JP4210902B2 - Exhaust gas purification device and exhaust gas purification method - Google Patents
Exhaust gas purification device and exhaust gas purification method Download PDFInfo
- Publication number
- JP4210902B2 JP4210902B2 JP2002306222A JP2002306222A JP4210902B2 JP 4210902 B2 JP4210902 B2 JP 4210902B2 JP 2002306222 A JP2002306222 A JP 2002306222A JP 2002306222 A JP2002306222 A JP 2002306222A JP 4210902 B2 JP4210902 B2 JP 4210902B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- water
- storage
- reduction catalyst
- gas purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、各種排ガスの浄化に用いられる排ガス浄化装置に関し、詳しくはNOx 吸蔵還元型触媒を用いた排ガス浄化装置に関する。
【0002】
【従来の技術】
近年、二酸化炭素( CO2)の低減を目的として酸素過剰雰囲気で燃焼するリーンバーンエンジンが用いられている。このリーンバーンエンジンは、常時は酸素過剰のリーン条件で燃焼させ、間欠的に燃料過剰のストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNOx を還元浄化するシステムによって駆動されている。そしてこのシステムに最適な触媒として、リーン雰囲気でNOx を吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNOx を放出するNOx 吸蔵材を用いたNOx 吸蔵還元型の排ガス浄化用触媒が開発されている。
【0003】
このNOx 吸蔵還元型触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、リーン側ではNOx がNOx 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放出されてHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNOx を効率良く浄化することができる。
【0004】
このNOx 吸蔵還元型触媒は、アルミナなどの多孔質担体に貴金属とNOx 吸蔵材とを担持した構成であり、例えば特開平05−317652号公報には、Baなどのアルカリ土類金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。また特開平06−031139号公報には、Kなどのアルカリ金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。さらに特開平05−168860号公報には、Laなどの希土類元素とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。
【0005】
【特許文献1】
特開平05−317652号
【特許文献2】
特開平06−031139号
【特許文献3】
特開平05−168860号
【0006】
【発明が解決しようとする課題】
ところが、エンジンの停止後に排ガス通路が放冷されると、排ガス通路の配管内に結露が生じる。配管内には排ガスが残留しているため、排ガス中に含まれる多量の水蒸気が結露すると多量の結露水が生成する。この結露水は配管内に蓄積され、次のエンジン始動時に液体の水として一気にNOx 吸蔵還元型触媒に流れる。このときNOx 吸蔵還元型触媒に担持されているNOx 吸蔵材は、液体の水に溶解しやすいという特性をもつために、流れてきた水によって移動あるいは流出し、NOx 吸蔵能が低下するという問題が生じることが新たに判明した。
【0007】
例えばNOx 吸蔵材としてカリウム(K)を担持したNOx 吸蔵還元型触媒を搭載し、5万km走行した自動車のNOx 吸蔵還元型触媒の下流側の配管に堆積した粉末を分析すると、図3に示すようにKが高濃度で検出された。これから、結露水によるKの流出の事実が裏付けられる。
【0008】
またNOx 吸蔵還元型触媒に流入する排ガス温度が高すぎると、担持されている貴金属の粒成長による劣化が生じるため、Uターンパイプなどの長い配管を用いて排ガスを空冷することも行われているが、このような場合には配管内で結露する量も多くなり、始動時には結露水が多量にNOx 吸蔵還元型触媒に流れてしまう。
【0009】
本発明はこのような事情に鑑みてなされたものであり、始動時にNOx 吸蔵還元型触媒に結露水が流入するのを未然に防止するとともに、結露水を積極的に利用して浄化性能をさらに向上させることを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化装置の特徴は、排ガス流路に配置されたNOx 吸蔵還元型触媒と、NOx 吸蔵還元型触媒の排ガス上流側に配置され配管中の結露水を吸水する吸水部材と、からなり、吸水部材は炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒であることにある。
【0011】
吸水部材は、NO x 吸蔵還元型触媒と同一の外筒内に配置されていることが望ましい。
【0013】
そして本発明の排ガス浄化方法の特徴は、本発明の請求項1又は請求項2に記載の排ガス浄化装置の吸水部材に結露水を吸水させ、吸水した結露水から生成した水蒸気と炭化水素とから水素を生成させ、発生した水素と排ガスをNOx 吸蔵還元型触媒に接触させて排ガスを浄化することにある。
【0014】
【発明の実施の形態】
本発明の排ガス浄化装置では、NOx 吸蔵還元型触媒の上流側に吸水部材を配置している。したがって配管中の結露水は、始動時には先ず吸水部材に流れて吸水部材に吸収されるため、結露水がNOx 吸蔵還元型触媒に流入するのが防止される。そして始動後は排ガスが吸水部材からNOx 吸蔵還元型触媒に流入するが、吸水部材に吸収された結露水は排ガスの熱で蒸発して水蒸気となってNOx 吸蔵還元型触媒に流入する。したがってNOx 吸蔵材が移動や流出するような不具合は生じず、NOx 吸蔵能の低下を未然に防止することができる。また吸水部材は、吸水能を回復して次の始動時に配管中の結露水を吸収する。
吸水部材は、炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒を兼ねている。したがって吸収された水は排ガスで加熱されて水蒸気となり、排ガス中の炭化水素又は一酸化炭素と反応して水素が生成して、生成した水素が NO x 吸蔵還元型触媒に流入する。水素は還元活性がきわめて高いため、 NO x 吸蔵還元型触媒上で NO x を還元し、 NO x 浄化能がさらに向上する。
【0015】
NOx 吸蔵還元型触媒は、多孔質担体と、多孔質担体に担持された貴金属と、多孔質担体に担持されたNOx 吸蔵材とから構成される。多孔質担体としては、アルミナ、シリカ、シリカ−アルミナ、ジルコニア、チタニア、セリアなどを用いることができる。このうちの一種でもよいし複数種類を混合あるいは複合化して用いることもできる。中でも活性の高いγ−アルミナを用いるのが好ましい。
【0016】
NOx 吸蔵還元型触媒に用いられる貴金属としては、Pt、Rh、Pd、Irなどが例示される。中でも活性の高いPtが特に好ましい。また貴金属の担持量は、多孔質担体1リットル当たり 0.1〜10gとすることが好ましい。これより少ないと浄化活性が不足し、これより多く担持しても効果が飽和するとともに高価となる。
【0017】
NOx 吸蔵還元型触媒に用いられるNOx 吸蔵材としては、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種を用いることができる。アルカリ金属としては、リチウム、ナトリウム、カリウム、セシウムが例示される。アルカリ土類金属としては、バリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウムなどが例示される。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、ジスプロシウム、イッテルビウムなどが例示される。アルカリ金属とアルカリ土類金属の両方を担持することが望ましい。
【0018】
NOx 吸蔵還元型触媒におけるNOx 吸蔵材の担持量は、多孔質担体1リットル当たり0.01〜1モルの範囲とすることが望ましい。担持量がこの範囲より少ないとNOx 吸蔵量が低下するためNOx 浄化能が低下し、この範囲より多くなると貴金属がNOx 吸蔵材に覆われて活性が低下するようになる。
【0020】
吸水部材はNOx 吸蔵還元型触媒の上流側であれば特に制限されないが、吸水部材とNOx 吸蔵還元型触媒との間の配管内での結露を防止するためには、吸水部材の位置はNOx 吸蔵還元型触媒に近接した位置とするのが望ましい。例えば実施例にも示すように、触媒コンバータのコーン部分に吸水部材を配置するなど、NOx 吸蔵還元型触媒及び吸水部材を同一の外筒内に収納することが好ましい。このようにすれば、従来は未使用であった空間を有効利用することができ、排ガス通路に吸水部材を配置する場所を新たに設ける必要もない。
【0025】
水蒸気改質触媒を兼ねる吸水部材としては、例えばハニカム通路をもつモノリス基材に、Rh/ZrO2粉末とゼオライト粉末の混合粉末からなるコート層を形成したものが例示される。このような吸水部材とすれば、ゼオライトによって吸水性が発現され、Rh/ZrO2によって水蒸気改質反応が発現する。そしてゼオライトから放出された水蒸気が隣接するRh/ZrO2によって効率よく水素に転化されるので、水蒸気の水素への転化率が向上する。
【0026】
【実施例】
以下、参考例、実施例及び比較例により本発明を具体的に説明する。
【0027】
(参考例1)
図1に本参考例の自動車排ガス浄化装置を示す。この自動車排ガス浄化装置は、触媒コンバータ1内に配置されたNOx 吸蔵還元型触媒2と、NOx 吸蔵還元型触媒2の排ガス上流側で触媒コンバータ1のコーン部10内に配置された吸水部材3とから構成されている。
【0028】
NOx 吸蔵還元型触媒2は、コーディエライト製のハニカム基材と、ハニカム基材表面に形成されたγ-Al2O3,TiO2及びZrO2からなるコート層とからなり、コート層にはPt及びRhからなる貴金属と、Ba及びKよりなるNOx 吸蔵材とが担持されている。
【0029】
ハニカム基材は体積 2.0リットルであり、コート層はハニカム基材の1リットル当たり 250g形成されている。コート層の内訳は、ハニカム基材の1リットル当たりγ-Al2O3が 100g、TiO2が50g、ZrO2が 100gである。またPtはハニカム基材の1リットル当たり 2.0g担持され、Rhはハニカム基材の1リットル当たり 0.5g担持されている。そしてハニカム基材の1リットル当たり、Baが 0.2モル、Kが 0.2モル担持されている。
【0030】
吸水部材3は、円錐台形状に形成されたコーディエライト製のハニカム基材と、ハニカム基材表面にコートされたゼオライト層とから構成されている。ハニカム基材は体積 0.7リットルであり、ゼオライト層はハニカム基材の1リットル当たり 150g形成されている。
【0031】
(比較例1)
NOx 吸蔵還元型触媒2を上流側に、吸水部材3をその下流側に配置したこと以外は参考例1と同様の構成のものを、比較例1の排ガス浄化装置とした。
【0032】
<試験・評価>
参考例1及び比較例1の排ガス浄化装置をそれぞれ 1.8Lのリーンバーンエンジンの排気通路に搭載し、触媒コンバータ1の上流側の排気通路に水 100ccを溜めておき、エンジンをスタートさせた。その後、同じ排気系(入りガス温度 400℃)において、リーン時におけるNOx 吸蔵量を測定した。測定後は、エンジンを室温まで放冷した。この試験を30回繰り返し、得られた各NOx 吸蔵量を図2に示す。なお空間速度は、参考例1と比較例1の場合で同等である。
【0033】
図2より、比較例1の排ガス浄化装置では試験回数を重ねるとNOx 吸蔵量が大きく低下しているのに対し、参考例1の排ガス浄化装置では30回の試験後も初期とほとんど同等のNOx 吸蔵量が維持されていることがわかる。比較例1の排ガス浄化装置では、NOx 吸蔵還元型触媒2からカリウムが移動又は流出したために、試験回数を重ねるとNOx 吸蔵量が大きく低下したと考えられる。
【0034】
しかし参考例1の排ガス浄化装置では、30回の試験後も初期とほとんど同等のNOx 吸蔵量が維持され、これは吸水部材3をNOx 吸蔵還元型触媒2の上流側に配置した効果であることが明らかであり、結露水が吸水部材3に吸収されてNOx 吸蔵材が移動あるいは流出するのが未然に防止されたことによる効果である。
【0035】
(実施例1)
参考例1で用いた吸水部材3のコート層を、ゼオライト50重量%と、ジルコニアにロジウムを担持した触媒(Rh/ZrO2)粉末50重量%との混合粉末から形成したこと以外は参考例1と同様の構成とした。コート層はハニカム基材の1リットル当たり 200g形成され、Rhの担持量はハニカム基材の1リットル当たり 0.5gである。
【0036】
<試験・評価>
参考例1,実施例1及び比較例1の排ガス浄化装置をそれぞれ 1.8Lのリーンバーンエンジンの排気通路に搭載し、エンジン直下の排気通路に水 100ccを溜めておき、エンジンをスタートさせ、リーン2分間/リッチ1秒間で交互に繰り返し運転した時のNOx 浄化率をそれぞれ測定した。結果を表1に示す。
【0037】
【表1】
【0038】
表1より、参考例1及び比較例1ではほぼ同等のNOx 浄化率を示しているが、実施例1では参考例1及び比較例1より高いNOx 浄化率が発現されている。これは、吸水部材3にRh/ZrO2粉末を担持したものをNOx 吸蔵還元型触媒2の上流側に配置した効果であることが明らかであり、水蒸気改質反応によって生成した水素によってNOx の還元活性が向上したと考えられる。
【0039】
【発明の効果】
すなわち本発明の排ガス浄化装置及び排ガス浄化方法によれば、始動時に結露水がNOx 吸蔵還元型触媒に流入するのが吸水部材によって未然に防止されているため、NOx 吸蔵材の移動あるいは流出を防止することができNOx 吸蔵能の低下を防止することができる。
【0040】
そして吸水部材が水蒸気改質触媒を兼ねているので、吸水部材に吸水された水を水素に転化できるためNOx 浄化能がさらに向上し、NOx 吸蔵材の硫黄被毒からの回復を促進することができる。
【図面の簡単な説明】
【図1】本発明の一参考例の排ガス浄化装置の構成を示す概略斜視図である。
【図2】参考例及び比較例の排ガス浄化装置の試験回数とNOx 吸蔵量との関係を示すグラフである。
【図3】自動車の排気通路における堆積物の分析結果を示すグラフである。
【符号の説明】
1:触媒コンバータ 2:NOx 吸蔵還元型触媒 3:吸水部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device used for purification of various exhaust gases, and more particularly to an exhaust gas purification device using a NO x storage reduction catalyst.
[0002]
[Prior art]
In recent years, lean burn engines that burn in an oxygen-rich atmosphere have been used for the purpose of reducing carbon dioxide (CO 2 ). This lean burn engine is driven by a system that normally burns under a lean condition with excess oxygen, and reduces and purifies NO x using exhaust gas as a reducing atmosphere by intermittently setting the stoichiometric to rich condition with excess fuel. And as the best catalysts for this system, occludes NO x in lean atmosphere, stoichiometric ~ the NO x storage-reduction type exhaust purifying catalyst is developing with the NO x storage material that releases occluded NO x in a rich atmosphere Has been.
[0003]
By using this NO x storage-reduction catalyst, the air-fuel ratio is controlled from the lean side so as to change from the lean side to the stoichiometric to rich side, so that NO x is occluded by the NO x storage material on the lean side, which is stoichiometric. Alternatively, since it is released on the rich side and reacts with a reducing component such as HC or CO to be purified, NO x can be efficiently purified even with exhaust gas from a lean burn engine.
[0004]
The NO x storage-and-reduction type catalyst is a porous carrier carrying the noble metal and the NO x storage material to the structure, such as alumina, for example, JP-A-05-317652, alkaline earth metals such as Ba metal and Pt NO x storage-and-reduction type catalyst supported on a porous support such as alumina have been proposed. Japanese Laid-Open Patent Publication No. 06-031139 proposes a NO x storage reduction catalyst in which an alkali metal such as K and Pt are supported on a porous carrier such as alumina. Furthermore, Japanese Patent Laid-Open No. 05-168860 proposes a NO x storage reduction catalyst in which a rare earth element such as La and Pt are supported on a porous carrier such as alumina.
[0005]
[Patent Document 1]
JP 05-317652 [Patent Document 2]
JP 06-031139 [Patent Document 3]
Japanese Patent Laid-Open No. 05-168860 [0006]
[Problems to be solved by the invention]
However, when the exhaust gas passage is allowed to cool after the engine is stopped, condensation occurs in the piping of the exhaust gas passage. Since exhaust gas remains in the pipe, a large amount of condensed water is generated when a large amount of water vapor contained in the exhaust gas is condensed. This condensed water is accumulated in the pipe and flows to the NO x storage reduction catalyst at once as liquid water at the next engine start. The NO x storage material that is supported on the NO x storage-reduction catalyst at this time, in order to have the property that easily dissolved in liquid water, and moves or flows out by flowed water, the NO x storage ability is decreased It was newly found that this problem occurs.
[0007]
For example equipped with NO x storage-and-reduction type catalyst supporting potassium (K) as the NO x storage material, the analysis of the powder deposited on the downstream side of the pipe 50,000 km traveling vehicle NO x storage-and-reduction type catalyst, FIG. As shown in FIG. 3, K was detected at a high concentration. This confirms the fact that K flows out due to condensed water.
[0008]
In addition, if the temperature of the exhaust gas flowing into the NO x storage reduction catalyst is too high, deterioration occurs due to grain growth of the supported noble metal, so the exhaust gas is also air-cooled using a long pipe such as a U-turn pipe. It is, but increases also the amount of dew condensation in the piping in such a case, at the time of start-up condensed water will flow to the large amount of NO x storage-and-reduction type catalyst.
[0009]
The present invention has been made in view of such circumstances, and prevents the condensation water from flowing into the NO x storage reduction catalyst at the start-up, and positively utilizes the condensation water to improve the purification performance. The purpose is to further improve.
[0010]
[Means for Solving the Problems]
Wherein the exhaust gas purifying apparatus of the present invention to solve the above problems, the water absorption and the NO x storage-and-reduction type catalyst arranged in the exhaust gas line, is arranged on the exhaust gas upstream side of the NO x storage reduction catalyst condensed water in the piping The water absorbing member is a steam reforming catalyst that generates hydrogen from hydrocarbons or carbon monoxide and steam .
[0011]
The water absorption member is NO x It is desirable to arrange in the same outer cylinder as the storage reduction catalyst .
[0013]
A feature of the exhaust gas purification method of the present invention is that the water absorption member of the exhaust gas purification apparatus according to claim 1 or 2 of the present invention absorbs condensed water, and from water vapor and hydrocarbons generated from the absorbed condensed water. The purpose is to purify the exhaust gas by generating hydrogen and bringing the generated hydrogen and exhaust gas into contact with the NO x storage reduction catalyst.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the exhaust gas purifying apparatus of the present invention, the water absorbing member is disposed upstream of the NO x storage reduction catalyst. Accordingly, at the time of start-up, the dew condensation water in the pipe first flows into the water absorption member and is absorbed by the water absorption member, so that the dew condensation water is prevented from flowing into the NO x storage reduction catalyst. After startup, the exhaust gas flows from the water absorption member into the NO x storage reduction catalyst, but the condensed water absorbed by the water absorption member evaporates with the heat of the exhaust gas and becomes water vapor and flows into the NO x storage reduction catalyst. Accordingly, there is no problem that the NO x storage material moves or flows out, and a decrease in the NO x storage capacity can be prevented in advance. The water absorbing member recovers the water absorbing ability and absorbs dew condensation water in the pipe at the next start-up.
The water absorbing member also serves as a steam reforming catalyst that generates hydrogen from hydrocarbons or carbon monoxide and steam. Therefore, the absorbed water is heated by the exhaust gas to become water vapor, which reacts with hydrocarbons or carbon monoxide in the exhaust gas to generate hydrogen, and the generated hydrogen is NO x It flows into the storage reduction catalyst. Because a very high hydrogen reduction activity, NO x storage reduction catalyst on the NO x Reduction of the, NO x Purifying ability is further improved.
[0015]
The NO x storage-reduction catalyst is composed of a porous support, a noble metal supported on the porous support, and a NO x storage material supported on the porous support. As the porous carrier, alumina, silica, silica-alumina, zirconia, titania, ceria and the like can be used. One of these may be used, or a plurality of types may be mixed or combined. Of these, highly active γ-alumina is preferably used.
[0016]
Examples of the noble metal used for the NO x storage reduction catalyst include Pt, Rh, Pd, Ir, and the like. Of these, highly active Pt is particularly preferable. The amount of noble metal supported is preferably 0.1 to 10 g per liter of porous carrier. If it is less than this, the purification activity will be insufficient, and even if it is supported more than this, the effect will be saturated and it will be expensive.
[0017]
The the NO x storage material to be used in the NO x storage-and-reduction type catalyst, it is possible to use at least one selected from alkali metals, alkaline earth metals and rare earth elements. Examples of the alkali metal include lithium, sodium, potassium, and cesium. Examples of the alkaline earth metal include barium, beryllium, magnesium, calcium and strontium. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, dysprosium, ytterbium, and the like. It is desirable to carry both alkali metals and alkaline earth metals.
[0018]
The amount of the NO x storage material supported on the NO x storage reduction catalyst is preferably in the range of 0.01 to 1 mol per liter of the porous carrier. If the loading amount is less than this range, the NO x storage amount decreases, so the NO x purification ability decreases, and if it exceeds this range, the noble metal is covered with the NO x storage material and the activity decreases.
[0020]
The water absorbing member is not particularly limited as long as it is upstream of the NO x storage reduction catalyst, but in order to prevent condensation in the pipe between the water absorption member and the NO x storage reduction catalyst, the position of the water absorption member is It is desirable that the position be close to the NO x storage reduction catalyst. For example, as shown in the embodiment, it is preferable to store the NO x storage reduction catalyst and the water absorbing member in the same outer cylinder, such as disposing a water absorbing member in the cone portion of the catalytic converter. If it does in this way, the space which was not used conventionally can be used effectively, and it is not necessary to newly provide the place which arranges a water absorption member in an exhaust gas passage.
[0025]
Examples of the water absorbing member also serving as the steam reforming catalyst include a monolith substrate having a honeycomb passage formed with a coat layer made of a mixed powder of Rh / ZrO 2 powder and zeolite powder. With such a water-absorbing member, water absorption is expressed by zeolite, and steam reforming reaction is expressed by Rh / ZrO 2 . And since the water vapor | steam discharge | released from the zeolite is efficiently converted into hydrogen by Rh / ZrO 2 which adjoins, the conversion rate of water vapor | steam to hydrogen improves.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference examples, examples and comparative examples .
[0027]
( Reference Example 1 )
FIG. 1 shows an automobile exhaust gas purification apparatus of this reference example . This automobile exhaust gas purification apparatus includes a NO x storage reduction catalyst 2 disposed in the catalytic converter 1 and a water absorption member disposed in the
[0028]
The NO x occlusion reduction type catalyst 2 is composed of a cordierite honeycomb base material and a coating layer made of γ-Al 2 O 3 , TiO 2 and ZrO 2 formed on the surface of the honeycomb base material. Is supported with a noble metal composed of Pt and Rh and a NO x storage material composed of Ba and K.
[0029]
The honeycomb substrate has a volume of 2.0 liters, and the coating layer is formed in an amount of 250 g per liter of the honeycomb substrate. The breakdown of the coating layer is 100 g of γ-Al 2 O 3 , 50 g of TiO 2 and 100 g of ZrO 2 per liter of the honeycomb substrate. Further, 2.0 g of Pt is carried per liter of the honeycomb base material, and 0.5 g of Rh is carried per liter of the honeycomb base material. And 0.2 mol of Ba and 0.2 mol of K are carried per liter of the honeycomb substrate.
[0030]
The water absorbing member 3 is composed of a cordierite honeycomb substrate formed in a truncated cone shape and a zeolite layer coated on the honeycomb substrate surface. The honeycomb substrate has a volume of 0.7 liter and the zeolite layer is formed in 150 g per liter of the honeycomb substrate.
[0031]
(Comparative Example 1)
The exhaust gas purification apparatus of Comparative Example 1 was the same as that of Reference Example 1 except that the NO x storage reduction catalyst 2 was disposed upstream and the water absorbing member 3 was disposed downstream thereof.
[0032]
<Test and evaluation>
The exhaust gas purification apparatuses of Reference Example 1 and Comparative Example 1 were mounted in the exhaust passage of a 1.8 L lean burn engine, respectively, and 100 cc of water was stored in the exhaust passage upstream of the catalytic converter 1, and the engine was started. Thereafter, in the same exhaust system (inlet gas temperature 400 ° C.), the NO x occlusion amount during lean was measured. After the measurement, the engine was allowed to cool to room temperature. This test is repeated 30 times, and the obtained NO x storage amounts are shown in FIG. The space velocity is the same in the case of Reference Example 1 and Comparative Example 1.
[0033]
From FIG. 2, whereas the NO x storage amount when Cumulative experience count in the exhaust gas purifying apparatus of Comparative Example 1 is greatly reduced, the exhaust gas purifying apparatus of Example 1 30 times after the test also the initial and most comparable It can be seen that the NO x storage amount is maintained. In the exhaust gas purifying apparatus of Comparative Example 1, it is considered that the NO x occlusion amount was greatly reduced when the number of tests was repeated because potassium moved or flowed out from the NO x occlusion reduction type catalyst 2.
[0034]
However, the exhaust gas purifying apparatus of Example 1, 30 times of nearly identical NO x storage amount initial and after the test is maintained, which is a water-absorbing member 3 in the NO x storage-reduction type effect disposed on the upstream side of the catalyst 2 It is clear that there is an effect that the condensed water is absorbed by the water absorbing member 3 and the NO x storage material is prevented from moving or flowing out.
[0035]
( Example 1 )
Reference Example 1 except that the coating layer of the water absorbing member 3 used in Reference Example 1 was formed from a mixed powder of 50% by weight of zeolite and 50% by weight of a catalyst (Rh / ZrO 2 ) powder in which rhodium was supported on zirconia. It was set as the same structure. The coating layer is formed in an amount of 200 g per liter of the honeycomb substrate, and the amount of Rh supported is 0.5 g per liter of the honeycomb substrate.
[0036]
<Test and evaluation>
The exhaust gas purifying devices of Reference Example 1, Example 1 and Comparative Example 1 are installed in the exhaust passage of a 1.8 L lean burn engine, respectively, and 100 cc of water is stored in the exhaust passage directly under the engine, the engine is started, and lean 2 The NO x purification rate was measured when the operation was alternately repeated for 1 minute / rich for 1 second. The results are shown in Table 1.
[0037]
[Table 1]
[0038]
From Table 1, the reference example 1 and the comparative example 1 show almost the same NO x purification rate, but the example 1 shows a higher NO x purification rate than the reference example 1 and the comparative example 1. This is clearly the effect of placing the Rh / ZrO 2 powder supported on the water absorbing member 3 on the upstream side of the NO x storage reduction catalyst 2, and the NO x by the hydrogen produced by the steam reforming reaction. It is thought that the reduction activity of was improved.
[0039]
【The invention's effect】
That is, according to the exhaust gas purifying apparatus and an exhaust gas purifying method of the present invention, since the condensed water at the time of starting to flow into the NO x storage-and-reduction type catalyst is prevented by the water-absorbing member, the movement or the outflow of the NO x storage material it is possible to prevent a reduction of possible the NO x storage ability can be prevented.
[0040]
Since the water absorbing member also serves as a steam reforming catalyst, the water absorbed by the water absorbing member can be converted to hydrogen, so that the NO x purification capacity is further improved, and the recovery of the NO x storage material from sulfur poisoning is promoted. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a configuration of an exhaust gas purifying apparatus according to a reference example of the present invention.
FIG. 2 is a graph showing the relationship between the number of tests and NO x occlusion amount of exhaust gas purifying apparatuses of reference examples and comparative examples.
FIG. 3 is a graph showing the analysis result of deposits in the exhaust passage of an automobile.
[Explanation of symbols]
1: Catalytic converter 2: NO x storage reduction type catalyst 3: Water absorption member
Claims (3)
該吸水部材は炭化水素又は一酸化炭素と水蒸気とから水素を生成する水蒸気改質触媒であることを特徴とする排ガス浄化装置。A NO x storage reduction catalyst arranged in the exhaust gas flow path, and a water absorption member arranged on the exhaust gas upstream side of the NO x storage reduction catalyst to absorb condensed water in the pipe ,
The exhaust gas purification apparatus, wherein the water absorbing member is a steam reforming catalyst that generates hydrogen from hydrocarbon or carbon monoxide and steam .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002306222A JP4210902B2 (en) | 2002-10-21 | 2002-10-21 | Exhaust gas purification device and exhaust gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002306222A JP4210902B2 (en) | 2002-10-21 | 2002-10-21 | Exhaust gas purification device and exhaust gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004143940A JP2004143940A (en) | 2004-05-20 |
JP4210902B2 true JP4210902B2 (en) | 2009-01-21 |
Family
ID=32453074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002306222A Expired - Fee Related JP4210902B2 (en) | 2002-10-21 | 2002-10-21 | Exhaust gas purification device and exhaust gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4210902B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5708460B2 (en) * | 2011-12-02 | 2015-04-30 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
-
2002
- 2002-10-21 JP JP2002306222A patent/JP4210902B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004143940A (en) | 2004-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1027919A2 (en) | Apparatus and method for treating exhaust gases from a diesel engine using nitrogen oxide absorbent | |
RU2557056C2 (en) | Trap-type catalyst for cleaning nox-depleted exhaust gases and exhaust gas cleaning system | |
JPH08168675A (en) | Catalyst for purifying exhaust gas | |
EP1188908A2 (en) | Exhaust gas purifying system | |
WO2006059471A1 (en) | NOx PURIFICAITION SYSTEM | |
JP3952617B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JP4144174B2 (en) | Exhaust gas purification device | |
JP3821343B2 (en) | Exhaust gas purification device | |
JP2009273986A (en) | Exhaust gas cleaning catalyst | |
JP5030343B2 (en) | Exhaust gas purification apparatus and exhaust gas treatment method | |
JP2001289035A (en) | Exhaust emission control method and system | |
JP4210902B2 (en) | Exhaust gas purification device and exhaust gas purification method | |
JP2002191988A (en) | Catalyst for cleaning exhaust gas | |
JP4704964B2 (en) | NOx purification system and NOx purification method | |
JP5094199B2 (en) | Exhaust gas purification device | |
JPH08141394A (en) | Catalyst for purifying exhaust gas | |
JP4479418B2 (en) | Exhaust gas purification catalyst | |
JPH10165817A (en) | Catalyst for cleaning of exhaust gas | |
JP2002168117A (en) | Exhaust emission control system | |
JP3551346B2 (en) | Exhaust gas purification equipment | |
JP6569637B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH08281071A (en) | Waste gas purifying method and waste gas purifying catalyst | |
JP3839860B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3757440B2 (en) | Engine exhaust gas purification device | |
JP2000126554A (en) | Exhaust gas cleaning apparatus and method of using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |