してから異常の有無を観察した。 3)ガラス転移温度: 各基材入りBステージ樹脂組成物シ
ートを複数枚重ねて厚さ0.8mm位になるようし、同様に
各積層条件で硬化させてから、表層の銅箔をエッチング
し、DMA法にて測定した。尚、比較例1、2は樹脂を
塗り重ねて厚さ0.8mm位になるようし、同様に積層成形
して作製したものを使用した。 4)弾性率: 3)で測定したDMAのチャートの25℃での弾性
率を示した。 5)ソリ、ネジレ: 250x250mmで作製した6層のプリント配
線板を用い、定盤上に置き、ソリ、ネジレの最大値を測
定した。 6)厚みバラツキ: 5)の250x250mmの6層のプリント配線板
の各接着シート1枚当たりの厚みのバラツキを厚み測定
器で9点測定し、(最大値−最小値)で表した。尚、実
施例2は内層板間に使用した接着シートの厚みバラツキ
を断面を測定したものを示した。 7)耐マイグレーション性: 各実施例、比較例の6層板の
1層目と2層目に10mm角の銅箔を同じ位置に残して100
個つなぎ、Z方向の絶縁層間の絶縁抵抗値を85℃・85%R
Hにて100VDC印加して測定した。
<Measurement Method> 1) Copper Adhesion: Measured according to JIS C6481. 2) Solder heat resistance: A 6-layer printed wiring board was subjected to a pressure cooker test treatment (PCT: 121 ° C, 203kPa, 4hrs.), Immersed in solder at 260 ° C for 30 seconds, and then observed for abnormalities. 3) Glass transition temperature: A plurality of sheets of B-stage resin composition containing each base material are stacked to have a thickness of about 0.8 mm, and similarly cured under each lamination condition, and then the surface copper foil is etched, It was measured by the DMA method. Incidentally, in Comparative Examples 1 and 2, those obtained by applying resin repeatedly to make a thickness of about 0.8 mm and similarly laminating-molded were used. 4) Elastic Modulus: The elastic modulus at 25 ° C of the DMA chart measured in 3) is shown. 5) Warp and twist: Using a 6-layer printed wiring board manufactured with a size of 250x250 mm, it was placed on a surface plate and the maximum values of warp and twist were measured. 6) Thickness variation: The variation in thickness of each adhesive sheet of the printed wiring board of 6 layers of 250x250 mm of 5) was measured at 9 points with a thickness measuring instrument and expressed as (maximum value-minimum value). In addition, in Example 2, the thickness variation of the adhesive sheet used between the inner layer plates was measured on the cross section. 7) Migration resistance: 100 mm of copper foil of 10 mm square was left in the same position for the first and second layers of the 6-layer board of each Example and Comparative Example.
Insulation resistance value between the connecting and Z-direction insulating layers is 85 ℃ ・ 85% R
It was measured by applying 100 VDC at H.

【0035】[0035]

【発明の効果】耐熱フィルムの両面にBステージ樹脂組
成物層が形成された耐熱フィルム基材入りBステージ樹
脂組成物シートであり、これを用いて積層成形して得ら
れたプリント配線板はZ方向の耐マイフレーション性等
の信頼性に優れたプリント配線板が得られた。
A B-stage resin composition sheet containing a heat-resistant film substrate, in which B-stage resin composition layers are formed on both sides of a heat-resistant film, and a printed wiring board obtained by laminating and using the same is Z A printed wiring board having excellent reliability such as directional anti-migration effect was obtained.

【0036】又、樹脂成分として、(a)多官能性シアン
酸エステルモノマー、該シアン酸エステルプレポリマー
100重量部に対し、(b)室温で液状のエポキシ樹脂15〜50
0重量部を配合し、(c)熱硬化触媒を、(a+b)100重量部に
対し0.005〜10重量部配合した樹脂組成物を必須成分と
して使用することにより、耐熱性が高く、耐マイグレー
ション性、耐クラック性等の信頼性に優れ、銅接着力も
優れた多層プリント配線板を得ることができた。
As the resin component, (a) a polyfunctional cyanate ester monomer and the cyanate ester prepolymer
100 parts by weight of (b) room temperature liquid epoxy resin 15 to 50
0 parts by weight, (c) thermosetting catalyst, (a + b) by using 0.005 to 10 parts by weight of resin composition per 100 parts by weight as an essential component, high heat resistance, It was possible to obtain a multilayer printed wiring board having excellent reliability such as migration resistance and crack resistance, and excellent copper adhesion.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2のプリント配線板の製造工程 (1) 耐熱フィルム基材入りBステージ樹脂組成物シート
の構成。 (2) 耐熱フィルム基材入りBステージ樹脂組成物シート
をラミネート接着した基板を配置した6層板構成。 (3) 6層プリント配線板の断面図。
1] Manufacturing process of printed wiring board of Example 2 (1) Structure of heat-resistant film-containing B-stage resin composition sheet. (2) A six-layer board structure in which a substrate to which a B-stage resin composition sheet containing a heat-resistant film base material is laminated and adhered is arranged. (3) Sectional view of a 6-layer printed wiring board.

【符号の説明】[Explanation of symbols]

a 耐熱フィルム b Bステージ樹脂組成物層 c 離型フィルム d 内層板絶縁層 e 内層銅箔回路 f 銅箔 g ブインドビア孔 h ランド i 外層銅箔回路 a Heat resistant film b B-stage resin composition layer c Release film d Inner layer insulation layer e Inner layer copper foil circuit f Copper foil g Buind beer hole h land i Outer layer copper foil circuit

フロントページの続き Fターム(参考) 4F100 AB17 AB33 AK01A AK01B AK01C AK41A AK41B AK41C AK42 AK47A AK49A AK53B AK53C AL05B AL05C AT00A BA03 BA05 BA06 BA10B BA10C BA15 CA02B CA02C EJ19 EJ42 EJ61 GB43 JA11A JA20A JA20B JA20C JJ03 JJ03A JK07 JL11 JL14 YY00A YY00B YY00C 4J002 CD02X CD05X CD06X CD08X CM02W FD146 GQ01 5E346 AA12 AA43 CC02 CC08 CC10 CC12 CC32 DD02 DD12 DD25 DD33 EE06 EE08 FF07 FF15 GG08 GG15 GG17 GG22 GG27 GG28 HH08 HH11 HH18 Continued front page    F-term (reference) 4F100 AB17 AB33 AK01A AK01B                       AK01C AK41A AK41B AK41C                       AK42 AK47A AK49A AK53B                       AK53C AL05B AL05C AT00A                       BA03 BA05 BA06 BA10B                       BA10C BA15 CA02B CA02C                       EJ19 EJ42 EJ61 GB43 JA11A                       JA20A JA20B JA20C JJ03                       JJ03A JK07 JL11 JL14                       YY00A YY00B YY00C                 4J002 CD02X CD05X CD06X CD08X                       CM02W FD146 GQ01                 5E346 AA12 AA43 CC02 CC08 CC10                       CC12 CC32 DD02 DD12 DD25                       DD33 EE06 EE08 FF07 FF15                       GG08 GG15 GG17 GG22 GG27                       GG28 HH08 HH11 HH18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 耐熱フィルムの両面に積層用Bステージ樹
脂組成物層が形成された耐熱フィルム基材入りBステー
ジ樹脂組成物シート。
1. A B-stage resin composition sheet containing a heat-resistant film substrate, wherein a B-stage resin composition layer for lamination is formed on both sides of the heat-resistant film.
【請求項2】 該耐熱フィルム基材の厚さが4〜20μmで
ある請求項1記載の積層用耐熱フィルム基材入りBステ
ージ樹脂組成物シート。
2. The B-stage resin composition sheet containing a heat-resistant film substrate for lamination according to claim 1, wherein the heat-resistant film substrate has a thickness of 4 to 20 μm.
【請求項3】 該耐熱フィルム基材の片面のBステージ
樹脂組成物厚さが5〜10μmで、もう一方の面のBステー
ジ樹脂組成物厚さが10〜100μmである請求項1又は2記
載のビルドアップ積層用耐熱フィルム基材入りBステー
ジ樹脂組成物シート。
3. The B-stage resin composition thickness on one surface of the heat-resistant film substrate is 5 to 10 μm, and the B-stage resin composition thickness on the other surface is 10 to 100 μm. B-stage resin composition sheet containing a heat-resistant film substrate for build-up lamination.
【請求項4】該耐熱性フィルムの少なくとも片面に付着
させる樹脂成分として、(a)多官能性シアン酸エステル
モノマー、該シアン酸エステルプレポリマー100重量部
に対し、(b)室温で液状のエポキシ樹脂15〜500重量部を
配合し、(c)熱硬化触媒を、(a+b)100重量部に対し0.005
〜10重量部配合した樹脂組成物を必須成分とすることを
特徴とする請求項1、2又は3記載の積層用耐熱フィル
ム基材入りBステージ樹脂組成物シート。
4. A resin component to be attached to at least one surface of the heat resistant film, wherein (a) a polyfunctional cyanate ester monomer and 100 parts by weight of the cyanate ester prepolymer, and (b) an epoxy liquid at room temperature. 15 to 500 parts by weight of a resin is blended, and (c) a thermosetting catalyst is added to 0.005 to 100 parts by weight of (a + b).
A B-stage resin composition sheet containing a heat-resistant film base material for lamination according to claim 1, 2 or 3, wherein the resin composition mixed in an amount of -10 parts by weight is an essential component.
【請求項5】 該耐熱性フィルムがポリイミドフィル
ム、液晶ポリエステルフィルム、全芳香族ポリアミドフ
ィルムから選ばれた1種を使用した請求項1、2、3又
は4記載の積層用耐熱フィルム基材入りBステージ樹脂
組成物シート。
5. The heat-resistant film base material for laminating according to claim 1, 2, 3 or 4, wherein the heat-resistant film is one selected from a polyimide film, a liquid crystal polyester film and a wholly aromatic polyamide film. Stage resin composition sheet.
JP2002053654A 2002-02-21 2002-02-28 B-stage resin composition sheet having heat resistant film base material for lamination Pending JP2003251757A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002053654A JP2003251757A (en) 2002-02-28 2002-02-28 B-stage resin composition sheet having heat resistant film base material for lamination
US10/368,370 US6866919B2 (en) 2002-02-21 2003-02-20 Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof
TW92103639A TWI228454B (en) 2002-02-21 2003-02-21 Heat-resistant film base-material-inserted b-stage resin composition sheet for lamination and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053654A JP2003251757A (en) 2002-02-28 2002-02-28 B-stage resin composition sheet having heat resistant film base material for lamination

Publications (1)

Publication Number Publication Date
JP2003251757A true JP2003251757A (en) 2003-09-09

Family

ID=28665023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053654A Pending JP2003251757A (en) 2002-02-21 2002-02-28 B-stage resin composition sheet having heat resistant film base material for lamination

Country Status (1)

Country Link
JP (1) JP2003251757A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089512A (en) * 2003-09-12 2005-04-07 Dainippon Ink & Chem Inc Epoxy resin, production method for epoxy resin, epoxy resin composition and its cured product
WO2007063960A1 (en) * 2005-12-01 2007-06-07 Sumitomo Bakelite Company Limited Prepreg, process for producing prepreg, substrate, and semiconductor device
JP2008038066A (en) * 2006-08-09 2008-02-21 Sumitomo Bakelite Co Ltd Prepreg, substrate and semiconductor device
JP2008195835A (en) * 2007-02-14 2008-08-28 Shin Kobe Electric Mach Co Ltd Manufacturing method for epoxy resin varnish, manufacturing method for pre-preg, and manufacturing method for laminated plate and wiring board
JP2008244189A (en) * 2007-03-28 2008-10-09 Sumitomo Bakelite Co Ltd Circuit board and semiconductor device
JP2013057065A (en) * 2012-09-20 2013-03-28 Sumitomo Bakelite Co Ltd Prepreg, substrate, and semiconductor device
JP5370149B2 (en) * 2007-03-30 2013-12-18 住友ベークライト株式会社 Prepreg with carrier and manufacturing method thereof, multilayer printed wiring board, and semiconductor device
WO2020045112A1 (en) 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Multilayer body, metal foil-clad laminate, multilayer body with patterned metal foil, multilayer body having buildup structure, printed wiring board, multilayer coreless substrate and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609692B2 (en) * 2003-09-12 2011-01-12 Dic株式会社 Epoxy resin, method for producing epoxy resin, epoxy resin composition and cured product thereof
JP2005089512A (en) * 2003-09-12 2005-04-07 Dainippon Ink & Chem Inc Epoxy resin, production method for epoxy resin, epoxy resin composition and its cured product
WO2007063960A1 (en) * 2005-12-01 2007-06-07 Sumitomo Bakelite Company Limited Prepreg, process for producing prepreg, substrate, and semiconductor device
KR101014919B1 (en) 2005-12-01 2011-02-15 스미토모 베이클리트 컴퍼니 리미티드 Prepreg, process for producing prepreg, substrate, and semiconductor device
JP2008038066A (en) * 2006-08-09 2008-02-21 Sumitomo Bakelite Co Ltd Prepreg, substrate and semiconductor device
JP2008195835A (en) * 2007-02-14 2008-08-28 Shin Kobe Electric Mach Co Ltd Manufacturing method for epoxy resin varnish, manufacturing method for pre-preg, and manufacturing method for laminated plate and wiring board
JP2008244189A (en) * 2007-03-28 2008-10-09 Sumitomo Bakelite Co Ltd Circuit board and semiconductor device
JP5370149B2 (en) * 2007-03-30 2013-12-18 住友ベークライト株式会社 Prepreg with carrier and manufacturing method thereof, multilayer printed wiring board, and semiconductor device
JP2013057065A (en) * 2012-09-20 2013-03-28 Sumitomo Bakelite Co Ltd Prepreg, substrate, and semiconductor device
WO2020045112A1 (en) 2018-08-30 2020-03-05 三菱瓦斯化学株式会社 Multilayer body, metal foil-clad laminate, multilayer body with patterned metal foil, multilayer body having buildup structure, printed wiring board, multilayer coreless substrate and method for producing same
KR20210052390A (en) 2018-08-30 2021-05-10 미츠비시 가스 가가쿠 가부시키가이샤 Laminate, metal foil-clad laminate, laminate with patterned metal foil, laminate with build-up structure, printed wiring board, multilayer coreless substrate, and manufacturing method thereof
JPWO2020045112A1 (en) * 2018-08-30 2021-09-09 三菱瓦斯化学株式会社 Laminates, metal foil-clad laminates, patterned metal foil laminates, laminates with build-up structures, printed wiring boards, multilayer coreless substrates, and methods of manufacturing them.
JP7164839B2 (en) 2018-08-30 2022-11-02 三菱瓦斯化学株式会社 Laminate, metal foil-clad laminate, patterned laminate with metal foil, laminate having build-up structure, printed wiring board, multilayer coreless substrate, and manufacturing method thereof
US11877396B2 (en) 2018-08-30 2024-01-16 Mitsubishi Gas Chemical Company, Inc. Laminate, metal foil-clad laminate, laminate having patterned metal foil, laminate having buildup structure, printed wiring board, multilayer coreless substrate, and method for producing same

Similar Documents

Publication Publication Date Title
US6866919B2 (en) Heat-resistant film base-material-inserted B-stage resin composition sheet for lamination and use thereof
EP1097806A2 (en) Copper-clad board, method of making hole in said copper-clad board and printing wiring board comprising said copper-clad board
EP2371536B1 (en) Copper foil with resin
US20040091688A1 (en) Heat-resistant film base-material-inserted B-staged resin composition sheet excellent in adhesion to resin, multilayer board using the sheet and manufacturing process of the multilayer board
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP6335449B2 (en) Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP2003251757A (en) B-stage resin composition sheet having heat resistant film base material for lamination
TWI825152B (en) Laminate, metal foil-clad laminate, patterned metal foil-clad laminate, laminate having build-up structure, printed wiring board, multilayer coreless substrate, and method for manufacturing same
JP2003249751A (en) Method for producing multilayer printed wiring board using additive method
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP4390056B2 (en) B-stage resin composition sheet and method for producing copper-clad laminate using the same
JP2003238772A (en) Curable resin composition and sheet of b-stage resin composition
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2004296601A (en) Method of manufacturing multilayer board employing b stage resin composition sheet containing heat resistant film
JP2003246843A (en) Curable resin composition
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2003258434A (en) B-stage resin composition sheet containing heat-resistant film substrate for additive
JP2003251739A (en) Sheet of b-stage resin composition with metal leaf containing base material for additive
JP2003273522A (en) Method for manufacturing highly reliable and high density multilayer printed circuit board
JP2003298243A (en) Multilayer printed-wiring board
JP2004165255A (en) B stage resin composition sheet filled with heat-resistant film base superior in adhesion to resin
JP2003260755A (en) B-stage resin composition sheet with metallic foil containing heat resisting film base material for lamination
JP2004319888A (en) Multilayer printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Effective date: 20061204

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070216

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A02 Decision of refusal

Effective date: 20070627

Free format text: JAPANESE INTERMEDIATE CODE: A02