JP2004145526A - 位置姿勢検出装置 - Google Patents
位置姿勢検出装置 Download PDFInfo
- Publication number
- JP2004145526A JP2004145526A JP2002308379A JP2002308379A JP2004145526A JP 2004145526 A JP2004145526 A JP 2004145526A JP 2002308379 A JP2002308379 A JP 2002308379A JP 2002308379 A JP2002308379 A JP 2002308379A JP 2004145526 A JP2004145526 A JP 2004145526A
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- frequency
- coil
- signal
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
【課題】同一場所において同時に2台以上使用しても相互干渉しない位置姿勢検出装置を提供する。
【解決手段】送信コイル5に対する受信コイル6の相対位置と姿勢を測定する位置姿勢検出装置において、送信部50は送信周波数を切り替え選択し、受信部60は受信した磁界信号を送信周波数に同期して同期検波し、同期検波出力を積分し、送信周波数を分周した分周サイクルに同期させたタイミングで累積積分値を測定データとして取り込み、送信周波数成分以外の周波数成分を取り除いた信号を受信する位置姿勢検出装置。
【選択図】 図1
【解決手段】送信コイル5に対する受信コイル6の相対位置と姿勢を測定する位置姿勢検出装置において、送信部50は送信周波数を切り替え選択し、受信部60は受信した磁界信号を送信周波数に同期して同期検波し、同期検波出力を積分し、送信周波数を分周した分周サイクルに同期させたタイミングで累積積分値を測定データとして取り込み、送信周波数成分以外の周波数成分を取り除いた信号を受信する位置姿勢検出装置。
【選択図】 図1
Description
【0001】
【産業上の利用分野】
この発明は、位置姿勢検出装置に関し、特に、3軸同心直交コイルより成る送信部から発生する交流磁界を3軸同心直交コイルより成る受信部により受信検出して送信部に対する受信部の相対位置および姿勢を測定する位置姿勢検出装置に関する。
【0002】
【従来の技術】
図7を参照して送信部に対する受信部の相対位置および姿勢を測定する位置姿勢検出装置の従来例を説明する。
図7において、1は発振器、2は送信部マルチプレクサ、3は電流増幅器、4は共振キャパシタ、5は送信コイルであり、これらの部材により送信部50が構成される。送信コイル5は互に直交する3軸X、Y、Zの方向に指向する同心のX方向送信コイル5X、Y方向送信コイル5Y、Z方向送信コイル5Zより成る。6は受信コイル、7は受信部マルチプレクサ、8はプログラマブルゲインアンプ、9は同期検波回路、10はローパスフィルタであり、これらの部材により受信部60が構成される。受信コイル6は、互いに直交する3軸X、Y、Zの方向に指向する同心のX方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Zより成る。12は以上の送信部50および受信部60を制御するマイクロコンピュータである。
【0003】
図7の従来例について、その動作を要約するに、送信コイル5のX方向送信コイル5X、Y方向送信コイル5Y、Z方向送信コイル5Zがそれぞれ送信した交流磁界信号を、受信コイル6のX方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Zが受信し、受信した交流磁界信号強度に基づいて送信コイル5に対する受信コイル6の相対位置を測定し、姿勢を測定する。ここで、送信コイル5および受信コイル6のX方向コイル、Y方向コイル、Z方向コイルは、それぞれ、直交3軸で構成され、送信タイミングおよび受信タイミングを切り替えることにより、9個のパラメータを得ることができる。即ち、1軸送信について、X方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Z から3種のデータが得られ、結局、送信3軸に対して受信3軸であるから合計9個のパラメータが得られることになる。これらの相対関係と、送信コイル5から受信コイル6に到る距離による磁界強度の変化量とに基づいて、送信コイル5に対する受信コイル6の相対位置および姿勢を求めることができる。
【0004】
図7を参照して更に詳細に従来例を説明する。
発振器1は、使用する交流磁界の周波数を決定する基準となるものであり、通常は10KHz近傍の周波数に設定、使用される。
送信部マルチプレクサ2は、送信コイル5の直交3軸のコイルであるX方向送信コイル5X、Y方向送信コイル5Y、Z方向送信コイル5Z を1軸づつ順次に切り替え指定するものである。
電流増幅器3は、発振器1の発振出力信号を増幅し、この増幅した電流信号を共振キャパシタ4を介して送信コイル5に供給するものである。共振キャパシタ4は、送信コイル5のインダクタンスと直列共振させることにより、見掛け上のインダクタンス成分を打ち消し、小さい電流増幅器3の出力電圧で送信コイル5の必要とする電流を流通せしめることに使用される。
【0005】
送信コイル5で発生した交流磁界は、空間を伝播して送信コイル5から数メートル程度の近距離だけ離隔した受信コイル6に到達し、電磁誘導により受信コイル6に交流電圧を誘起する。受信コイル6のX方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Z に誘起した3種の電圧は、受信部マルチプレクサ7により順次に切り替え選択されて、プログラマブルゲインアンプ8に送り込まれる。プログラマブルゲインアンプ8は、マイクロコンピュータ12により受信コイル6が送信コイル5から比較的に近距離である時はゲインが小さく、比較的に遠距離の時はゲインが大きく制御されるアンプであり、送信コイル5と受信コイル6との間の距離により変化する受信コイル6の感度の変化を補正する役割を果たすアンプである。
【0006】
同期検波回路9は、プログラマブルゲインアンプ8の信号を発振器1の信号で検波することにより直流成分を発生し、これを受信した磁界の強さと、送信コイル5と受信コイル6の間の距離を示す極性とを示す信号として出力する回路である。
図8は同期検波回路9の出力波形を示す。この図8は、プログラマブルゲインアンプ8の出力電圧は、同期検波回路9において、その検波信号である発振器1の発振出力がHiの場合は×1倍され、Loの場合は×(−1)倍されて、脈流である直流成分として出力されることを示している。また、同期検波の特徴として検波信号以外の周波数の入力に対してバンドパスフィルタの機能を示し、この結果、ノイズを除去する作用をすることが知られている。
【0007】
ローパスフィルタ10は同期検波回路9から出力された脈流である直流成分を平均化し、平坦な直流電圧にする。
A/Dコンバータ11はローパスフィルタ10から出力される信号をディジタル信号に変換し、これをマイクロコンピュータ12に送り込む。
マイクロコンピュータ12は、送信部マルチプレクサ2および受信部マルチプレクサ7の切り替えタイミング、プログラマブルゲインアンプ8の制御、およびこれに対応したA/Dコンバータ11の制御を実行し、A/Dコンバータ11のデータに基づいて送信部50の送信コイル5に対する受信部60の受信コイル6の相対位置および姿勢を示す角度を計算して出力する。
【0008】
【特許文献1】
特開平7−93083号公報
【0009】
【発明が解決しようとする課題】
以上の位置姿勢検出装置の従来例を同一場所で2台同時に使用する場合について、図9を参照して説明する。この2台の位置姿勢検出装置は同一設計の同一装置であるものとする。図9は図7において1台目の位置姿勢検出装置に、2台目の位置姿勢検出装置の送信コイル5Bが接近した場合を示す。この場合、受信コイル6には送信コイル5から送信される交流磁界と、2台目の位置姿勢検出装置の送信コイル5Bから送信される交流磁界の双方が入力されることになる。1台目の位置姿勢検出装置と2台目の位置姿勢検出装置は、上述した通り、同一設計の同一装置であるところから使用周波数は同一であり、受信コイル6の出力を同期検波回路9により同期検波処理しても、先の同期検波のバンドパスフィルタ機能は働かないので、同期検波回路9からは単純にこの2つの信号を合成した出力が送り出されるに過ぎず、目的としている送信コイル5から送信する信号を受信コイル6で受信して送信コイル5に対する受信コイル6の距離と角度を得ることはできない。結局、同一設計の同一の位置姿勢検出装置を同一場所において2台以上運用することはできない。
【0010】
ところで、2種類或いはそれ以上の交流磁界の周波数成分の内から目的の周波数成分の交流磁界を取り出す場合、一般に、目的の周波数成分のみを通過させる急峻なバンドパスフィルタを使用することが行われる。即ち、図7の従来例を例にとれば、この急峻なバンドパスフィルタをプログラマブルゲインアンプ8と同期検波回路9との間に挿入する。しかし、混在する交流磁界の周波数成分が10KHzと11KHzの如く極く接近している場合、この分離をすることができる程に急峻なバンドパスフィルタを設計することは極めて困難である。
【0011】
以上の如く、2種類或いはそれ以上の交流磁界の周波数成分が混在する場合、外来信号に対して運用する交流磁界の周波数を切り替えることにより混信を回避する従来例が知られている(特許文献1 参照)。しかし、この従来例は、外来信号に対して充分に離れた周波数に切り替える必要のあるものであり、そして、平面状の位置を求めるのが目的で、送信と受信の位置が近距離であるという条件に対して有効ではあるが、送信コイルに対して遠距離にある受信コイルの受信感度の誤差がそのまま位置と姿勢の測定誤差となる様な場合に使用することができない。
この発明は、同一場所において同時に2台以上使用しても相互干渉しない上述の問題を解消した位置姿勢検出装置を提供するものである。
【0012】
【課題を解決するための手段】
請求項1:送信部50から送信コイルを介して予め設定された送信周波数で磁界信号を送信し、送信された磁界信号を受信部60で受信し、送信コイル5に対する受信コイル6の相対位置と姿勢を測定する位置姿勢検出装置において、送信部は複数の送信周波数を切り替え選択し、受信部60は受信した信号を送信周波数に同期して同期検波し、同期検波出力を積分し、送信周波数を分周した分周サイクルに同期させたタイミングで累積積分値を測定データとして取り込み、送信周波数成分以外の周波数成分を取り除いた信号を受信する位置姿勢検出装置を構成した。
【0013】
そして、請求項2:請求項1に記載される位置姿勢検出装置において、発振器1A、1Bから出力される複数の送信周波数のそれぞれに対応する分周器14A、14Bを具備し、受信した信号を送信周波数に同期して検波する同期検波回路9を具備し、同期検波出力を積分してその累積積分値を求める積分回路15およびサンプルホールド回路16を具備し、積分器15のリセット時刻を決定するリセット信号を発生し、サンプルホールド回路16のサンプルおよびホールド時間を決定する信号を発生するタイミング発生回路13を具備し、マイクロコンピュータ12により制御されて、複数の送信周波数を切り替え選択し、送信部、同期検波回路9、およびタイミング発生回路13に接続されると共に対応する分周周波数をタイミング発生回路13に供給する送信周波数設定部70を具備する位置姿勢検出装置を構成した。
【0014】
また、請求項3:請求項2に記載される位置姿勢検出装置において、送信周波数設定部70は更に切り替えスイッチ173を有し、切り替えスイッチ173を介して共振用キャパシタ4を送信コイル5に直列接続した位置姿勢検出装置を構成した。
更に、請求項4:請求項1ないし請求項3の内の何れかに記載される位置姿勢検出装置において、送信部50から磁界信号を送信することを停止した状態において累積積分値を測定し、測定した磁気ノイズレベルと予め設定された判定値とを比較して、磁気ノイズレベルの低い送信周波数を発振器1A、1Bを切り替えて選定する位置姿勢検出装置を構成した。
【0015】
【発明の実施の形態】
この発明の実施の形態を図1の実施例を参照して説明する。
図7の従来例においては発振器1は1個であったが、実施例においては2系統の発振器1Aおよび発振器1Bの2個を具備する。これら複数の発振器のそれぞれには対応する分周器14A、14Bが接続せしめられている。共振用キャパシタ4も、これら共振器に対応して切り替え接続される共振用キャパシタ4Aおよび共振用キャパシタ4Bの2個を具備する。この切り替えはマイクロコンピュータ12により実行される。そして、先の従来例のローパスフィルタ10を、積分器15およびサンプルホールド回路16に置換している。
【0016】
ここで、マイクロコンピュータ12から出力される点線で示される送信周波数切り替え信号71が、図示される通りのA系統側に切り替える信号である場合について説明する。
発振器1Aから発振出力された信号は、送信部マルチプレクサ2を介して電流増幅器3に入力して増幅され、共振用キャパシタ4Aを介して送信コイル5に供給される。送信コイル5に直列に挿入される共振用キャパシタ4Aは、運用する系統Aの周波数に対応して送信コイル5のインダクタンスと共振する値に設定しておく。
【0017】
送信コイル5により発生送信した交流磁界は、空間を伝播して受信コイル6に到達する。受信コイル6が受信した信号は、受信部マルチプレクサ7により順次に切り替え選択されて、プログラマブルゲインアンプ8、同期検波回路9を介して積分器15に送り込まれる。信号は積分器15でタイミング発生回路13により決められた時間だけ積分された後、積分電圧はサンプルホールド信号SHでサンプルホールド回路16に保持される。保持された積分電圧はA/Dコンバータ11によりディジタル変換され、マイクロコンピュータ12に供給される。これについては、後で図2を参照して更に具体的に説明される。
【0018】
マイクロコンピュータ12は、送信コイル5の発生送信する交流磁界の周波数の切り替え制御、送信部マルチプレクサ2および受信部マルチプレクサ7の切り替えタイミングの制御、プログラマブルゲインアンプ8の制御、これに対応したA/Dコンバータ11の制御を実行し、A/Dコンバータ11の出力信号に基づいて、送信コイル5に対する受信部60の受信コイル6の相対位置および姿勢を示す角度を計算して出力する。
図2を参照するに、これはタイミング発生回路13、積分器15、サンプルホールド回路16の動作を説明する図である。
【0019】
積分器15の時定数は抵抗RおよびキャパシタC1により決定する。S1は積分器15のリセットスイッチである。C2は積分器15の出力を保持するホールドキャパシタである。キャパシタC2に保持記憶された電圧はバッファアンプ161を介してA/Dコンバータ11に送り込まれる。タイミング発生回路13は、積分器15のリセット時刻を決定するリセット信号を発生し、サンプルホールド回路16のサンプルおよびホールド時間を決定する信号を発生する論理回路である。サンプルホールド回路16に供給されるタイミング発生の入力信号は、発振器1A或いは発振器1Bから発生され、これを分周器14A或は分周器14Bにより分周して発生される。積分器15のリセットはリセット信号の微小時間で実行され、積分電圧は積分時間の最終の1サイクルでサンプルホールド回路16のホールドスイッチS2を介してホールドキャパシタC2に保持される。
【0020】
ここで、更に図2を参照して発振器1Aと分周器14A、および発振器1Bと分周器14Bの関係について説明する。先ず、1回の積分時間内の発振器1の出力のサイクル数、即ち、送信コイル5から送信されるサイクル数を以下の通りに設定する。
1回の積分時間をT、発振器1Aの周波数をFA、分周器14Aの分周比をNA、発振器1Bの周波数をFB、分周器14Bの分周比をNBとした時、
FA×T=NA、 FB×T=NB・・・・・・・・・・・・式(1)
を満足する各周波数および分周比を決定する。ここで、分周器14Aおよび分周器14Bはカウンター回路であるので、NAおよびNBは整数である。一例として、T=1msec、NA=10、NB=11とすれば、式(1)より、FAおよびFBは
FA=NA/T=10/0.001=10KHz
FB=NB/T=11/0.001=11KHz
と決定される。
【0021】
図3を参照するに、これは送信周波数10KHzで通常状態におけるプログラマブルゲインアンプ8を介して供給される受信信号入力の波形と、この受信信号入力を同期検波回路9で検波して積分器15で積分した結果の波形を示す。積分器15は、送信クロック10回分の時間に亘って動作し、この最後の値がサンプルホールド回路16に送られる。
ところで、送信周波数10KHzで動作中の以上の装置の受信コイル6に、同じく送信周波数10KHzで動作している2台目の装置の送信コイル5Bが接近した場合を想定すると、従来例と同様に混信して目的の3軸の位置と角度を得ることはできない。この場合、自身の装置を10KHzの発振周波数で動作させることを停止して、発振周波数を11KHzに変更して動作させる。
【0022】
発振周波数を11KHzに変更して装置を動作させると、当然に同期検波回路9の検波周波数は11KHzになるところから、2台目の送信コイル5Bから受信コイル6に入力される10KHzの信号については11KHzで検波することにする。上述した通り、発振器1の周波数を変えても1回の積分時間はT=1msecと一定に設定してあるので、このTの間に入力される送信コイルの5Bから送信される10KHz成分のサイクル数は変わらず10サイクルとなる。この場合の積分器15の出力は図4に示される如くになる。同期検波回路9に10KHzの信号成分が入力されているにも関わらず、積分器15の出力は11サイクル目で丁度ゼロになることがわかる。
【0023】
以上の逆の場合、即ち、発振周波数10KHzで動作中の装置に11KHzの信号を入力した場合について計算してみる。図5を参照するに、先の場合と同様に、11KHz成分が入力されているにも関わらず、積分器の出力は10サイクル目で丁度ゼロになることがわかる。即ち、単純な式(1)で示した条件を満足する発振器1の発振周波数と分周器14の分周比の2条件を設定するという極く簡単な構成を採用することにより、同一設計の複数の同一の装置を同一場所において同時に運用することができるに到る。
【0024】
次に、図1の実施例における二つの周波数をソフトウェアを使用して自動的に変更設定する方法を図6の周波数選択フローチャートを参照して説明する。
(S0) 先ず、この装置に電源電圧を印加してマイクロコンピュータ12を立ち上げ、周波数選択を開始する。
(S1) 送信部マルチプレクサ2をOFFに設定し、送信コイル5に対する交流磁界励振を停止する。
(S2) 送信周波数設定部70を発振器A側に切り替え、受信コイル6により受信した周波数A側の信号を検波する。
【0025】
(S3) 発振周波数Aの受信信号レベルが、判定値以下であるか否かを比較する。
(S4) (S3)においてyesの場合、即ち、発振器Aの発振周波数の雑音信号は存在しないと判定した場合は発振器A側状態を設定する周波数切り替え信号71を発生し、この状態を設定する。
(S5) 送信部マルチプレクサ2のOFF状態を解除し、発振器A側で送信コイル5の交流磁界励振状態に入り、周波数選択は終了する。
【0026】
(S6) (S3)においてnoの場合、発振周波数設定部70を発振器B側に切り替え、受信コイル6により受信した信号を周波数B側で検波する。
(S7) 発振周波数Bの受信信号レベルが、判定値以下であるか否かを比較する。
(S8) (S7)においてyesの場合、即ち、発振器Bの発振周波数の雑音信号は存在しないと判定した場合は周波数切り替え信号Bを発生し、発振器B側状態を設定する。次いで、(S5)に移行する。
【0027】
(S9) (S7)においてnoの場合、発振周波数Aの受信信号レベルが発振周波数Bの受信信号レベル以下か否かを比較する。
(S10) (S9)においてyesの場合、雑音信号レベルの低い方の発振器A側状態を設定する。
(S11) 現在の場所では測定精度低下の警告を発生する。次いで、(S5)に移行する。
(S12) (S9)においてnoの場合、雑音信号レベルの低い方の発振器B側状態を設定する。次いで、(S11)に移行する。
【0028】
図6のフローチャートにおいて、受信信号レベルは、A/Dコンバータ11における受信コイル6X、6Y、6Zの出力電圧V6X,V6Y,V6Zの合成値として√(V6X 2 +V6Y 2 +V6Z 2 )により計算することができる。そして、判定値としては環境のノイズレベル以上の適切な値を設定する。また、発振周波数が発振器1A側、1B側の何れの場合も、判定値を超過する場合は、受信信号レベルの低い方の発振器を選択すると共に、現在の場所では測定精度が低下する恐れのあることをを外部に通知する。これに基づいて、位置姿勢検出装置の使用者は使用する場所を移動させることができる。
【0029】
【発明の効果】
上述した通りであって、この発明によれば、送信された磁界信号を受信部で受信して送信部に対する受信部の相対位置と姿勢を測定する位置姿勢検出装置において、複数の発振器を送信部に切り替え接続して複数の発振周波数を切り替え選択し、受信部は受信した信号を送信部の発振周波数に同期して検波し、同期検波出力を積分してその累積積分値を求めて、これを送信部の発振周波数を分周した分周サイクルに同期させた取り込みタイミングで測定データとして取り込む構成を採用することにより、発振周波数成分以外の周波数成分を取り除いた信号を受信する位置姿勢検出装置を提供することができた。
【0030】
即ち、通常は一方の位置角度測定器が使用している磁界をこれ以外の位置角度測定器も受信相互干渉して双方の位置角度測定器が使用不能状態に立ち到る。ところが、この発明によれば、発振器の発振周波数と分周器の分周比を適正に設定するという極く簡単な構成を採用することにより、同一設計の複数の同一の装置を同一場所において同時に運用することができる相互干渉をしない位置姿勢検出装置を構成することができる。混在する交流磁界の周波数成分が接近している場合においても、容易にその分離を達成することができる。そして、ノイズ成分、および発振周波数のみ異なる同一装置から送信された成分が取り除かれた安定したデータが得られ、これに基づいて送信部に対する受信部の相対位置と姿勢を正確に測定することができる。
【図面の簡単な説明】
【図1】実施例を説明する図。
【図2】タイミング発生回路、積分器、サンプルホールド回路の動作を説明する図。
【図3】送信周波数10KHzで動作中の積分器の出力波形を示す図。
【図4】送信周波数11KHzで動作中に10KHzの信号が入力された場合の積分器の出力波形を示す図。
【図5】送信周波数10KHzで動作中に11KHzの信号が入力された場合の積分器の出力波形を示す図。
【図6】周波数選択フローチャート。
【図7】従来例を説明する図。
【図8】同期検波回路の出力波形を示す図。
【図9】位置姿勢検出装置に2台目の位置姿勢検出装置の送信コイルが接近した場合を説明する図。
【符号の説明】
1 発振器 1A 発振器
1B 発振器 2 送信部マルチプレクサ
3 電流増幅器 4A 共振キャパシタ
4B 共振キャパシタ 5 送信コイル
6 受信コイル 7 受信部マルチプレクサ
8 プログラマブルゲインアンプ 9 同期検波回路
10 ローパスフィルタ 11 A/Dコンバータ
12 マイクロコンピュータ 13 タイミング発生回路
14A 分周器 14B 分周器
15 積分器 16 サンプルホールド回路
50 送信部 60 受信部
70 送信周波数設定部 161 バッファアンプ
【産業上の利用分野】
この発明は、位置姿勢検出装置に関し、特に、3軸同心直交コイルより成る送信部から発生する交流磁界を3軸同心直交コイルより成る受信部により受信検出して送信部に対する受信部の相対位置および姿勢を測定する位置姿勢検出装置に関する。
【0002】
【従来の技術】
図7を参照して送信部に対する受信部の相対位置および姿勢を測定する位置姿勢検出装置の従来例を説明する。
図7において、1は発振器、2は送信部マルチプレクサ、3は電流増幅器、4は共振キャパシタ、5は送信コイルであり、これらの部材により送信部50が構成される。送信コイル5は互に直交する3軸X、Y、Zの方向に指向する同心のX方向送信コイル5X、Y方向送信コイル5Y、Z方向送信コイル5Zより成る。6は受信コイル、7は受信部マルチプレクサ、8はプログラマブルゲインアンプ、9は同期検波回路、10はローパスフィルタであり、これらの部材により受信部60が構成される。受信コイル6は、互いに直交する3軸X、Y、Zの方向に指向する同心のX方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Zより成る。12は以上の送信部50および受信部60を制御するマイクロコンピュータである。
【0003】
図7の従来例について、その動作を要約するに、送信コイル5のX方向送信コイル5X、Y方向送信コイル5Y、Z方向送信コイル5Zがそれぞれ送信した交流磁界信号を、受信コイル6のX方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Zが受信し、受信した交流磁界信号強度に基づいて送信コイル5に対する受信コイル6の相対位置を測定し、姿勢を測定する。ここで、送信コイル5および受信コイル6のX方向コイル、Y方向コイル、Z方向コイルは、それぞれ、直交3軸で構成され、送信タイミングおよび受信タイミングを切り替えることにより、9個のパラメータを得ることができる。即ち、1軸送信について、X方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Z から3種のデータが得られ、結局、送信3軸に対して受信3軸であるから合計9個のパラメータが得られることになる。これらの相対関係と、送信コイル5から受信コイル6に到る距離による磁界強度の変化量とに基づいて、送信コイル5に対する受信コイル6の相対位置および姿勢を求めることができる。
【0004】
図7を参照して更に詳細に従来例を説明する。
発振器1は、使用する交流磁界の周波数を決定する基準となるものであり、通常は10KHz近傍の周波数に設定、使用される。
送信部マルチプレクサ2は、送信コイル5の直交3軸のコイルであるX方向送信コイル5X、Y方向送信コイル5Y、Z方向送信コイル5Z を1軸づつ順次に切り替え指定するものである。
電流増幅器3は、発振器1の発振出力信号を増幅し、この増幅した電流信号を共振キャパシタ4を介して送信コイル5に供給するものである。共振キャパシタ4は、送信コイル5のインダクタンスと直列共振させることにより、見掛け上のインダクタンス成分を打ち消し、小さい電流増幅器3の出力電圧で送信コイル5の必要とする電流を流通せしめることに使用される。
【0005】
送信コイル5で発生した交流磁界は、空間を伝播して送信コイル5から数メートル程度の近距離だけ離隔した受信コイル6に到達し、電磁誘導により受信コイル6に交流電圧を誘起する。受信コイル6のX方向受信コイル6X、Y方向受信コイル6Y、Z方向受信コイル6Z に誘起した3種の電圧は、受信部マルチプレクサ7により順次に切り替え選択されて、プログラマブルゲインアンプ8に送り込まれる。プログラマブルゲインアンプ8は、マイクロコンピュータ12により受信コイル6が送信コイル5から比較的に近距離である時はゲインが小さく、比較的に遠距離の時はゲインが大きく制御されるアンプであり、送信コイル5と受信コイル6との間の距離により変化する受信コイル6の感度の変化を補正する役割を果たすアンプである。
【0006】
同期検波回路9は、プログラマブルゲインアンプ8の信号を発振器1の信号で検波することにより直流成分を発生し、これを受信した磁界の強さと、送信コイル5と受信コイル6の間の距離を示す極性とを示す信号として出力する回路である。
図8は同期検波回路9の出力波形を示す。この図8は、プログラマブルゲインアンプ8の出力電圧は、同期検波回路9において、その検波信号である発振器1の発振出力がHiの場合は×1倍され、Loの場合は×(−1)倍されて、脈流である直流成分として出力されることを示している。また、同期検波の特徴として検波信号以外の周波数の入力に対してバンドパスフィルタの機能を示し、この結果、ノイズを除去する作用をすることが知られている。
【0007】
ローパスフィルタ10は同期検波回路9から出力された脈流である直流成分を平均化し、平坦な直流電圧にする。
A/Dコンバータ11はローパスフィルタ10から出力される信号をディジタル信号に変換し、これをマイクロコンピュータ12に送り込む。
マイクロコンピュータ12は、送信部マルチプレクサ2および受信部マルチプレクサ7の切り替えタイミング、プログラマブルゲインアンプ8の制御、およびこれに対応したA/Dコンバータ11の制御を実行し、A/Dコンバータ11のデータに基づいて送信部50の送信コイル5に対する受信部60の受信コイル6の相対位置および姿勢を示す角度を計算して出力する。
【0008】
【特許文献1】
特開平7−93083号公報
【0009】
【発明が解決しようとする課題】
以上の位置姿勢検出装置の従来例を同一場所で2台同時に使用する場合について、図9を参照して説明する。この2台の位置姿勢検出装置は同一設計の同一装置であるものとする。図9は図7において1台目の位置姿勢検出装置に、2台目の位置姿勢検出装置の送信コイル5Bが接近した場合を示す。この場合、受信コイル6には送信コイル5から送信される交流磁界と、2台目の位置姿勢検出装置の送信コイル5Bから送信される交流磁界の双方が入力されることになる。1台目の位置姿勢検出装置と2台目の位置姿勢検出装置は、上述した通り、同一設計の同一装置であるところから使用周波数は同一であり、受信コイル6の出力を同期検波回路9により同期検波処理しても、先の同期検波のバンドパスフィルタ機能は働かないので、同期検波回路9からは単純にこの2つの信号を合成した出力が送り出されるに過ぎず、目的としている送信コイル5から送信する信号を受信コイル6で受信して送信コイル5に対する受信コイル6の距離と角度を得ることはできない。結局、同一設計の同一の位置姿勢検出装置を同一場所において2台以上運用することはできない。
【0010】
ところで、2種類或いはそれ以上の交流磁界の周波数成分の内から目的の周波数成分の交流磁界を取り出す場合、一般に、目的の周波数成分のみを通過させる急峻なバンドパスフィルタを使用することが行われる。即ち、図7の従来例を例にとれば、この急峻なバンドパスフィルタをプログラマブルゲインアンプ8と同期検波回路9との間に挿入する。しかし、混在する交流磁界の周波数成分が10KHzと11KHzの如く極く接近している場合、この分離をすることができる程に急峻なバンドパスフィルタを設計することは極めて困難である。
【0011】
以上の如く、2種類或いはそれ以上の交流磁界の周波数成分が混在する場合、外来信号に対して運用する交流磁界の周波数を切り替えることにより混信を回避する従来例が知られている(特許文献1 参照)。しかし、この従来例は、外来信号に対して充分に離れた周波数に切り替える必要のあるものであり、そして、平面状の位置を求めるのが目的で、送信と受信の位置が近距離であるという条件に対して有効ではあるが、送信コイルに対して遠距離にある受信コイルの受信感度の誤差がそのまま位置と姿勢の測定誤差となる様な場合に使用することができない。
この発明は、同一場所において同時に2台以上使用しても相互干渉しない上述の問題を解消した位置姿勢検出装置を提供するものである。
【0012】
【課題を解決するための手段】
請求項1:送信部50から送信コイルを介して予め設定された送信周波数で磁界信号を送信し、送信された磁界信号を受信部60で受信し、送信コイル5に対する受信コイル6の相対位置と姿勢を測定する位置姿勢検出装置において、送信部は複数の送信周波数を切り替え選択し、受信部60は受信した信号を送信周波数に同期して同期検波し、同期検波出力を積分し、送信周波数を分周した分周サイクルに同期させたタイミングで累積積分値を測定データとして取り込み、送信周波数成分以外の周波数成分を取り除いた信号を受信する位置姿勢検出装置を構成した。
【0013】
そして、請求項2:請求項1に記載される位置姿勢検出装置において、発振器1A、1Bから出力される複数の送信周波数のそれぞれに対応する分周器14A、14Bを具備し、受信した信号を送信周波数に同期して検波する同期検波回路9を具備し、同期検波出力を積分してその累積積分値を求める積分回路15およびサンプルホールド回路16を具備し、積分器15のリセット時刻を決定するリセット信号を発生し、サンプルホールド回路16のサンプルおよびホールド時間を決定する信号を発生するタイミング発生回路13を具備し、マイクロコンピュータ12により制御されて、複数の送信周波数を切り替え選択し、送信部、同期検波回路9、およびタイミング発生回路13に接続されると共に対応する分周周波数をタイミング発生回路13に供給する送信周波数設定部70を具備する位置姿勢検出装置を構成した。
【0014】
また、請求項3:請求項2に記載される位置姿勢検出装置において、送信周波数設定部70は更に切り替えスイッチ173を有し、切り替えスイッチ173を介して共振用キャパシタ4を送信コイル5に直列接続した位置姿勢検出装置を構成した。
更に、請求項4:請求項1ないし請求項3の内の何れかに記載される位置姿勢検出装置において、送信部50から磁界信号を送信することを停止した状態において累積積分値を測定し、測定した磁気ノイズレベルと予め設定された判定値とを比較して、磁気ノイズレベルの低い送信周波数を発振器1A、1Bを切り替えて選定する位置姿勢検出装置を構成した。
【0015】
【発明の実施の形態】
この発明の実施の形態を図1の実施例を参照して説明する。
図7の従来例においては発振器1は1個であったが、実施例においては2系統の発振器1Aおよび発振器1Bの2個を具備する。これら複数の発振器のそれぞれには対応する分周器14A、14Bが接続せしめられている。共振用キャパシタ4も、これら共振器に対応して切り替え接続される共振用キャパシタ4Aおよび共振用キャパシタ4Bの2個を具備する。この切り替えはマイクロコンピュータ12により実行される。そして、先の従来例のローパスフィルタ10を、積分器15およびサンプルホールド回路16に置換している。
【0016】
ここで、マイクロコンピュータ12から出力される点線で示される送信周波数切り替え信号71が、図示される通りのA系統側に切り替える信号である場合について説明する。
発振器1Aから発振出力された信号は、送信部マルチプレクサ2を介して電流増幅器3に入力して増幅され、共振用キャパシタ4Aを介して送信コイル5に供給される。送信コイル5に直列に挿入される共振用キャパシタ4Aは、運用する系統Aの周波数に対応して送信コイル5のインダクタンスと共振する値に設定しておく。
【0017】
送信コイル5により発生送信した交流磁界は、空間を伝播して受信コイル6に到達する。受信コイル6が受信した信号は、受信部マルチプレクサ7により順次に切り替え選択されて、プログラマブルゲインアンプ8、同期検波回路9を介して積分器15に送り込まれる。信号は積分器15でタイミング発生回路13により決められた時間だけ積分された後、積分電圧はサンプルホールド信号SHでサンプルホールド回路16に保持される。保持された積分電圧はA/Dコンバータ11によりディジタル変換され、マイクロコンピュータ12に供給される。これについては、後で図2を参照して更に具体的に説明される。
【0018】
マイクロコンピュータ12は、送信コイル5の発生送信する交流磁界の周波数の切り替え制御、送信部マルチプレクサ2および受信部マルチプレクサ7の切り替えタイミングの制御、プログラマブルゲインアンプ8の制御、これに対応したA/Dコンバータ11の制御を実行し、A/Dコンバータ11の出力信号に基づいて、送信コイル5に対する受信部60の受信コイル6の相対位置および姿勢を示す角度を計算して出力する。
図2を参照するに、これはタイミング発生回路13、積分器15、サンプルホールド回路16の動作を説明する図である。
【0019】
積分器15の時定数は抵抗RおよびキャパシタC1により決定する。S1は積分器15のリセットスイッチである。C2は積分器15の出力を保持するホールドキャパシタである。キャパシタC2に保持記憶された電圧はバッファアンプ161を介してA/Dコンバータ11に送り込まれる。タイミング発生回路13は、積分器15のリセット時刻を決定するリセット信号を発生し、サンプルホールド回路16のサンプルおよびホールド時間を決定する信号を発生する論理回路である。サンプルホールド回路16に供給されるタイミング発生の入力信号は、発振器1A或いは発振器1Bから発生され、これを分周器14A或は分周器14Bにより分周して発生される。積分器15のリセットはリセット信号の微小時間で実行され、積分電圧は積分時間の最終の1サイクルでサンプルホールド回路16のホールドスイッチS2を介してホールドキャパシタC2に保持される。
【0020】
ここで、更に図2を参照して発振器1Aと分周器14A、および発振器1Bと分周器14Bの関係について説明する。先ず、1回の積分時間内の発振器1の出力のサイクル数、即ち、送信コイル5から送信されるサイクル数を以下の通りに設定する。
1回の積分時間をT、発振器1Aの周波数をFA、分周器14Aの分周比をNA、発振器1Bの周波数をFB、分周器14Bの分周比をNBとした時、
FA×T=NA、 FB×T=NB・・・・・・・・・・・・式(1)
を満足する各周波数および分周比を決定する。ここで、分周器14Aおよび分周器14Bはカウンター回路であるので、NAおよびNBは整数である。一例として、T=1msec、NA=10、NB=11とすれば、式(1)より、FAおよびFBは
FA=NA/T=10/0.001=10KHz
FB=NB/T=11/0.001=11KHz
と決定される。
【0021】
図3を参照するに、これは送信周波数10KHzで通常状態におけるプログラマブルゲインアンプ8を介して供給される受信信号入力の波形と、この受信信号入力を同期検波回路9で検波して積分器15で積分した結果の波形を示す。積分器15は、送信クロック10回分の時間に亘って動作し、この最後の値がサンプルホールド回路16に送られる。
ところで、送信周波数10KHzで動作中の以上の装置の受信コイル6に、同じく送信周波数10KHzで動作している2台目の装置の送信コイル5Bが接近した場合を想定すると、従来例と同様に混信して目的の3軸の位置と角度を得ることはできない。この場合、自身の装置を10KHzの発振周波数で動作させることを停止して、発振周波数を11KHzに変更して動作させる。
【0022】
発振周波数を11KHzに変更して装置を動作させると、当然に同期検波回路9の検波周波数は11KHzになるところから、2台目の送信コイル5Bから受信コイル6に入力される10KHzの信号については11KHzで検波することにする。上述した通り、発振器1の周波数を変えても1回の積分時間はT=1msecと一定に設定してあるので、このTの間に入力される送信コイルの5Bから送信される10KHz成分のサイクル数は変わらず10サイクルとなる。この場合の積分器15の出力は図4に示される如くになる。同期検波回路9に10KHzの信号成分が入力されているにも関わらず、積分器15の出力は11サイクル目で丁度ゼロになることがわかる。
【0023】
以上の逆の場合、即ち、発振周波数10KHzで動作中の装置に11KHzの信号を入力した場合について計算してみる。図5を参照するに、先の場合と同様に、11KHz成分が入力されているにも関わらず、積分器の出力は10サイクル目で丁度ゼロになることがわかる。即ち、単純な式(1)で示した条件を満足する発振器1の発振周波数と分周器14の分周比の2条件を設定するという極く簡単な構成を採用することにより、同一設計の複数の同一の装置を同一場所において同時に運用することができるに到る。
【0024】
次に、図1の実施例における二つの周波数をソフトウェアを使用して自動的に変更設定する方法を図6の周波数選択フローチャートを参照して説明する。
(S0) 先ず、この装置に電源電圧を印加してマイクロコンピュータ12を立ち上げ、周波数選択を開始する。
(S1) 送信部マルチプレクサ2をOFFに設定し、送信コイル5に対する交流磁界励振を停止する。
(S2) 送信周波数設定部70を発振器A側に切り替え、受信コイル6により受信した周波数A側の信号を検波する。
【0025】
(S3) 発振周波数Aの受信信号レベルが、判定値以下であるか否かを比較する。
(S4) (S3)においてyesの場合、即ち、発振器Aの発振周波数の雑音信号は存在しないと判定した場合は発振器A側状態を設定する周波数切り替え信号71を発生し、この状態を設定する。
(S5) 送信部マルチプレクサ2のOFF状態を解除し、発振器A側で送信コイル5の交流磁界励振状態に入り、周波数選択は終了する。
【0026】
(S6) (S3)においてnoの場合、発振周波数設定部70を発振器B側に切り替え、受信コイル6により受信した信号を周波数B側で検波する。
(S7) 発振周波数Bの受信信号レベルが、判定値以下であるか否かを比較する。
(S8) (S7)においてyesの場合、即ち、発振器Bの発振周波数の雑音信号は存在しないと判定した場合は周波数切り替え信号Bを発生し、発振器B側状態を設定する。次いで、(S5)に移行する。
【0027】
(S9) (S7)においてnoの場合、発振周波数Aの受信信号レベルが発振周波数Bの受信信号レベル以下か否かを比較する。
(S10) (S9)においてyesの場合、雑音信号レベルの低い方の発振器A側状態を設定する。
(S11) 現在の場所では測定精度低下の警告を発生する。次いで、(S5)に移行する。
(S12) (S9)においてnoの場合、雑音信号レベルの低い方の発振器B側状態を設定する。次いで、(S11)に移行する。
【0028】
図6のフローチャートにおいて、受信信号レベルは、A/Dコンバータ11における受信コイル6X、6Y、6Zの出力電圧V6X,V6Y,V6Zの合成値として√(V6X 2 +V6Y 2 +V6Z 2 )により計算することができる。そして、判定値としては環境のノイズレベル以上の適切な値を設定する。また、発振周波数が発振器1A側、1B側の何れの場合も、判定値を超過する場合は、受信信号レベルの低い方の発振器を選択すると共に、現在の場所では測定精度が低下する恐れのあることをを外部に通知する。これに基づいて、位置姿勢検出装置の使用者は使用する場所を移動させることができる。
【0029】
【発明の効果】
上述した通りであって、この発明によれば、送信された磁界信号を受信部で受信して送信部に対する受信部の相対位置と姿勢を測定する位置姿勢検出装置において、複数の発振器を送信部に切り替え接続して複数の発振周波数を切り替え選択し、受信部は受信した信号を送信部の発振周波数に同期して検波し、同期検波出力を積分してその累積積分値を求めて、これを送信部の発振周波数を分周した分周サイクルに同期させた取り込みタイミングで測定データとして取り込む構成を採用することにより、発振周波数成分以外の周波数成分を取り除いた信号を受信する位置姿勢検出装置を提供することができた。
【0030】
即ち、通常は一方の位置角度測定器が使用している磁界をこれ以外の位置角度測定器も受信相互干渉して双方の位置角度測定器が使用不能状態に立ち到る。ところが、この発明によれば、発振器の発振周波数と分周器の分周比を適正に設定するという極く簡単な構成を採用することにより、同一設計の複数の同一の装置を同一場所において同時に運用することができる相互干渉をしない位置姿勢検出装置を構成することができる。混在する交流磁界の周波数成分が接近している場合においても、容易にその分離を達成することができる。そして、ノイズ成分、および発振周波数のみ異なる同一装置から送信された成分が取り除かれた安定したデータが得られ、これに基づいて送信部に対する受信部の相対位置と姿勢を正確に測定することができる。
【図面の簡単な説明】
【図1】実施例を説明する図。
【図2】タイミング発生回路、積分器、サンプルホールド回路の動作を説明する図。
【図3】送信周波数10KHzで動作中の積分器の出力波形を示す図。
【図4】送信周波数11KHzで動作中に10KHzの信号が入力された場合の積分器の出力波形を示す図。
【図5】送信周波数10KHzで動作中に11KHzの信号が入力された場合の積分器の出力波形を示す図。
【図6】周波数選択フローチャート。
【図7】従来例を説明する図。
【図8】同期検波回路の出力波形を示す図。
【図9】位置姿勢検出装置に2台目の位置姿勢検出装置の送信コイルが接近した場合を説明する図。
【符号の説明】
1 発振器 1A 発振器
1B 発振器 2 送信部マルチプレクサ
3 電流増幅器 4A 共振キャパシタ
4B 共振キャパシタ 5 送信コイル
6 受信コイル 7 受信部マルチプレクサ
8 プログラマブルゲインアンプ 9 同期検波回路
10 ローパスフィルタ 11 A/Dコンバータ
12 マイクロコンピュータ 13 タイミング発生回路
14A 分周器 14B 分周器
15 積分器 16 サンプルホールド回路
50 送信部 60 受信部
70 送信周波数設定部 161 バッファアンプ
Claims (4)
- 送信部から送信コイルを介して予め設定された送信周波数で磁界信号を送信し、送信された磁界信号を受信部で受信し、送信コイルに対する受信コイルの相対位置と姿勢を測定する位置姿勢検出装置において、
送信部は複数の送信周波数を切り替え選択し、
受信部は受信した信号を送信周波数に同期して同期検波し、同期検波出力を積分し、送信周波数を分周した分周サイクルに同期させたタイミングで累積積分値を測定データとして取り込み、送信周波数成分以外の周波数成分を取り除いた信号を受信することを特徴とする位置姿勢検出装置。 - 請求項1に記載される位置姿勢検出装置において、
複数の送信周波数のそれぞれに対応する分周器を具備し、
受信した信号を送信周波数に同期して検波する同期検波回路を具備し、
同期検波出力を積分してその累積積分値を求める積分回路およびサンプルホールド回路を具備し、
積分器のリセット時刻を決定するリセット信号を発生し、サンプルホールド回路のサンプルおよびホールド時間を決定する信号を発生するタイミング発生回路を具備し、
マイクロコンピュータにより制御されて、複数の送信周波数を切替え選択し、送信部、同期検波回路、およびタイミング発生回路に接続されると共に対応する分周周波数をタイミング発生回路に供給する送信周波数設定部を具備することを特徴とする位置姿勢検出装置。 - 請求項2に記載される位置姿勢検出装置において、
送信周波数設定部は更に切り替えスイッチを有し、切り替えスイッチを介して共振用キャパシタを送信コイルに直列接続したことを特徴とする位置姿勢検出装置。 - 請求項1ないし請求項3の内の何れかに記載される位置姿勢検出装置において、
送信部から磁界信号を送信することを停止した状態において累積積分値を測定し、測定した磁気ノイズレベルと予め設定された判定値とを比較して、磁気ノイズレベルの低い送信周波数に切り替え選定することを特徴とする位置姿勢検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308379A JP2004145526A (ja) | 2002-10-23 | 2002-10-23 | 位置姿勢検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002308379A JP2004145526A (ja) | 2002-10-23 | 2002-10-23 | 位置姿勢検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004145526A true JP2004145526A (ja) | 2004-05-20 |
Family
ID=32454530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002308379A Pending JP2004145526A (ja) | 2002-10-23 | 2002-10-23 | 位置姿勢検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004145526A (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6238301A (ja) * | 1985-08-13 | 1987-02-19 | コミツサリア ア レネルジイ アトミツク | 物体の空間における位置及び方向を決定する装置及び方法 |
JPH0793083A (ja) * | 1993-09-27 | 1995-04-07 | Wacom Co Ltd | 位置検出装置 |
JPH09325852A (ja) * | 1996-06-04 | 1997-12-16 | Alps Electric Co Ltd | 座標入力装置 |
JP2002148009A (ja) * | 2000-11-10 | 2002-05-22 | Kddi Corp | 信号測定方法および雑音除去機能を有する位置測定方法 |
-
2002
- 2002-10-23 JP JP2002308379A patent/JP2004145526A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6238301A (ja) * | 1985-08-13 | 1987-02-19 | コミツサリア ア レネルジイ アトミツク | 物体の空間における位置及び方向を決定する装置及び方法 |
JPH0793083A (ja) * | 1993-09-27 | 1995-04-07 | Wacom Co Ltd | 位置検出装置 |
JPH09325852A (ja) * | 1996-06-04 | 1997-12-16 | Alps Electric Co Ltd | 座標入力装置 |
JP2002148009A (ja) * | 2000-11-10 | 2002-05-22 | Kddi Corp | 信号測定方法および雑音除去機能を有する位置測定方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6515107B2 (ja) | 複数の共振センサに対する単一チャネルインタフェースを備えた誘導性位置感知 | |
AU2016241101B2 (en) | Inductive power transmitter | |
CA2433972C (en) | Apparatus and method for locating objects behind a wall lining | |
US7514919B2 (en) | Sensing apparatus and method | |
EP3206111B1 (en) | Position indicator | |
EP2950418B1 (en) | Power transmission device and wireless power transmission system | |
JP4540088B2 (ja) | 位置検出装置 | |
JP2005507496A (ja) | 検出装置および検出方法 | |
JP2008509419A (ja) | 誘導性センサ | |
WO2017166215A1 (zh) | 液面检测装置及检测方法和全自动取样装置 | |
RU2006105788A (ru) | Коммуникационное устройство для установления канала передачи данных между интеллектуальными устройствами | |
JP2008509418A (ja) | 検知装置及び検知方法 | |
US20160334244A1 (en) | Position sensor | |
JP2004145526A (ja) | 位置姿勢検出装置 | |
US6525530B1 (en) | Continuous sine wave driver for an inductive position transducer | |
JP3249862B2 (ja) | 位置検出装置 | |
JP3273669B2 (ja) | 位置検出装置 | |
JPH07219698A (ja) | 位置検出装置及びその位置指示器 | |
GB2461099A (en) | Position sensing apparatus and method with feedback control of excitation signal | |
JP3078391B2 (ja) | 位置検出装置 | |
JP3219343B2 (ja) | 位置検出装置 | |
JP6210416B2 (ja) | 位置センサ | |
JP2578005B2 (ja) | コードレスタブレット | |
RU2186402C2 (ru) | Устройство для измерения электрической емкости | |
JPH06236498A (ja) | ループコイル式金属物体検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060502 |