JP2004140955A - ステッピング・モータを備えた装置 - Google Patents

ステッピング・モータを備えた装置 Download PDF

Info

Publication number
JP2004140955A
JP2004140955A JP2002304945A JP2002304945A JP2004140955A JP 2004140955 A JP2004140955 A JP 2004140955A JP 2002304945 A JP2002304945 A JP 2002304945A JP 2002304945 A JP2002304945 A JP 2002304945A JP 2004140955 A JP2004140955 A JP 2004140955A
Authority
JP
Japan
Prior art keywords
stepping motor
power supply
output
hold
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002304945A
Other languages
English (en)
Inventor
Masayasu Tomiyama
富山 正康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002304945A priority Critical patent/JP2004140955A/ja
Publication of JP2004140955A publication Critical patent/JP2004140955A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Stepping Motors (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】RCC方式の多出力電源装置からダミー負荷を削除し、且つ間欠発振を防止すること。
【解決手段】RCC方式の電源からステッピング・モータの駆動電力を供給する際に、ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない時点において、(1)前記ステッピング・モータが回転しない少量の励磁電流を流す、(2)ステッピング・モータが回転しない高いパルス・レートで励磁電流を流す、(3)ステッピング・モータをホールド駆動する形態の励磁電流を流す、のいずれかを実行する。励磁電流が常に流れることにより、出力にダミー負荷を接続することなく、RCC方式の電源における間欠発振動作が防止される。
【選択図】    図10

Description

【0001】
【発明の属する技術分野】
本発明は、ステッピング・モータを備えた装置に関し、より詳細には、自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の電源で、多出力とした電源から電力を受けて駆動される、たとえば、スキャナ、プリンタ、複写機のようなステッピング・モータを備えた装置に関する。
【0002】
【従来の技術】
RCCスイッチング電源回路においては、無負荷状態においては間欠発振動作が続き、この状態で負荷RLが急激に重い方向に変動すると、出力電圧が急激に低くなり、負荷回路に接続されているCPUやメモリなどの集積回路ICのデータの消去、あるいは、動作の停止などの支障をきたすために、従来技術では、負荷が一定値以下に軽くならないように負荷範囲を選定するか、あるいは、出力回路にダミー負荷を常時接続し、負荷許容容量を削減する、またはダミー負荷分だけスイッチング電源回路の容量の増加を図る、などのことが行われていた。
【0003】
また、軽負荷検出手段を備えて、軽負荷検出手段がスイッチング電源回路出力の軽負荷状態を検出したとき、ダミー負荷接続手段が、スイッチング電源回路の出力にダミー負荷を接続することも行われている(たとえば、特許文献1参照)。
【0004】
また、軽負荷時のスイッチング周波数の増大を抑制することにより、スイッチング損失を低減し、間欠発振動作を防止し、短絡時の主スイッチング素子の発熱を抑えることも行われている(たとえば、特許文献2参照)。
【0005】
以下に、制御系回路用の5Vと駆動系回路用の24Vの2つの出力を持つ、多出力電源を例に説明する。
【0006】
(多出力電源装置の基本動作)
図11は、従来の多出力電源装置の回路として、自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)の基本回路を示す図である。図11を使用して多出力電源装置の基本動作を説明する。絶縁トランス1は入力側の1次巻線Npと出力側の2次巻線Ns1、Ns2および1次側の補助巻線Nbにて構成されている。補助巻線Nbはスイッチング素子であるMOS−FET2のゲート電圧制御トランジスタ3の駆動用巻線である。スイッチング素子はMOS−FETでなく、バイポーラ・トランジスタであっても良い。入力電圧EはAC入力電圧をブリッジ・ダイオードで整流し、AL電解コンデンサにて平滑された直流電圧である。
【0007】
入力電圧Eは1次巻線Npの一端と前記MOS−FET2のソース端子の間に印加され、入力電圧の(+)側は1次巻線Npの巻きはじめ、入力電圧の(−)側はMOS−FET2のソース端子に接続されている。また、補助巻線Nbは1次巻線Npと同極に、2次巻線Nsは異極に接続されている。入力電圧の(+)側とMOS−FET2のゲート間には起動抵抗4、5が接続されている。また、MOS−FET2のゲートと補助巻線Nbの巻きはじめとの間にはコンデンサ6とゲート抵抗7、8が接続されている。ゲート抵抗8の両端には補助巻線Nb側をカソードの向きにしたダイオード9が接続されており、MOS−FET2のターン・オン、ターン・オフのスピードを調整することで高効率化を実現している。トランジスタ3のベースには補助巻線Nbと入力電圧の(−)側との間にコンデンサ10が接続されている。補助巻線Nbとトランジスタ3のベースとの間には抵抗11が接続され、コンデンサ10との間で時定数回路を構成している。
【0008】
フォト・カプラ12のコレクタとMOS−FET2のゲートとの間には抵抗13が接続され、フォト・カプラ12に流れる電流を制限している。フォト・カプラ12のエミッタはトランジスタ3のベースに接続されている。
【0009】
絶縁トランス1の2次巻線Ns1、Ns2の巻き終わりには整流用のダイオード14、15のアノード側が接続されている。ダイオード14、15のカソード側と2次巻線Ns1、Ns2の巻きはじめとの間には電界コンデンサ16、17が接続され、平滑を行っている。出力電圧24Vは抵抗18、19によって分圧され、分圧された電圧はシャント・レギュレータ20のref端子に接続され、基準電圧と比較することでフォト・カプラ12のダイオードに流れる電流を制御している。コンデンサ16の出力側には3端子レギュレータ21が接続され、たとえば5V等の出力電圧を生成している。コンデンサ22は3端子レギュレータ21の出力側に接続された電解コンデンサである。
【0010】
また、24V出力にはダミー負荷として抵抗23が接続されている。無負荷状態時において、MOS−FET2の発振状態が間欠となり、絶縁トランス1から可聴域(20kHz以下)の発振音が発生し、また、間欠発振になることで起動が繰り返されるためにMOS−FET2にストレスがかかり、また、出力電圧のリップル成分が増加するが、この抵抗に23に電流を流すことで無負荷状態をなくし、これらの発生を防止している。通常、抵抗23は数W程度の電力を消費している。
【0011】
MOS−FET2は起動抵抗4、5によりゲートにバイアスが印加され導通状態となる。MOS−FET2が導通状態になると1次巻線Npに入力電圧Eが印加され、補助巻線Nbに巻きはじめ側を(+)とする電圧が誘起される。このとき2次巻線Ns1、Ns2にも電圧が誘起されるが、整流ダイオード14、15のアノード側を(−)とする電圧であるため2次側には電圧は伝達されない。したがって、1次巻線Npを流れる電流は絶縁トランス1の励磁電流だけで絶縁トランス1には励磁電流の2乗に比例したエネルギーが蓄積される。この励磁電流は時間に比例して増大する。補助巻線Nbに誘起された電圧によりコンデンサ6、抵抗7、8を介してMOS−FET2のゲートが充電され、さらに導通状態が継続される。時定数回路を構成している抵抗11、コンデンサ10には補助巻線Nbから電荷が充電され、コンデンサ10の両端の電圧がトランジスタ3のVbeより高くなるとトランジスタ3が導通状態に変化し、MOS−FET2のゲート電圧が低下すると、MOS−FET2に流れる電流が減少し、やがてMOS−FET2は非導通状態に変化する。
【0012】
MOS−FET2は非導通状態となると、このとき絶縁トランスの各巻線には起動時、すなわち導通時と逆向きの電圧が発生し、2次巻線には整流ダイオード14、15のアノード側を(+)とする電圧が発生するため、絶縁トランス1に蓄積されたエネルギーが整流、平滑され、2次側に伝達される。絶縁トランス1に蓄えられているエネルギーが2次側にすべて伝達されるとMOS−FET2は再び導通状態となる。
【0013】
この間、MOS−FET2のドレイン−ソース間の電圧に比例した電圧が補助巻線NBに発生し、MOS−FET2が非導通状態になった直後は、補助巻線NBのダイオード9のカソード側がマイナス側に駆動され、これにより、MOS−FET2のゲートが(−)にバイアスされる。その後、2次側へのエネルギーの伝達が終わると(−)方向へのバイアス量が徐々に減少するため、Cカップリングしているコンデンサ6を介して、再びMOS−FET2のゲートが(+)方向にバイアスされる。この結果、MOS−FET2は再び導通状態となる。
【0014】
フォト・カプラ12の2次側の電流は出力電圧24Vが高いときに電流を多く流すので、それによってコンデンサ10に電流が供給され、充電時間を短くする。これはMOS−FET2の導通時間が短くなることを示しており、これによって絶縁トランス1に蓄積されるエネルギーが減少することで出力電圧24Vが下がり、定電圧動作を行っている。出力電圧が低い場合は逆の動作である。
【0015】
図12は、RCC方式におけるスイッチング部の各部の波形を示す図である。VGはMOS−FET2のゲート電圧を、VDSはMOS−FET2のドレイン−ソース電圧を、IDはドレイン電流を、ISは2次側の整流ダイオード14に流れる電流を示している。まずMOS−FET2のオン期間について説明する。起動抵抗4、5によりゲートにバイアスが印加され、VGの電位が上昇することによってMOS−FET2は導通状態となり、IDは時間とともに正の傾きで直線的に増加し、絶縁トランス1にエネルギーが蓄積される。このときVDSはMOS−FET2が導通状態であるため、電位はほぼ零になっており、2次側の整流ダイオード14は逆バイアスされているため、ISは流れない。コンデンサ10が充電され、トランジスタ3が導通状態になるとMOS−FET2のゲート電圧VGは零になり、MOS−FET2は非導通状態となるため、IDは零になり、VDSは入力電圧Eと2次側の出力電圧の巻線比倍の電圧、およびサージ電圧を重畳したものとなる。このとき2次側の整流ダイオード14は導通状態となり、絶縁トランス1に蓄積されたエネルギーが2次側に伝達される。ISは負の傾きで直線的に減少する。
【0016】
【特許文献1】
特開平08−340675号公報 段落0012〜0014
【0017】
【特許文献2】
特開平11−313483号公報
【0018】
【発明が解決しようとする課題】
しかしながら、従来の構成では、無負荷状態における間欠発振に起因する出力リップル電圧の増大、スイッチング素子等へのストレスおよび無負荷時のスイッチング周波数の増大に起因するトランスからの変音の発生を防止するために、少なくとも無負荷状態においては、ダミー抵抗等を直流出力に設けることが行われていた。このことは、部品点数の増大およびそれらによる実装面積の増大、ダミー抵抗が発熱することによる周辺部品の温度上昇などの問題があった。
【0019】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、ダミー抵抗等を直流出力に付加することなく、出力リップル電圧の増大、スイッチング素子等へのストレスおよびトランスからの変音の発生を防止することができる自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の多出力電源から電力を受けて駆動されるステッピング・モータを備えた装置を提供することにある。
【0020】
【課題を解決するための手段】
このような目的を達成するために、請求項1に記載の発明は、ステッピング・モータを備えた装置であって、1次巻線と複数の2次巻線を有したトランス、当該トランスの1次巻線と直流電源との間に接続され、スイッチングを行うスイッチング素子、前記トランスの2次巻線に発生した交流電圧をそれぞれ整流及び平滑する整流平滑部、および前記整流平滑部からの出力される複数の直流出力のうち少なくとも1つ以上の直流出力に応じて前記スイッチング素子を制御する制御部、を備えた多出力電源装置であって、前記直流出力の出力電流が少ないときに間欠発振動作をする多出力電源装置と、ステッピング・モータと、前記多出力電源装置から直流出力を受けて、前記ステッピング・モータを駆動する電流を任意に変化させることが可能な駆動手段と、前記ステッピング・モータを回転駆動あるいはホールド駆動させるように前記駆動手段を制御する制御手段であって、前記ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、前記ステッピング・モータが回転しない少量の励磁電流を流すように前記駆動回路を制御する制御手段とを備え、前記制御手段が常に前記ステッピング・モータに励磁電流を流すように制御する際には、前記電源部はダミー負荷を備えないにもかかわらず、前記電源部の間欠発振が防止されることを特徴とするものである。
【0021】
また、請求項2に記載の発明は、ステッピング・モータを備えた装置であって、1次巻線と複数の2次巻線を有したトランス、当該トランスの1次巻線と直流電源との間に接続され、スイッチングを行うスイッチング素子、前記トランスの2次巻線に発生した交流電圧をそれぞれ整流及び平滑する整流平滑部、および前記整流平滑部からの出力される複数の直流出力のうち少なくとも1つ以上の直流出力に応じて前記スイッチング素子を制御する制御部、を備えた多出力電源装置であって、前記直流出力の出力電流が少ないときに間欠発振動作をする多出力電源装置と、ステッピング・モータと、前記多出力電源装置から直流出力を受けて、前記ステッピング・モータを駆動する駆動パルス周期を任意に変化させることが可能な駆動手段と、前記ステッピング・モータを回転駆動あるいはホールド駆動させるように前記駆動手段を制御する制御手段であって、前記ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、前記ステッピング・モータが回転しない高いパルス・レートで励磁電流を流すように前記駆動回路を制御する制御手段とを備え、前記制御手段が常に前記ステッピング・モータに励磁電流を流すように制御する際には、前記電源部はダミー負荷を備えないにもかかわらず、前記電源部の間欠発振が防止されることを特徴とするものである。
【0022】
また、請求項3に記載の発明は、ステッピング・モータを備えた装置であって、1次巻線と複数の2次巻線を有したトランス、当該トランスの1次巻線と直流電源との間に接続され、スイッチングを行うスイッチング素子、前記トランスの2次巻線に発生した交流電圧をそれぞれ整流及び平滑する整流平滑部、および前記整流平滑部からの出力される複数の直流出力のうち少なくとも1つ以上の直流出力に応じて前記スイッチング素子を制御する制御部、を備えた多出力電源装置であって、前記直流出力の出力電流が少ないときに間欠発振動作をする多出力電源装置と、ステッピング・モータと、前記多出力電源装置から直流出力を受けて、前記ステッピング・モータを回転駆動し、且つホールド駆動することが可能な駆動手段と、前記ステッピング・モータを回転駆動あるいはホールド駆動させるように前記駆動手段を制御する制御手段であって、前記ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、前記ステッピング・モータをホールド駆動する励磁電流を流すように前記駆動回路を制御する制御手段とを備え、前記制御手段が常に前記ステッピング・モータに励磁電流を流すように制御する際には、前記電源部はダミー負荷を備えないにもかかわらず、前記電源部の間欠発振が防止されることを特徴とするものである。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
【0024】
(第1の実施形態)
本発明の第1の実施形態を説明する。本実施例ではステッピング・モータを用いた多出力電源装置の例として画像形成装置を取り上げて説明することにする。
【0025】
図2は本発明の第1の実施例を説明する断面図であり、画像形成装置はレーザ・ビーム・プリンタの場合を示してある。以下、構成及び動作について説明する。
画像形成装置であるレーザ・ビーム・プリンタ本体24は、記録紙Pをセットする給紙カセット25を有し、給紙カセット25の記録紙Pの有無を検知する紙有無センサ26、給紙カセット25から記録紙Pを取り出す給紙ローラ27、給紙ローラ27の下流には記録紙Pがレジ・ローラ28まで到達したことを検知するレジ・センサ29、レジ・ローラで整合された記録紙Pが画像書き出し位置まできたことを検知するTOPセンサ30が設けられている。プロセス・カートリッジ31は電子写真方式に必要な感光ドラム32、1次帯電ローラ33、現像器34、クリーナ35を具備している。レーザ・スキャナ部36内のレーザ・ユニット37からのレーザ光をポリゴン・ミラー38に照射し、結像レンズ39及び折り返しミラー40を介して感光ドラム32上に潜像が形成され、現像器34によって感光ドラム32上に可視像化され、転写ローラ41により記録紙P上にトナー像が転写される。転写ローラの下流には記録紙P上に形成されたトナー像を熱定着する定着器42が設けられており、記録紙Pとともに回転するポリイミド・フィルム43内に具備されたヒータ発熱体44と加圧ローラ45により記録紙P上のトナー像が記録紙P上に定着する。さらに定着器42の下流には紙の搬送状態を検知する排紙センサ46、記録紙Pを排紙する排紙ローラ47が設けられている。また、ファン・モータ48はプリンタ本体24の機内の温度を下げる役割を果たしている。
【0026】
エンジン・コントローラ49はプリンタの各種動作の制御を行う。モータ50は給紙ローラ27、感光ドラム32、定着器42、排紙ローラ47等の回転動作を司り、記録紙Pを搬送する動作を行っている。図示しないが、モータ50はエンジン・コントローラ49上に搭載されたCPU等から制御されている。モータ50としてはオープン・ループでの制御が可能であり、比較的安価であるステッピング・モータを駆動源として使用することが多い。多出力電源装置51はたとえばエンジン・コントローラ49にて使用される5Vの直流電圧、モータ50にて使用される24Vの直流出力等の複数の直流出力を生成し、供給する役割を果たしている。図1は、本発明の実施形態としての多出力電源装置51を示す図であり、図に示したようなRCC方式の電源装置を使用している。本実施形態ではRCC方式に関して述べるが多出力電源装置51としては他励式のフライバック、フォワード方式等のその他の各種方式であっても良い。多出力電源装置51に関しては従来例と同様な箇所に関しては説明を省略することにする。
【0027】
図3は、エンジン・コントローラ49上に搭載されたCPUとモータ50との関係を示す図である。エンジン・コントローラ49とモータ50との間にはモータ・ドライバ52が存在し、CPUからのA相、B相信号、Vref信号により速度制御、定電流制御等を行っている。
【0028】
図4は、今回例として取り上げる2相励磁方式におけるA相信号、B相信号の関係を示したもので、STEP1のときはA相とB相が励磁されていることを示している。STEP1からSTEP4を介して再びSTEP1までA相、B相(STEP1)→A相、/B相(STEP2)→/A相、/B相(STEP3)→/A相、B相(STEP4)→A相、B相(STEP1)と順次励磁することにより、ステッピング・モータは回転運動をすることになる。
【0029】
図5は、ステッピング・モータ用のモータ・ドライバ52内の簡略化したブロック図である。巻線53、54はステッピング・モータ内のそれぞれA相巻線、B相巻線を示しており、符号55から62はバイポーラ方式の駆動を実現するためのMOS−FETを示している。図5内の矢印の向きに示した方向にA相巻線、B相巻線はMOS−FET55〜62により励磁される。抵抗63、64はA相巻線、B相巻線に流れる電流を検出するための検出抵抗を示しており、Vsenseは検出抵抗63、64の両端に発生する電圧値を示している。符号65はダイオードとコンデンサおよびスイッチにて構成された昇圧回路を示しており、ハイ・サイド用のMOS−FET55、57、59、61を駆動するために24Vの直流電圧よりも高い電圧(たとえば28V等)を生成している。符号66〜73は、図4に示したようにA相巻線、B相巻線を順次励磁するための論理回路を示しており、それぞれの出力がMOS−FET55〜62のゲートに接続されている。また、論理回路66〜73には出力の可否を制御するイネーブル端子を持っており、コンパレータ74、75の出力がHiときは動作せず、Lowのときに動作する。コンパレータ74、75の反転入力端子にはCPUからのVref1信号が入力されており、非反転入力端子には検出抵抗の両端の電圧であるVsenseが入力されている。すなわちVref1よりもVsenseが小さいときに論理回路は動作し、Vref1よりもVsenseが大きいときには、論理回路は動作しない。すなわちMOS−FET55〜62は動作しないことになる。
【0030】
図6は、画像形成装置がプリント動作時において、2相励磁しているときのA相巻線、B相巻線それぞれに流れる電流波形を示す図である。以下にその波形について説明する。CPUからは、画像形成装置本体の設定速度に従ったパルス・レートでパルス信号がそれぞれA相、B相に出力される。その波形は図6のようになり、図4に示した順序で励磁する。A相巻線、B相巻線に流れる電流はMOS−FETがオンしてから徐々に電流値が増加し、検出抵抗の両端の電圧であるVsenseがCPUからの信号であるVref1に等しくなると、MOS−FETをオフさせる。その後VsenseがVref1よりも小さくなるため、再びMOS−FETがオンする。このような動作を各相の励磁期間で繰り返すことで定電流制御を実現している。
【0031】
本実施形態では、プリンタのスタンバイ動作中にステッピング・モータが回転動作をしない程度に励磁しておくことを特徴とする。図7は、図6に対応させて描いた図であり、CPUによりVref電圧を通常のVref1よりも小さいVref2として、ステッピング・モータを励磁する場合のA相、B相の電流波形を示す図である。このVref2によって、ステッピング・モータは回転動作をしない程度に励磁される。すなわち、多出力電源装置51の24V直流出力の負荷であるモータ・ドライバを制御してステッピング・モータに僅かな駆動電流を流し、これにより、多出力電源装置51の24V直流出力から、従来であればダミー負荷として接続される抵抗を、削除することが可能となる。したがって、本発明の実施形態を示す図1の多出力電源装置においては、ダミー抵抗のない多出力電源装置を実現している。
【0032】
(第2の実施形態)
以下、第2の実施形態について説明する。第1の実施形態との違いはプリント動作中とスタンバイ動作中のパルス・レートを変化させることに特徴がある。これは高回転型のステッピング・モータに対してプリント中と同じパルス・レートで励磁した場合、モータ負荷によっては回転してしまうことがあるため、この第2の実施形態においては、プリント動作中よりもパルス・レートを上げて、モータ・トルクのない領域でスタンバイ動作させることを目的としている。
【0033】
図8は、図6、図7に対応させて描いた図であり、図6、図7におけるパルス・レートの2倍のパルス・レートで励磁した本実施形態におけるA相、B相の電流波形を示す図である。
【0034】
(第3の実施形態)
以下、第3の実施形態について説明する。第1あるいは第2の実施形態との違いは、スタンバイ動作中においてはステッピング・モータをホールディング(ホールド状態にする)しておくことを特徴とする。この方法であればあらゆるステッピング・モータに対して、あるいはどのような負荷であっても、スタンバイ中に回転してしまうことなく、ステッピング・モータの駆動電流をダミー負荷として利用することができる。
【0035】
図9は、図6、図7および図8に対応させて描いた図であり、図6、図7および図8におけるパルス・レートによる励磁ではなく、ステッピング・モータをホールド状態とする本実施形態におけるA相、B相の電流波形を示す図である。
【0036】
図10は、上述した本発明を実行する際の、一般的な処理を示すフローチャートである。ステッピング・モータの場合、その状態は回転動作とホールド動作、あるいはその他のいわゆるスタンバイ状態のいずれかにある。回転動作中あるいはホールド動作中は所定量の励磁電流が流れるので、この電力を供給する多出力電源装置にとって、間欠発振を生じさせない負荷となっている。しかし、回転動作でもなく、またホールド動作中でもない、いわゆるスタンバイ時においては、通常では、ステッピング・モータに電流を流すようなことはない。しかし、本発明においては、スタンバイ時にもステッピング・モータが回転しない励磁電流を流すようにして、電力を供給する多出力電源装置を無負荷状態にしないことに特徴がある。ここで、ステップS1010におけるステッピング・モータが回転しない励磁電流とは、(1)ステップS1004におけるパルス・レートのままで電流量を制限した励磁電流、(2)ステップS1004におけるパルス・レートよりも高いパルス・レートでの励磁電流、(3)ステップS1008におけるホールド用励磁電流、とすることができる。いずれの場合においても、多出力電源装置の動作状態を無負荷状態にせず、したがって出力リップル電圧の増大、スイッチング素子等へのストレスおよびトランスからの変音の発生を防止することができる程度の電流量であれば良い。当然ながら、その電流量は、確実にステッピング・モータを回転させない範囲の電流量である。
【0037】
上述において、画像形成装置としてレーザ・ビーム・プリンタの場合を例にして本発明を説明したが、スキャナ、複写機、マルチ・ファンクション装置等のステッピング・モータを駆動する電源を備えた装置で、この電源として自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の電源回路であれば適用可能であることは明らかである。ステッピング・モータはスキャナ装置においては、副走査をするのに使用される。
【0038】
また、いわゆる画像形成装置以外にも、自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の電源回路からステッピング・モータを駆動する装置であれば、本発明を適用することが可能である。
【0039】
【発明の効果】
以上説明したように本発明の第1の発明によれば、ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、ステッピング・モータが回転しない少量の励磁電流を流すように、制御部がステッピング・モータ駆動回路を制御するので、ステッピング・モータへの電力を供給する自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の多出力電源装置はダミー負荷を備えないにもかかわらず、電源部の間欠発振を防止することができる。したがって出力リップル電圧の増大、スイッチング素子等へのストレスおよびトランスからの変音の発生を防止することができる。また、ステッピング・モータ及びステッピング・モータ駆動制御部は通常回転動作を鑑みて発熱に対する対策が十分にされているため、駆動電流が少ない状態の発熱はさほど大きくなく、何ら変更を行うことなく容易に実現できる。それに加えダミー抵抗を削除できるため、部品点数の削減および削減したことによる実装面積の縮小、ダミー抵抗が発熱することによる周辺部品の温度上昇を防止することができる。
【0040】
また、本発明の第2の発明によれば、ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、ステッピング・モータが回転しない高いパルス・レートで励磁電流を流すように駆動回路を制御するので、広いパルス・レート領域にわたってトルクを有するステッピング・モータ等を使用した場合であっても回転することなく、ダミー負荷としてステッピング・モータの駆動電流を利用することができ、したがって、ステッピング・モータへの電力を供給する自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の多出力電源装置はダミー負荷を備えないにもかかわらず、電源部の間欠発振を防止することができる。
【0041】
また、本発明の第3の発明によれば、ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合において、ステッピング・モータをホールド駆動する形態の励磁電流を流すように駆動回路を制御するので、ステッピング・モータはホールド状態となり、モータが回転することなく、ダミー負荷としてステッピング・モータの駆動電流を利用することができ、従来多出力電源装置に必要とされていたダミー抵抗を削除することができる。したがって、ステッピング・モータへの電力を供給する自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)方式の多出力電源装置はダミー負荷を備えないにもかかわらず、電源部の間欠発振を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態としての多出力電源装置を示す図である。
【図2】本発明の第1の実施形態のレーザ・ビーム・プリンタの断面を説明する図である。
【図3】エンジン・コントローラ上に搭載されたCPUとモータとの関係を示す図である。
【図4】2相励磁方式におけるA相信号、B相信号の関係を示し、本発明の第1の実施例を説明するステッピング・モータの励磁方法を説明する図である。
【図5】ステッピング・モータ用のモータ・ドライバ52内の簡略化したブロック図である。
【図6】画像形成装置がプリント動作時において、2相励磁しているときのA相巻線、B相巻線それぞれに流れる電流波形を示す図である。
【図7】図6に対応させて描いた図であり、CPUによりVref電圧を通常のVref1よりも小さいVref2として、ステッピング・モータを励磁する場合のA相、B相の電流波形を示す図であり、本発明の第1の実施形態を説明する図である。
【図8】図6、図7に対応させて描いた図であり、図6、図7におけるパルス・レートの2倍のパルス・レートで励磁した本実施形態におけるA相、B相の電流波形を示す図であり、本発明の第2の実施形態を説明する図である。
【図9】図6、図7および図8に対応させて描いた図であり、図6、図7および図8におけるパルス・レートによる励磁ではなく、ステッピング・モータをホールド状態とする本実施形態におけるA相、B相の電流波形を示す図であり、本発明の第3の実施形態を説明する図である。
【図10】本発明を実行する際の処理を示すフローチャートである。
【図11】従来の多出力電源装置の回路として、自励型フライバック・コンバータ(RCC:リンギング・チョーク・コンバータ)の基本回路を示す図である。
【図12】RCC方式におけるスイッチング部の各部の波形を示す図である。
【符号の説明】
1  絶縁トランス
2  スイッチング素子(MOS−FET)
Np  1次巻線
Nb  補助巻線
Ns1、Ns2  2次巻線
23  ダミー抵抗
46  エンジン・コントローラ
50  ステッピング・モータ
51  多出力電源装置
52  ステッピング・モータ・ドライバ
53  ステッピング・モータ内のA相巻線
54  ステッピング・モータ内のB相巻線
55〜62  MOS−FET
66、68、70、72  論理回路(バッファ)
67、69、71、73  論理回路(インバータ)
74、75  コンパレータ

Claims (3)

  1. 1次巻線と複数の2次巻線を有したトランス、当該トランスの1次巻線と直流電源との間に接続され、スイッチングを行うスイッチング素子、前記トランスの2次巻線に発生した交流電圧をそれぞれ整流及び平滑する整流平滑部、および前記整流平滑部からの出力される複数の直流出力のうち少なくとも1つ以上の直流出力に応じて前記スイッチング素子を制御する制御部、を備えた多出力電源装置であって、前記直流出力の出力電流が少ないときに間欠発振動作をする多出力電源装置と、
    ステッピング・モータと、
    前記多出力電源装置から直流出力を受けて、前記ステッピング・モータを駆動する電流を任意に変化させることが可能な駆動手段と、
    前記ステッピング・モータを回転駆動あるいはホールド駆動させるように前記駆動手段を制御する制御手段であって、前記ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、前記ステッピング・モータが回転しない少量の励磁電流を流すように前記駆動回路を制御する制御手段と
    を備え、
    前記制御手段が常に前記ステッピング・モータに励磁電流を流すように制御する際には、前記電源部はダミー負荷を備えないにもかかわらず、前記電源部の間欠発振が防止されることを特徴とするステッピング・モータを備えた装置。
  2. 1次巻線と複数の2次巻線を有したトランス、当該トランスの1次巻線と直流電源との間に接続され、スイッチングを行うスイッチング素子、前記トランスの2次巻線に発生した交流電圧をそれぞれ整流及び平滑する整流平滑部、および前記整流平滑部からの出力される複数の直流出力のうち少なくとも1つ以上の直流出力に応じて前記スイッチング素子を制御する制御部、を備えた多出力電源装置であって、前記直流出力の出力電流が少ないときに間欠発振動作をする多出力電源装置と、
    ステッピング・モータと、
    前記多出力電源装置から直流出力を受けて、前記ステッピング・モータを駆動する駆動パルス周期を任意に変化させることが可能な駆動手段と、
    前記ステッピング・モータを回転駆動あるいはホールド駆動させるように前記駆動手段を制御する制御手段であって、前記ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、前記ステッピング・モータが回転しない高いパルス・レートで励磁電流を流すように前記駆動回路を制御する制御手段と
    を備え、
    前記制御手段が常に前記ステッピング・モータに励磁電流を流すように制御する際には、前記電源部はダミー負荷を備えないにもかかわらず、前記電源部の間欠発振が防止されることを特徴とするステッピング・モータを備えた装置。
  3. 1次巻線と複数の2次巻線を有したトランス、当該トランスの1次巻線と直流電源との間に接続され、スイッチングを行うスイッチング素子、前記トランスの2次巻線に発生した交流電圧をそれぞれ整流及び平滑する整流平滑部、および前記整流平滑部からの出力される複数の直流出力のうち少なくとも1つ以上の直流出力に応じて前記スイッチング素子を制御する制御部、を備えた多出力電源装置であって、前記直流出力の出力電流が少ないときに間欠発振動作をする多出力電源装置と、
    ステッピング・モータと、
    前記多出力電源装置から直流出力を受けて、前記ステッピング・モータを回転駆動し、且つホールド駆動することが可能な駆動手段と、
    前記ステッピング・モータを回転駆動あるいはホールド駆動させるように前記駆動手段を制御する制御手段であって、前記ステッピング・モータの回転駆動、あるいはホールド駆動を必要としない場合に、前記ステッピング・モータをホールド駆動する励磁電流を流すように前記駆動回路を制御する制御手段と
    を備え、
    前記制御手段が常に前記ステッピング・モータに励磁電流を流すように制御する際には、前記電源部はダミー負荷を備えないにもかかわらず、前記電源部の間欠発振が防止されることを特徴とするステッピング・モータを備えた装置。
JP2002304945A 2002-10-18 2002-10-18 ステッピング・モータを備えた装置 Pending JP2004140955A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304945A JP2004140955A (ja) 2002-10-18 2002-10-18 ステッピング・モータを備えた装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304945A JP2004140955A (ja) 2002-10-18 2002-10-18 ステッピング・モータを備えた装置

Publications (1)

Publication Number Publication Date
JP2004140955A true JP2004140955A (ja) 2004-05-13

Family

ID=32452215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304945A Pending JP2004140955A (ja) 2002-10-18 2002-10-18 ステッピング・モータを備えた装置

Country Status (1)

Country Link
JP (1) JP2004140955A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024490A1 (ja) * 2012-08-09 2014-02-13 パナソニック株式会社 昇温制御回路、及び電動装置
US9153962B2 (en) 2013-02-13 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Motor control device and imaging apparatus with improved power source stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024490A1 (ja) * 2012-08-09 2014-02-13 パナソニック株式会社 昇温制御回路、及び電動装置
US9153962B2 (en) 2013-02-13 2015-10-06 Panasonic Intellectual Property Management Co., Ltd. Motor control device and imaging apparatus with improved power source stability

Similar Documents

Publication Publication Date Title
JP5729989B2 (ja) スイッチング電源、及び、スイッチング電源を搭載した画像形成装置
US8891997B2 (en) Power supply system for stopping and starting operation in accordance with input voltage and image forming apparatus including the same
US8977157B2 (en) Switching power supply
JP2019022304A (ja) 電源装置及び画像形成装置
US10536085B2 (en) Power supply apparatus and image forming apparatus
US20120250365A1 (en) Switching power supply
US8634214B2 (en) Current resonance power supply with AC input detection into the primary winding
JP2019221101A (ja) 電源装置及び画像形成装置
JP5683241B2 (ja) スイッチング電源装置及び画像形成装置
JP2004187475A (ja) 制御システム
JP2013251979A (ja) 電源装置及び画像形成装置
JP7204529B2 (ja) 電源装置及び画像形成装置
JP2020096434A (ja) 電源装置及び画像形成装置
JP2004140955A (ja) ステッピング・モータを備えた装置
US11556087B2 (en) Power supply apparatus and image forming apparatus controlling a switching frequency based on a feedback voltage
JP3450393B2 (ja) 複数出力電源装置
JP6635681B2 (ja) 画像形成装置
JP5972186B2 (ja) 電源装置及びこれを備えた画像形成装置
JP2006304534A (ja) スイッチング電源装置及びこれを具備した画像形成装置
JP2007047368A (ja) 画像形成装置
US20230396175A1 (en) Power supply apparatus and image forming apparatus
JP2000293072A (ja) 画像形成装置
JP2006168065A (ja) 画像形成装置
JPH11196574A (ja) 電源装置および画像形成装置
JP2006352425A (ja) プリンタシステム