JP2004143940A - Exhaust emission control device and exhaust emission control method - Google Patents

Exhaust emission control device and exhaust emission control method Download PDF

Info

Publication number
JP2004143940A
JP2004143940A JP2002306222A JP2002306222A JP2004143940A JP 2004143940 A JP2004143940 A JP 2004143940A JP 2002306222 A JP2002306222 A JP 2002306222A JP 2002306222 A JP2002306222 A JP 2002306222A JP 2004143940 A JP2004143940 A JP 2004143940A
Authority
JP
Japan
Prior art keywords
water
exhaust gas
storage
absorbing member
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002306222A
Other languages
Japanese (ja)
Other versions
JP4210902B2 (en
Inventor
Gao Watabe
渡部 雅王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002306222A priority Critical patent/JP4210902B2/en
Publication of JP2004143940A publication Critical patent/JP2004143940A/en
Application granted granted Critical
Publication of JP4210902B2 publication Critical patent/JP4210902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent condensation water form flowing in an NOx storage-reduction type catalyst as liquid water when starting an engine. <P>SOLUTION: A water absorbing member 3 is arranged on the upstream side of the NOx storage-reduction type catalyst 2. The condensation water in a pipe first flows to the water absorbing member 3, and is absorbed in the water absorbing member 3 at starting time. After starting, the condensation water absorbed in the water absorbing member 3 is evaporated by heat of exhaust gas, and flows in the NOx storage-reduction type catalyst 2 as steam. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種排ガスの浄化に用いられる排ガス浄化装置に関し、詳しくはNO 吸蔵還元型触媒を用いた排ガス浄化装置に関する。
【0002】
【従来の技術】
近年、二酸化炭素( CO)の低減を目的として酸素過剰雰囲気で燃焼するリーンバーンエンジンが用いられている。このリーンバーンエンジンは、常時は酸素過剰のリーン条件で燃焼させ、間欠的に燃料過剰のストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNO を還元浄化するシステムによって駆動されている。そしてこのシステムに最適な触媒として、リーン雰囲気でNO を吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNO を放出するNO 吸蔵材を用いたNO 吸蔵還元型の排ガス浄化用触媒が開発されている。
【0003】
このNO 吸蔵還元型触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、リーン側ではNO がNO 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放出されてHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNO を効率良く浄化することができる。
【0004】
このNO 吸蔵還元型触媒は、アルミナなどの多孔質担体に貴金属とNO 吸蔵材とを担持した構成であり、例えば特開平05−317652号公報には、Baなどのアルカリ土類金属とPtをアルミナなどの多孔質担体に担持したNO 吸蔵還元型触媒が提案されている。また特開平06−031139号公報には、Kなどのアルカリ金属とPtをアルミナなどの多孔質担体に担持したNO 吸蔵還元型触媒が提案されている。さらに特開平05−168860号公報には、Laなどの希土類元素とPtをアルミナなどの多孔質担体に担持したNO 吸蔵還元型触媒が提案されている。
【0005】
【特許文献1】特開平05−317652号
【特許文献2】特開平06−031139号
【特許文献3】特開平05−168860号
【0006】
【発明が解決しようとする課題】
ところが、エンジンの停止後に排ガス通路が放冷されると、排ガス通路の配管内に結露が生じる。配管内には排ガスが残留しているため、排ガス中に含まれる多量の水蒸気が結露すると多量の結露水が生成する。この結露水は配管内に蓄積され、次のエンジン始動時に液体の水として一気にNO 吸蔵還元型触媒に流れる。このときNO 吸蔵還元型触媒に担持されているNO 吸蔵材は、液体の水に溶解しやすいという特性をもつために、流れてきた水によって移動あるいは流出し、NO 吸蔵能が低下するという問題が生じることが新たに判明した。
【0007】
例えばNO 吸蔵材としてカリウム(K)を担持したNO 吸蔵還元型触媒を搭載し、5万km走行した自動車のNO 吸蔵還元型触媒の下流側の配管に堆積した粉末を分析すると、図3に示すようにKが高濃度で検出された。これから、結露水によるKの流出の事実が裏付けられる。
【0008】
またNO 吸蔵還元型触媒に流入する排ガス温度が高すぎると、担持されている貴金属の粒成長による劣化が生じるため、Uターンパイプなどの長い配管を用いて排ガスを空冷することも行われているが、このような場合には配管内で結露する量も多くなり、始動時には結露水が多量にNO 吸蔵還元型触媒に流れてしまう。
【0009】
本発明はこのような事情に鑑みてなされたものであり、始動時にNO 吸蔵還元型触媒に結露水が流入するのを未然に防止するとともに、結露水を積極的に利用して浄化性能をさらに向上させることを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化装置の特徴は、排ガス流路に配置されたNO 吸蔵還元型触媒と、NO 吸蔵還元型触媒の排ガス上流側に配置された吸水部材と、からなることにある。
【0011】
吸水部材は、同一の外筒内に配置されていることが好ましい。
【0012】
この吸水部材は、炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を兼ねていることが望ましい。さらに、炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を吸水部材の下流側かつNO 吸蔵還元型触媒の上流側にさらに配置することが特に好ましい。
【0013】
そして本発明の排ガス浄化方法の特徴は、本発明の請求項3又は請求項4に記載の排ガス浄化装置の吸水部材に水を吸水させ、吸水した水から生成した水蒸気と炭化水素又は一酸化炭素とを水蒸気改質触媒に接触させて水素を生成させ、発生した水素と排ガスをNO 吸蔵還元型触媒に接触させて排ガスを浄化することにある。
【0014】
【発明の実施の形態】
本発明の排ガス浄化装置では、NO 吸蔵還元型触媒の上流側に吸水部材を配置している。したがって配管中の結露水は、始動時には先ず吸水部材に流れて吸水部材に吸収されるため、結露水がNO 吸蔵還元型触媒に流入するのが防止される。そして始動後は排ガスが吸水部材からNO 吸蔵還元型触媒に流入するが、吸水部材に吸収された結露水は排ガスの熱で蒸発して水蒸気となってNO 吸蔵還元型触媒に流入する。したがってNO 吸蔵材が移動や流出するような不具合は生じず、NO 吸蔵能の低下を未然に防止することができる。また吸水部材は、吸水能を回復して次の始動時に配管中の結露水を吸収する。
【0015】
NO 吸蔵還元型触媒は、多孔質担体と、多孔質担体に担持された貴金属と、多孔質担体に担持されたNO 吸蔵材とから構成される。多孔質担体としては、アルミナ、シリカ、シリカ−アルミナ、ジルコニア、チタニア、セリアなどを用いることができる。このうちの一種でもよいし複数種類を混合あるいは複合化して用いることもできる。中でも活性の高いγ−アルミナを用いるのが好ましい。
【0016】
NO 吸蔵還元型触媒に用いられる貴金属としては、Pt、Rh、Pd、Irなどが例示される。中でも活性の高いPtが特に好ましい。また貴金属の担持量は、多孔質担体1リットル当たり 0.1〜10gとすることが好ましい。これより少ないと浄化活性が不足し、これより多く担持しても効果が飽和するとともに高価となる。
【0017】
NO 吸蔵還元型触媒に用いられるNO 吸蔵材としては、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種を用いることができる。アルカリ金属としては、リチウム、ナトリウム、カリウム、セシウムが例示される。アルカリ土類金属としては、バリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウムなどが例示される。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、ジスプロシウム、イッテルビウムなどが例示される。アルカリ金属とアルカリ土類金属の両方を担持することが望ましい。
【0018】
NO 吸蔵還元型触媒におけるNO 吸蔵材の担持量は、多孔質担体1リットル当たり0.01〜1モルの範囲とすることが望ましい。担持量がこの範囲より少ないとNO 吸蔵量が低下するためNO 浄化能が低下し、この範囲より多くなると貴金属がNO 吸蔵材に覆われて活性が低下するようになる。
【0019】
吸水部材は、液体の水を吸収して一時的に保持することができ、耐熱性と通気性を有するものを用いることができる。例えばゼオライトが代表的に例示され、ペレット状のゼオライトを通気可能な容器に充填したもの、ハニカム通路をもつモノリス基材にゼオライトからなるコート層を形成したもの、あるいはゼオライトの成形品などを用いることができる。またコーディエライトなどの耐熱性セラミックスから形成され、排ガス下流端が目詰めされた流入側セルと、流入側セルに隣接し排ガス上流端が目詰めされた流出側セルと、からなり、流入側セルと流出側セルとを区画するセル隔壁が通気性と吸水性を有する多孔質であるもの(例えばディーゼルパティキュレートフィルタ(DPF))を用いることもできる。DPFを用いれば効果的に結露水を吸収できるので、全長を短くすることができ搭載スペース面の自由度が高い。
【0020】
吸水部材はNO 吸蔵還元型触媒の上流側であれば特に制限されないが、吸水部材とNO 吸蔵還元型触媒との間の配管内での結露を防止するためには、吸水部材の位置はNO 吸蔵還元型触媒に近接した位置とするのが望ましい。例えば実施例にも示すように、触媒コンバータのコーン部分に吸水部材を配置するなど、NO 吸蔵還元型触媒及び吸水部材を同一の外筒内に収納することが好ましい。このようにすれば、従来は未使用であった空間を有効利用することができ、排ガス通路に吸水部材を配置する場所を新たに設ける必要もない。
【0021】
NO 吸蔵還元型触媒の上流側で、吸水部材の下流側には、炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を配置することが好ましい。
【0022】
酸素過剰のリーン雰囲気の排ガス中には、SO などのSO が含まれている。そのためこのような排ガスがNO 吸蔵還元型触媒に触れると、NO 吸蔵材とSO とが反応して安定な硫酸塩が生成し、NO 吸蔵材のNO 吸蔵能が低下する(硫黄被毒)という問題がある。しかしNO 吸蔵還元型触媒の上流側に水蒸気改質触媒を配置すれば、生成した水素によって硫酸塩を還元分解することができ、NO 吸蔵材のNO 吸蔵能を容易に回復させることができる。
【0023】
この水蒸気改質触媒としては、水蒸気改質反応あるいは水性ガスシフト反応によって炭化水素と水蒸気又は一酸化炭素と水蒸気から水素を生成する触媒を用いることができる。水蒸気改質反応を行う触媒としては、ジルコニアにロジウムを担持した触媒(Rh/ZrO)が代表的である。また水性ガスシフト反応を行う触媒としては、Cu−Zn系触媒,γ−AlにCuを担持した触媒などが知られている。
【0024】
また、吸水部材が、炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を兼ねるようにすることも好ましい。このようにしても、吸水部材に吸収された水が排ガスで加熱されて水蒸気となって水蒸気改質触媒に流入し、排ガス中の炭化水素又は一酸化炭素と反応して水素が生成して、生成した水素がNO 吸蔵還元型触媒に流入する。水素は還元活性がきわめて高いため、NO 吸蔵還元型触媒上でNO を還元し、NO 浄化能がさらに向上する。
【0025】
水蒸気改質触媒を兼ねる吸水部材としては、例えばハニカム通路をもつモノリス基材に、Rh/ZrO粉末とゼオライト粉末の混合粉末からなるコート層を形成したものが例示される。このような吸水部材とすれば、ゼオライトによって吸水性が発現され、Rh/ZrOによって水蒸気改質反応が発現する。そしてゼオライトから放出された水蒸気が隣接するRh/ZrOによって効率よく水素に転化されるので、水蒸気の水素への転化率が向上する。
【0026】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0027】
(実施例1)
図1に本実施例の自動車排ガス浄化装置を示す。この自動車排ガス浄化装置は、触媒コンバータ1内に配置されたNO 吸蔵還元型触媒2と、NO 吸蔵還元型触媒2の排ガス上流側で触媒コンバータ1のコーン部10内に配置された吸水部材3とから構成されている。
【0028】
NO 吸蔵還元型触媒2は、コーディエライト製のハニカム基材と、ハニカム基材表面に形成されたγ−Al,TiO及びZrOからなるコート層とからなり、コート層にはPt及びRhからなる貴金属と、Ba及びKよりなるNO 吸蔵材とが担持されている。
【0029】
ハニカム基材は体積 2.0リットルであり、コート層はハニカム基材の1リットル当たり 250g形成されている。コート層の内訳は、ハニカム基材の1リットル当たりγ−Alが 100g、TiOが50g、ZrOが 100gである。またPtはハニカム基材の1リットル当たり 2.0g担持され、Rhはハニカム基材の1リットル当たり0.5g担持されている。そしてハニカム基材の1リットル当たり、Baが 0.2モル、Kが 0.2モル担持されている。
【0030】
吸水部材3は、円錐台形状に形成されたコーディエライト製のハニカム基材と、ハニカム基材表面にコートされたゼオライト層とから構成されている。ハニカム基材は体積 0.7リットルであり、ゼオライト層はハニカム基材の1リットル当たり 150g形成されている。
【0031】
(比較例1)
NO 吸蔵還元型触媒2を上流側に、吸水部材3をその下流側に配置したこと以外は実施例1と同様の構成のものを、比較例1の排ガス浄化装置とした。
【0032】
<試験・評価>
実施例1及び比較例1の排ガス浄化装置をそれぞれ 1.8Lのリーンバーンエンジンの排気通路に搭載し、触媒コンバータ1の上流側の排気通路に水 100ccを溜めておき、エンジンをスタートさせた。その後、同じ排気系(入りガス温度 400℃)において、リーン時におけるNO 吸蔵量を測定した。測定後は、エンジンを室温まで放冷した。この試験を30回繰り返し、得られた各NO 吸蔵量を図2に示す。なお空間速度は、実施例1と比較例1の場合で同等である。
【0033】
図2より、比較例1の排ガス浄化装置では試験回数を重ねるとNO 吸蔵量が大きく低下しているのに対し、実施例1の排ガス浄化装置では30回の試験後も初期とほとんど同等のNO 吸蔵量が維持されていることがわかる。比較例1の排ガス浄化装置では、NO 吸蔵還元型触媒2からカリウムが移動又は流出したために、試験回数を重ねるとNO 吸蔵量が大きく低下したと考えられる。
【0034】
しかし実施例1の排ガス浄化装置では、30回の試験後も初期とほとんど同等のNO 吸蔵量が維持され、これは吸水部材3をNO 吸蔵還元型触媒2の上流側に配置した効果であることが明らかであり、結露水が吸水部材3に吸収されてNO 吸蔵材が移動あるいは流出するのが未然に防止されたことによる効果である。
【0035】
(実施例2)
実施例1で用いた吸水部材3のコート層を、ゼオライト50重量%と、ジルコニアにロジウムを担持した触媒(Rh/ZrO)粉末50重量%との混合粉末から形成したこと以外は実施例1と同様の構成とした。コート層はハニカム基材の1リットル当たり 200g形成され、Rhの担持量はハニカム基材の1リットル当たり 0.5gである。
【0036】
<試験・評価>
実施例1,実施例2及び比較例1の排ガス浄化装置をそれぞれ 1.8Lのリーンバーンエンジンの排気通路に搭載し、エンジン直下の排気通路に水 100ccを溜めておき、エンジンをスタートさせ、リーン2分間/リッチ1秒間で交互に繰り返し運転した時のNO 浄化率をそれぞれ測定した。結果を表1に示す。
【0037】
【表1】

Figure 2004143940
【0038】
表1より、実施例1及び比較例1ではほぼ同等のNO 浄化率を示しているが、実施例2では実施例1及び比較例1より高いNO 浄化率が発現されている。これは、吸水部材3にRh/ZrO粉末を担持したものをNO 吸蔵還元型触媒2の上流側に配置した効果であることが明らかであり、水蒸気改質反応によって生成した水素によってNO の還元活性が向上したと考えられる。
【0039】
【発明の効果】
すなわち本発明の排ガス浄化装置及び排ガス浄化方法によれば、始動時に結露水がNO 吸蔵還元型触媒に流入するのが吸水部材によって未然に防止されているため、NO 吸蔵材の移動あるいは流出を防止することができNO 吸蔵能の低下を防止することができる。
【0040】
また水蒸気改質触媒をさらに配置すれば、吸水部材に吸水された水を水素に転化できるので、NO 浄化能がさらに向上し、NO 吸蔵材の硫黄被毒からの回復を促進することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の排ガス浄化装置の構成を示す概略斜視図である。
【図2】実施例及び比較例の排ガス浄化装置の試験回数とNO 吸蔵量との関係を示すグラフである。
【図3】自動車の排気通路における堆積物の分析結果を示すグラフである。
【符号の説明】
1:触媒コンバータ  2:NO 吸蔵還元型触媒  3:吸水部材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying apparatus used for purification of various exhaust gases, more particularly to an exhaust gas purifying apparatus using the NO x storage-and-reduction type catalyst.
[0002]
[Prior art]
In recent years, a lean burn engine that burns in an oxygen-excess atmosphere has been used for the purpose of reducing carbon dioxide (CO 2 ). The lean burn engine is normally burned in oxygen excess lean conditions, and is driven by a system that reduces and purifies NO x exhaust gas as a reducing atmosphere by a stoichiometric-rich condition of intermittent fuel excess. And as the best catalysts for this system, occludes NO x in lean atmosphere, stoichiometric ~ the NO x storage-reduction type exhaust purifying catalyst is developing with the NO x storage material that releases occluded NO x in a rich atmosphere Have been.
[0003]
Using this NO x storage-and-reduction type catalyst, by controlling so that the stoichiometric-rich side in a pulsed manner the air-fuel ratio from the lean side, NO x is occluded in the NO x storage material in the lean side, it is stoichiometric or to be released in the rich side are purified by reacting with reducing components such as HC and CO, can be efficiently purify NO x even exhaust gas from a lean burn engine.
[0004]
The NO x storage-and-reduction type catalyst is a porous carrier carrying the noble metal and the NO x storage material to the structure, such as alumina, for example, JP-A-05-317652, alkaline earth metals such as Ba metal and Pt NO x storage-and-reduction type catalyst supported on a porous support such as alumina have been proposed. Also JP-A-06-031139, NO x storage reduction catalysts of the alkali metal and Pt, such as carrying on a porous support such as alumina K has been proposed. More Hei 05-168860 discloses, NO x storage-reduction catalyst carrying a rare earth element and Pt, such as La on a porous support such as alumina have been proposed.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 05-317652 [Patent Document 2] Japanese Patent Application Laid-Open No. 06-031139 [Patent Document 3] Japanese Patent Application Laid-Open No. 05-168860
[Problems to be solved by the invention]
However, if the exhaust gas passage is allowed to cool after the engine is stopped, dew condensation occurs in the piping of the exhaust gas passage. Since exhaust gas remains in the pipe, a large amount of dew water is generated when a large amount of water vapor contained in the exhaust gas condenses. The condensed water is accumulated in the piping, flowing at once the NO x storage reduction catalyst as a liquid water at the next engine start. The NO x storage material that is supported on the NO x storage-reduction catalyst at this time, in order to have the property that easily dissolved in liquid water, and moves or flows out by flowed water, the NO x storage ability is decreased It is newly found that the problem occurs.
[0007]
For example equipped with NO x storage-and-reduction type catalyst supporting potassium (K) as the NO x storage material, the analysis of the powder deposited on the downstream side of the pipe 50,000 km traveling vehicle NO x storage-and-reduction type catalyst, FIG. As shown in FIG. 3, K was detected at a high concentration. This confirms the fact that K is spilled by the condensed water.
[0008]
Further, when the temperature of the exhaust gas flowing into the NO x storage-and-reduction type catalyst is too high, the degradation due to grain growth of noble metal supported occurs also been possible to cool the exhaust gas by using a long pipe such as U-turn pipe are, but increases also the amount of dew condensation in the piping in such a case, at the time of start-up condensed water will flow to the large amount of NO x storage-and-reduction type catalyst.
[0009]
The present invention has been made in view of such circumstances, and condensate water on the NO x storage-and-reduction type catalyst during startup to prevent from flowing, the positively used to purifying performance condensed water It is intended to further improve.
[0010]
[Means for Solving the Problems]
Wherein the exhaust gas purifying apparatus of the present invention for solving the above-mentioned problems, the NO x storage-and-reduction type catalyst arranged in the exhaust gas line, and the water absorption member disposed on the exhaust gas upstream side of NO x storage-and-reduction type catalyst, composed of It is in.
[0011]
It is preferable that the water absorbing members are arranged in the same outer cylinder.
[0012]
It is desirable that this water absorbing member also serves as a steam reforming catalyst for generating hydrogen from hydrocarbon or carbon monoxide and steam. Furthermore, it is particularly preferable to further arrange the steam reforming catalyst for generating hydrogen from a hydrocarbon or carbon monoxide and water vapor to the downstream side and the upstream side of the NO x storage reduction catalysts of the water-absorbing member.
[0013]
The exhaust gas purifying method of the present invention is characterized in that the water absorbing member of the exhaust gas purifying apparatus according to claim 3 of the present invention absorbs water, and water vapor and hydrocarbon or carbon monoxide generated from the absorbed water. preparative to produce hydrogen in contact with the steam reforming catalyst is a generated hydrogen and the exhaust gas to purify the exhaust gas is brought into contact with the NO x storage-and-reduction type catalyst.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the exhaust gas purifying apparatus of the present invention is a water-absorbing member is disposed on the upstream side of the NO x storage reduction catalyst. Therefore condensed water in the piping is absorbed in the water absorbing member is first flowed into the water-absorbing member at the time of startup, condensed water is prevented from flowing into the NO x storage-and-reduction type catalyst. And after start-up exhaust gas is flowing into the NO x storage-and-reduction type catalyst from the water-absorbing member, the condensed water absorbed in the water absorbing member flows into the NO x storage-reduction catalyst becomes water vapor evaporated by the heat of exhaust gas. Therefore, the problem that the NO x storage material moves or flows out does not occur, and a decrease in the NO x storage capacity can be prevented. The water-absorbing member recovers the water-absorbing ability and absorbs the dew water in the pipe at the next start.
[0015]
The NO x storage reduction catalyst is composed of a porous carrier, a noble metal supported on the porous carrier, and a NO x storage material supported on the porous carrier. As the porous carrier, alumina, silica, silica-alumina, zirconia, titania, ceria and the like can be used. One of these may be used, or a plurality of types may be mixed or combined for use. Among them, it is preferable to use γ-alumina having high activity.
[0016]
Examples of the noble metal used in the NO x storage reduction catalyst include Pt, Rh, Pd, and Ir. Among them, Pt having high activity is particularly preferable. The amount of the noble metal carried is preferably 0.1 to 10 g per liter of the porous carrier. If the amount is less than this, the purification activity is insufficient, and if the amount is more than this, the effect is saturated and the cost becomes high.
[0017]
The the NO x storage material to be used in the NO x storage-and-reduction type catalyst, it is possible to use at least one selected from alkali metals, alkaline earth metals and rare earth elements. Examples of the alkali metal include lithium, sodium, potassium, and cesium. Examples of the alkaline earth metal include barium, beryllium, magnesium, calcium, strontium and the like. Examples of the rare earth element include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, dysprosium, and ytterbium. It is desirable to carry both alkali metals and alkaline earth metals.
[0018]
Loading amount of the NO x storage material in the NO x storage-reduction catalyst, it is desirable that the porous carrier per liter of 0.01 mols. The NO x purification performance for the supported amount is reduced less as the NO x storage amount than this range is decreased, the precious metal becomes more than this range is covered in the NO x storage material activity will be lowered.
[0019]
As the water-absorbing member, a member that can absorb and temporarily hold liquid water and has heat resistance and air permeability can be used. For example, zeolite is typically exemplified, and a pellet-shaped zeolite filled in a gas-permeable container, a monolith substrate having a honeycomb passage, a zeolite coated layer formed, or a zeolite molded product is used. Can be. The inlet side cell is formed from a heat-resistant ceramic such as cordierite and has a downstream end of the exhaust gas clogged, and an outlet cell adjacent to the inlet side cell and has an upstream end of the exhaust gas clogged. It is also possible to use a cell in which the cell partition partitioning the cell and the outflow side cell is porous having air permeability and water absorption (for example, a diesel particulate filter (DPF)). If the DPF is used, dew condensation water can be effectively absorbed, so that the total length can be shortened and the degree of freedom in mounting space is high.
[0020]
Although water-absorbing member is not particularly limited as long as it is upstream of the NO x storage reduction catalysts, in order to prevent condensation in the piping between the water-absorbing member and the NO x storage-and-reduction type catalyst, the position of the water-absorbing member is is desirable that the position close to the NO x storage-and-reduction type catalyst. For example, as shown in Examples, for example, placing a water absorbing member to the cone portion of the catalytic converter, it is preferable to house the NO x storage-and-reduction type catalyst and the water-absorbing member in the same outer tube. In this way, the space which has not been used in the past can be effectively used, and it is not necessary to newly provide a place for disposing the water absorbing member in the exhaust gas passage.
[0021]
It is preferable to arrange a steam reforming catalyst that generates hydrogen from hydrocarbon or carbon monoxide and steam on the upstream side of the NO x storage reduction catalyst and on the downstream side of the water absorbing member.
[0022]
Exhaust gas oxygen excess lean atmosphere, contains SO x, such as SO 2. For that reason such an exhaust gas touches the NO x storage-and-reduction type catalyst, the NO x storage material and the SO x reacts stable sulfates generated, the NO x storage ability of the NO x storage material is lowered (sulfur Poisoning). However, if the steam reforming catalyst is disposed upstream of the NO x storage reduction catalyst, the generated hydrogen can reduce and decompose the sulfate, and the NO x storage capacity of the NO x storage material can be easily restored. it can.
[0023]
As the steam reforming catalyst, a catalyst that generates hydrogen from hydrocarbon and steam or from carbon monoxide and steam by a steam reforming reaction or a water gas shift reaction can be used. A typical catalyst for carrying out the steam reforming reaction is a catalyst in which rhodium is supported on zirconia (Rh / ZrO 2 ). As a catalyst for performing a water gas shift reaction, a Cu—Zn-based catalyst, a catalyst in which Cu is supported on γ-Al 2 O 3 , and the like are known.
[0024]
It is also preferable that the water absorbing member also serves as a steam reforming catalyst for generating hydrogen from hydrocarbon or carbon monoxide and steam. Even in this case, the water absorbed by the water-absorbing member is heated by the exhaust gas, becomes steam, flows into the steam reforming catalyst, and reacts with hydrocarbons or carbon monoxide in the exhaust gas to generate hydrogen, produced hydrogen flows into the NO x storage-and-reduction type catalyst. Because a very high hydrogen reduction activity, reducing the NO x on the NO x storage-and-reduction type catalyst, NO x purification performance is further improved.
[0025]
Examples of the water-absorbing member that also functions as a steam reforming catalyst include a monolith substrate having a honeycomb channel and a coat layer formed of a mixed powder of Rh / ZrO 2 powder and zeolite powder formed thereon. With such a water-absorbing member, water absorption is exhibited by zeolite, and steam reforming reaction is exhibited by Rh / ZrO 2 . Then, since the steam released from the zeolite is efficiently converted to hydrogen by the adjacent Rh / ZrO 2 , the conversion rate of the steam to hydrogen is improved.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
[0027]
(Example 1)
FIG. 1 shows an automobile exhaust gas purifying apparatus of the present embodiment. The automobile exhaust gas purifying device, the NO x storage-and-reduction type catalyst 2 arranged in the catalytic converter 1, the NO x storage-reduction catalyst 2 of the exhaust-gas upstream side water-absorbing member disposed in the cone portion 10 of the catalytic converter 1 with And 3.
[0028]
The NO x storage-reduction catalyst 2 comprises a honeycomb substrate made of cordierite, honeycomb substrate surface gamma-Al 2 O formed in 3 consists of a TiO 2 and coating layer made of ZrO 2, the coating layer a noble metal of Pt and Rh, and the the NO x storage material consisting of Ba and K are carried in.
[0029]
The honeycomb substrate has a volume of 2.0 liters, and the coating layer is formed in an amount of 250 g per liter of the honeycomb substrate. The breakdown of the coat layer is 100 g of γ-Al 2 O 3 , 50 g of TiO 2 , and 100 g of ZrO 2 per liter of the honeycomb substrate. Further, 2.0 g of Pt is supported per liter of the honeycomb substrate, and 0.5 g of Rh is supported per liter of the honeycomb substrate. And 0.2 mol of Ba and 0.2 mol of K are supported per liter of the honeycomb substrate.
[0030]
The water absorbing member 3 includes a cordierite honeycomb substrate formed in a truncated cone shape, and a zeolite layer coated on the surface of the honeycomb substrate. The honeycomb substrate has a volume of 0.7 liter, and the zeolite layer is formed in an amount of 150 g per liter of the honeycomb substrate.
[0031]
(Comparative Example 1)
The NO x storage-and-reduction type catalyst 2 on the upstream side, except that disposed water-absorbing member 3 on the downstream side of the same structure as in Example 1 to an exhaust gas purifying apparatus of Comparative Example 1.
[0032]
<Test / Evaluation>
The exhaust gas purifying devices of Example 1 and Comparative Example 1 were mounted on the exhaust passage of a 1.8 L lean burn engine, and 100 cc of water was stored in the exhaust passage on the upstream side of the catalytic converter 1, and the engines were started. Thereafter, in the same exhaust system (gas temperature 400 ° C. enters), it was measured the NO x storage amount in the lean. After the measurement, the engine was allowed to cool to room temperature. This test was repeated 30 times, and the obtained NO x storage amounts are shown in FIG. Note that the space velocities are the same in Example 1 and Comparative Example 1.
[0033]
From FIG. 2, while the exhaust gas purifying device of Comparative Example 1 has decreased greatly the NO x storage amount when overlapping number of tests, the exhaust gas purifying apparatus of Example 1 30 times after the test also the initial and most comparable It can be seen that the NO x storage amount is maintained. In the exhaust gas purifying apparatus of Comparative Example 1, in order to potassium from the NO x storage-reduction catalyst 2 is moved in or out, the NO x storage amount when Cumulative experience count can be considered to have significantly reduced.
[0034]
However, in the exhaust gas purifying apparatus of the first embodiment, the NO x storage amount almost equal to the initial amount is maintained even after the 30 tests, which is due to the effect of disposing the water absorbing member 3 on the upstream side of the NO x storage reduction catalyst 2. there it is apparent is the effect due to the the NO x storage material condensed water is absorbed by the water absorbing member 3 is moved or outflow is prevented.
[0035]
(Example 2)
Example 1 Example 1 except that the coating layer of the water absorbing member 3 used in Example 1 was formed from a mixed powder of 50% by weight of zeolite and 50% by weight of a catalyst (Rh / ZrO 2 ) powder supporting rhodium on zirconia. The configuration was the same as described above. The coating layer is formed in an amount of 200 g per liter of the honeycomb substrate, and the amount of Rh carried is 0.5 g per liter of the honeycomb substrate.
[0036]
<Test / Evaluation>
Each of the exhaust gas purifying apparatuses of Examples 1, 2 and Comparative Example 1 was mounted on an exhaust passage of a 1.8 L lean burn engine, 100 cc of water was stored in an exhaust passage immediately below the engine, and the engine was started. The NO x purification rate when the operation was alternately repeated for 2 minutes / rich 1 second was measured. Table 1 shows the results.
[0037]
[Table 1]
Figure 2004143940
[0038]
From Table 1, it shows almost the same of the NO x purification rate in Example 1 and Comparative Example 1, high the NO x purification rate than the Example 2 Example 1 and Comparative Example 1 are expressed. This is apparently the effect of arranging the Rh / ZrO 2 powder on the water absorbing member 3 on the upstream side of the NO x storage-reduction catalyst 2, and NO x is generated by the hydrogen generated by the steam reforming reaction. It is considered that the reduction activity of the compound was improved.
[0039]
【The invention's effect】
That is, according to the exhaust gas purifying apparatus and an exhaust gas purifying method of the present invention, since the condensed water at the time of starting to flow into the NO x storage-and-reduction type catalyst is prevented by the water-absorbing member, the movement or the outflow of the NO x storage material it is possible to prevent a reduction of possible the NO x storage ability can be prevented.
[0040]
Further, if further arranged steam reforming catalyst, because the water absorption water in the water-absorbing member can be converted to hydrogen, can be further improved the NO x purification performance, promotes recovery from sulfur poisoning of the NO x storage material it can.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention.
2 is a graph showing the relationship between the number of tests and the NO x storage amount of the exhaust gas purifying device of the Examples and Comparative Examples.
FIG. 3 is a graph showing an analysis result of deposits in an exhaust passage of an automobile.
[Explanation of symbols]
1: Catalytic converter 2: NO x storage reduction type catalyst 3: Water absorption member

Claims (5)

排ガス流路に配置されたNO 吸蔵還元型触媒と、該NO 吸蔵還元型触媒の排ガス上流側に配置された吸水部材と、からなることを特徴とする排ガス浄化装置。A NO x storage-and-reduction type catalyst arranged in the exhaust gas line, an exhaust gas purifying device comprising the water-absorbing member disposed on the exhaust gas upstream side of the NO x storage-and-reduction type catalyst, in that it consists of. 前記吸水部材は同一の外筒内に配置されている請求項1に記載の排ガス浄化装置。The exhaust gas purifying apparatus according to claim 1, wherein the water absorbing members are arranged in the same outer cylinder. 前記吸水部材は、炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を兼ねている請求項1又は請求項2に記載の排ガス浄化装置。3. The exhaust gas purifying apparatus according to claim 1, wherein the water absorbing member also serves as a steam reforming catalyst that generates hydrogen from hydrocarbon or carbon monoxide and steam. 4. 炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を前記吸水部材の下流側かつ前記NO 吸蔵還元型触媒の上流側にさらに配置している請求項1又は請求項2に記載の排ガス浄化装置。Downstream and in the NO x storage-and-reduction type claims further disposed upstream of the catalyst 1 or claim 2 of a steam reforming catalyst to produce hydrogen from a hydrocarbon or carbon monoxide and water vapor and the water absorbing member An exhaust gas purifying apparatus as described in the above. 請求項3又は請求項4に記載の排ガス浄化装置の吸水部材に水を吸水させ、吸水した水から生成した水蒸気と炭化水素又は一酸化炭素とを水蒸気改質触媒に接触させて水素を生成させ、発生した水素と排ガスをNO 吸蔵還元型触媒に接触させて排ガスを浄化することを特徴とする排ガス浄化方法。Water is absorbed by the water absorbing member of the exhaust gas purifying apparatus according to claim 3 or 4, and steam generated from the absorbed water and hydrocarbon or carbon monoxide are brought into contact with a steam reforming catalyst to generate hydrogen. , the exhaust gas purification method, characterized in that the generated hydrogen and the exhaust gas is brought into contact with the NO x storage-and-reduction type catalyst for purifying exhaust gas.
JP2002306222A 2002-10-21 2002-10-21 Exhaust gas purification device and exhaust gas purification method Expired - Fee Related JP4210902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306222A JP4210902B2 (en) 2002-10-21 2002-10-21 Exhaust gas purification device and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306222A JP4210902B2 (en) 2002-10-21 2002-10-21 Exhaust gas purification device and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2004143940A true JP2004143940A (en) 2004-05-20
JP4210902B2 JP4210902B2 (en) 2009-01-21

Family

ID=32453074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306222A Expired - Fee Related JP4210902B2 (en) 2002-10-21 2002-10-21 Exhaust gas purification device and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4210902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117191A (en) * 2011-12-02 2013-06-13 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117191A (en) * 2011-12-02 2013-06-13 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Also Published As

Publication number Publication date
JP4210902B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP5607042B2 (en) Lean burn IC engine exhaust system
CN100482325C (en) Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions
US6729125B2 (en) Exhaust gas purifying system
JP4270224B2 (en) Exhaust gas purification device for internal combustion engine
BRPI0706870A2 (en) APPLIANCE FOR PURIFICATION OF EXHAUST GAS AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THE APPLIANCE FOR PURIFICATION OF EXHAUST GAS
RU2557056C2 (en) Trap-type catalyst for cleaning nox-depleted exhaust gases and exhaust gas cleaning system
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JP4144174B2 (en) Exhaust gas purification device
JP2003206733A (en) Exhaust emission control device for internal combustion engine
JP3821343B2 (en) Exhaust gas purification device
JP5030343B2 (en) Exhaust gas purification apparatus and exhaust gas treatment method
JP2003001067A (en) Exhaust gas purifying apparatus
JP2008296090A (en) Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP2001289035A (en) Exhaust emission control method and system
JP3555694B2 (en) Exhaust gas purification device
JP2002191988A (en) Catalyst for cleaning exhaust gas
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP5094199B2 (en) Exhaust gas purification device
JP4210902B2 (en) Exhaust gas purification device and exhaust gas purification method
JP3659028B2 (en) Exhaust gas purification device and method of using the same
JP3551346B2 (en) Exhaust gas purification equipment
JP2002168117A (en) Exhaust emission control system
JP6569637B2 (en) Exhaust gas purification device for internal combustion engine
WO2006055592A2 (en) Method and apparatus for reducing pollutants in engine exhaust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees