JP2004140199A - Module structure and its manufacturing method - Google Patents

Module structure and its manufacturing method Download PDF

Info

Publication number
JP2004140199A
JP2004140199A JP2002303690A JP2002303690A JP2004140199A JP 2004140199 A JP2004140199 A JP 2004140199A JP 2002303690 A JP2002303690 A JP 2002303690A JP 2002303690 A JP2002303690 A JP 2002303690A JP 2004140199 A JP2004140199 A JP 2004140199A
Authority
JP
Japan
Prior art keywords
metal plate
circuit
heat
ceramic
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002303690A
Other languages
Japanese (ja)
Other versions
JP4121827B2 (en
Inventor
Isao Sugimoto
杉本 勲
Manabu Uto
宇都 学
Masahiro Ibukiyama
伊吹山 正浩
Makoto Imai
今井 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Denki Kagaku Kogyo KK filed Critical Toyota Motor Corp
Priority to JP2002303690A priority Critical patent/JP4121827B2/en
Publication of JP2004140199A publication Critical patent/JP2004140199A/en
Application granted granted Critical
Publication of JP4121827B2 publication Critical patent/JP4121827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a module of low cost which has high heat dissipation and is excellent in reliability. <P>SOLUTION: In a ceramic substrate 2, a circuit 1 is formed on one main surface, and a metal layer 3 for heat dissipation is bonded to a reverse main surface. In this module structure, the plurality of ceramic substrates 2 are mounted on one main surface of a heat sink 5, the metal layers 3 are arranged on the heat sink 5 via brazing material layers, and each area of parts wherein the metal layers 3 are in contact with the heat sink 5 is at most 300 mm<SP>2</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体分野におけるパワー素子を搭載したパワーモジュールに用いられる、ヒートシンクとセラミックス回路基板とを接合した構造を有する、放熱性に優れ、高信頼性を有しているモジュール構造体とその製造方法に関する。
【0002】
【従来の技術】
近年、パワーエレクトロニクスの進歩により、IGBT、MOS−FETなどのパワーデバイスにより制御される機器が急速に増えつつある。中でも電鉄、車両などの移動機器においてパワーデバイス化が急速であり、注目されている。
【0003】
また、環境問題への関心の高まりと共に電気自動車やガソリンエンジンと電気モーターを併用するハイブリッドカーが市販され始めており、それらに搭載されるパワーモジュールの需要の伸びが期待されている。これらの車両用途に用いられるパワーモジュールには、その使用目的から特に高い信頼性が要求されている。
【0004】
現在の標準的なパワーモジュールは、セラミックス基板の一主面に回路を形成してなるセラミックス回路基板を無酸素銅などの高純度の銅からなる銅製ヒートシンクに半田付けした構造を有しており、半導体素子の動作に伴う繰り返しの熱サイクルや、動作環境における温度変化等でセラミックス回路基板とヒートシンクとの間の半田層において熱膨張率差に由来するクラックが発生してしまう問題がある。クラックの存在は、半導体素子で発生した熱の放散性を低下させ、半導体素子の温度が上昇し、その結果、半導体素子の劣化が惹き起こされることにより、パワーモジュール全体の信頼性を低下させてしまう。
【0005】
半田層において熱膨張率差に由来するクラックが発生することを抑制するため、熱膨張率が銅に比べてセラミックス基板に近いAl−SiC複合材あるいはCu−Mo複合材をヒートシンクに用いた構成が電鉄やハイブリッドカーなどの駆動用パワーモジュールとして広く使用されるようになった(例えば、特許文献1参照)。
【0006】
しかし、前記複合材からなるヒートシンクは、複合材の製法が特殊なことや、MoやWなどといった特殊金属を使用することなどのために、銅製ヒートシンクと比べはるかに高価となってしまう欠点がある。
【0007】
そこで、高い信頼性を維持しかつ低価格であることとを両立させる目的で、セラミックス回路基板と金属製ヒートシンクとの間の接合材料として従来の脆弱な半田に代えてロウ材を用いることによって、セラミックス回路基板を銅やアルミニウム合金などといった金属製ヒートシンクに接合する構造を有するモジュール構造体の検討が進められている(例えば、特許文献2参照)。
【0008】
また、半導体装置の高集積化、大電力化に伴って、益々高い放熱性が求められているとともに、環境汚染の面から半田が鉛フリー組成であることが望まれている。このため、いわゆる鉛フリー半田が用いられ始めてはいるものの、現在多用されているPb−Sn系半田に比べて信頼性が劣っている問題がある。更に半田自身が基板やヒートシンクよりも熱伝導率が低いため、その存在が放熱性を悪くしてしまうという欠点がある。従って、セラミックス回路基板とヒートシンクとを半田を用いることなく接合したモジュール構造体が特性と価格の両面からますます熱望されている。
【0009】
【特許文献1】
特開平11−116361号公報
【特許文献2】
特許第3171234号公報
【0010】
【発明が解決しようとする課題】
ロウ材を用いて接合したモジュールは、セラミックス回路基板とヒートシンクとをロウ材を用いて接合してモジュール構造体を経て、更にセラミックス回路基板上の回路上に半導体素子を半田付けすることで製造され、更に冷却ユニットや冷却フィン等にグリースを介して固定し使用されるが、ロウ材を用いてセラミックス回路基板と金属製ヒートシンクとを接合したモジュール構造体においては、金属製ヒートシンクがセラミックス回路基板との接合時の加熱処理により焼鈍され軟化しているために、半導体素子を半田付けする際に、熱膨張由来の反りが非常に大きくなって半田厚みが不均一になるという問題がある。
【0011】
更に、半田付け後、すなわち室温への冷却過程においては、半田付け前後で反りが大きく変化する現象が起こり、ヒートシンクと冷却ユニット間に10μm以上の隙間が生じる結果、間に存在するグリース厚みが増加し、実使用条件下で放熱特性を著しく低下してしまう問題が発生する。この問題は、特にパワーモジュールでは大きな解決すべき課題となっている。
【0012】
【課題を解決するための手段】
本発明者等は、上記の事情に鑑みて、セラミックス回路基板と金属製ヒートシンクとをロウ材を用いて接合してなるモジュール構造体について種々検討したところ、セラミックス回路基板と金属製ヒートシンクとが特定の構造を有するときに、前記課題が解消され、高い放熱性を有し信頼性に優れ、しかも安価なモジュール構造体が容易に得られることを見出し、本発明に至ったものである。
【0013】
即ち、本発明は一主面に回路が形成され、反対の主面に放熱用金属層が接合されたセラミックス基板を複数、一つのヒートシンクの一主面上に載置してなるモジュール構造体であって、前記放熱用金属層が前記ヒートシンクにロウ材層を介して接合され、且つ放熱用金属層とヒートシンクとの接する部分の面積がいずれも300mm以下であることを特徴とするモジュール構造体である。
【0014】
また、本発明は、前記複数のセラミックス基板上の回路同士が連結部をもって電気的に結合されていることを特徴とする前記のモジュール構造体であり、好ましくは、前記連結部が回路を構成する物質と同一の物質からなることを特徴とする前記のモジュール構造体である。
【0015】
加えて、本発明は、
(1)一つの回路用金属板上に一つのセラミックス基板をロウ材を介して配置し、更に前記セラミックス基板上にロウ材を介して放熱用金属板を配置した積層物を加熱して、セラミックス基板の両主面に回路用金属板と放熱用金属板とが接合された接合体を得る工程、
(2)前記接合体の放熱用金属板を加工して、セラミックス基板の一部を露出させるとともに、相互に独立な領域を設ける工程、
(3)前記接合体の回路用放熱板を加工して、個別基板の回路と該回路同士を電気的に接続する連結部とを設ける工程、
(4)セラミックス基板を前記放熱用金属板が削除された部分で切断することで、回路が連結されたセラミックス回路基板とする工程、
(5)一つの金属製ヒートシンク上に、前記セラミックス回路基板の放熱用金属板をロウ材を介して接合する工程、
からなることを特徴とするモジュール構造体の製造方法である。
【0016】
更に、本発明は、
(1)一つの回路用金属板上に複数のセラミックス基板をそれぞれロウ材を介して配置し、更に夫々のセラミックス基板上にロウ材を介して放熱用金属板を配置した積層物を加熱して、セラミックス基板の両主面に回路用金属板と放熱用金属板とが接合された接合体を得る工程、
(2)前記接合体の回路用金属板を個々のセラミックス基板が分割されないように加工して、各接合体の回路と該回路同士を電気的に接続する連結部とを設ける工程、
(3)一つの金属製ヒートシンク上に、前記接合体の放熱用金属板をロウ材を介して接合する工程、
からなることを特徴とするモジュール構造体の製造方法である。
【0017】
【発明の実施の形態】
本発明者等は、上述した通りに、公知技術の抱えている前記課題解決のために、安価な金属製ヒートシンクを用いて、高信頼性のモジュール構造体を得るべく種々検討を重ねた結果、セラミックス回路基板が特定の面積以下でヒートシンクと接合されるときに、高い放熱性を有して信頼性に優れ、しかも安価なモジュール構造体が容易に得られることを見出し、本発明に至ったものである。
【0018】
即ち、本発明のモジュール構造体は、一つのヒートシンクの一主面上に、一主面に回路が形成され、反対の主面に放熱用金属層が接合されたセラミックス基板を複数載置してなり、前記放熱用金属層が前記ヒートシンクにロウ材層を介して接合されている構造を有し、且つ放熱用金属層とヒートシンクとの接する部分の面積がいずれも300mm以下であることを特徴としている。この要件を満足するとき、その理由は明らかでないが、ロウ材を用いてセラミックス回路基板と金属製ヒートシンクとを接合したモジュール構造体を製造する際に、ロウ接温度までの加熱履歴を受けてもヒートシンクの硬度が低下せず、得られるモジュール構造体の反りを小さくすることができ、その結果、半導体素子の破損等の不具合の発生を防止することができる。尚、本発明者等の検討結果に基づけば、前記構造を有していても、放熱用金属層とヒートシンクとの接する部分の面積(以下、「接合面積」という)が300mmを超える場合には本発明の効果を達成することが出来ない。
【0019】
本発明においては、接合面積を300mm以下と比較的小さくする必要があるが、これに伴いセラミックス回路基板の面積(以下、「基板面積」という)も小さくなりがちである。この新たな課題に対し、本発明者等は種々検討し、一つのヒートシンク上に、互いに回路同士が電気的に接合されているセラミックス回路基板を複数個配置する構造を採用すれば良いという知見を得て、本発明に至ったものである。
【0020】
本発明は、前記モジュール構造体において、前記複数のセラミックス基板上の回路同士が連結部をもって電気的に結合されていること、好ましくは、前記連結部が回路を構成する物質と同一の物質からなることを特徴としている。前記構成を採用するとき、前記本発明の目的を、実質的な基板面積の低下をさせることなく達成できる。むしろ、本構成の提示は、実質的に基板面積を増大できる手段を提示するものであり、セラミックス回路基板の設計の自由度を従来より格段に広げる効果もある。尚、前記連結部が、回路を構成する物質と同一の物質からなることが好ましい理由については、後で詳述するとおりに、本発明のモジュール構造体を製造する上で、回路同士の接合をする工程を設ける必要が無く、しかも極めて信頼性高く回路同士が電気的に接合されるので、結果的に高信頼性の安価なモジュールを提供できるという利点がある。
【0021】
本発明のモジュール構造体に用いるヒートシンクとしては、本発明の目的から、金属製のヒートシンク、中でも安価な銅、アルミニウム、又はそれらの合金が選択されるが、移動機器のパワーモジュール用途には軽量なアルミニウム又はその合金が好ましく選択される。
【0022】
本発明で用いられるセラミックス回路基板に関しては、それを構成しているセラミックス基板は必要とされる絶縁特性や熱伝導率や機械強度などの特性を満たしていればどの様なものでも構わないが、高熱伝導率セラミックスである窒化アルミニウム(AlN)、或いは高い強度と比較的高い熱伝導率を兼ね備えた窒化ケイ素(Si)がより好適である。
【0023】
前記セラミックス基板上に設けられる回路としては、良導電性の金属であれば何でもかまわないが、安価で熱伝導率が高い銅やアルミニウム、両者の複合材が好ましく用いられる。また、前記銅やアルミニウムとしては、電気伝導率が高く、応力発生に対して塑性変形能が高い、高純度のものが好ましい。
【0024】
また、セラミックス基板裏面に設けられる放熱用金属層については、熱伝導率が高い、銅やアルミニウムが好ましく用いられるが、必ずしも前記回路を構成する材料と同じである必要はない。
【0025】
図1、図2に本発明のモジュール構造体の実施形態の断面図を示す。図中、1は回路、2はセラミックス基板、3は放熱用金属層、4はボンディングワイヤー、5はヒートシンクである。
【0026】
本発明のモジュール構造体を得る方法としては、従来公知の方法を適用することで得ることも出来るが、後述する本発明の方法が再現性良く、また生産性高く本発明のモジュールを得ることができる。
【0027】
即ち、本発明のモジュール構造体の製造方法の一つは、(1)一つの回路用金属板上に一つのセラミックス基板をロウ材を介して配置し、更に前記セラミックス基板上にロウ材を介して放熱用金属板を配置した積層物を加熱して、セラミックス基板の両主面に回路用金属板と放熱用金属板とが接合された接合体を得る工程、(2)前記接合体の放熱用金属板を加工して、セラミックス基板の一部を露出させるとともに、相互に独立な領域を設ける工程、(3)前記接合体の回路用金属板を加工して、個別基板の回路部分と前記回路を電気的に接続する連結部とを設ける工程、(4)セラミックス基板を前記放熱用金属板が削除された部分で切断することで、回路が連結されたセラミックス回路基板とする工程、(5)一つの金属製ヒートシンク上に、前記セラミックス回路基板の放熱用金属板をロウ材を介して接合する工程、からなることを特徴としている。
【0028】
本発明の方法においては、上記工程(1)を経ることで、一つのセラミックス基板の一主面に一つの回路用金属板が、他の一主面に一つ又は複数の放熱用金属板が接合されている接合体を得ることができる。ここで、複数の放熱用金属板を用いる場合には、複数の放熱用金属板をセラミックス基板の所定位置に配置する必要がある。しかし、せっかく位置合わせをしても、ロウ接操作において位置ずれが発生しやすいという問題がある。これに対し、面積の大きい放熱用金属板を一つ用いるときにはロウ接後に、後工程において、放熱用金属板の削除加工すべき領域、セラミックス基板を切断する位置を合わせることが容易であり、好ましい。
【0029】
本発明の工程(2)では、放熱用金属板が一つの場合は勿論のこと、複数使用する場合にも適用できる。前述のように、複数の放熱用金属板を用いるとき、位置合わせをする上で難点があるが、この工程を採用するとき、サイズがやや大きめの放熱用金属板を予め採用しておけば、位置ずれを生じても、これを修正することができる。
【0030】
本発明の工程(3)では、後工程で切断されてできる個々のセラミックス基板において回路となる部分と前記回路同士を電気的に接続する連結部との両者を一工程で作製できる利点がある。本発明において、前記工程(2)と(3)に、エッチング等の加工方法を適用するときには、同時に行うことができる。
【0031】
本発明の工程(4)、(5)を経ることで、先に詳述した本発明のモジュール構造体を容易に得ることができる。これらの操作において、セラミックス基板の切断方法、放熱用金属板を金属製ヒートシンクに接合する方法については、従来公知の技術を適用すれば良い。また、工程(2)において、予め放熱金属板のそれぞれの面積を300mm以下とすることにより、前述した通りに、工程(5)を経て得られるモジュール構造体は、ロウ接温度までの加熱履歴を受けてもヒートシンクの硬度が低下せず、その結果、反りが小さく、半導体素子の破損等の不具合の発生を防止できる効果を発揮する。
【0032】
以上のように、本発明の製造方法によれば、歩留まり高く、従って生産性良く、前述のモジュール構造体を得ることができる。
【0033】
また、本発明は、(1)一つの回路用金属板上に複数のセラミックス基板をそれぞれロウ材を介して配置し、更に夫々のセラミックス基板上にロウ材を介して放熱用金属板を配置した積層物を加熱して、セラミックス基板の両主面に回路用基板と放熱用金属板とが接合された接合体を得る工程、(2)前記接合体の回路用金属板を個々のセラミックス基板が分割されないように加工して、各接合体の回路と該回路同士を電気的に接続する連結部とを設ける工程、(3)一つの金属製ヒートシンク上に、前記接合体の放熱用金属板をロウ材を介して接合する工程、からなることを特徴とするモジュール構造体の製造方法である。
【0034】
本発明の方法において、上記工程(1)では、セラミックス基板上に積層するそれぞれの放熱用金属板の大きさを予め300mm以下のものを用いることで、順次工程を経てモジュール構造体が容易に得られ、しかも得られるモジュール構造体は、ロウ接温度までの加熱履歴を受けてもヒートシンクの硬度が低下せず、その結果、反りが小さく、半導体素子の破損等の不具合の発生を防止できる効果を発揮する。
【0035】
工程(2)では、個々のセラミックス基板が分割されないように、言い換えれば回路用金属板のみを、加工して連結部を有する回路とする。このとき、加工の方法は従来公知の方法を採用することができるが、従来から回路形成に適用されているエッチング法をそのまま採用する場合には、大幅な工程変更無く本発明を実施することができ、好ましい。また、この方法により、連結部と回路部分とが同一材質とすることができ、回路の上面より上方の空間がモジュール構造体に電子部品等を搭載する際に何等邪魔なものがなく、実装性に優れたモジュール構造体が得られる利点がある。尚、工程(3)については、工程(5)と同じで、回路同士が連結したセラミックス回路基板を一つのヒートシンクに接合する工程で、位置合わせに留意しつつ従来技術の方法を適用すれば良い。
【0036】
本発明の方法によれば、先の方法に比べて大きなサイズのセラミックス基板を用いることなく、一層安価に本発明のモジュール構造体を提供することができる利点がある。
【0037】
尚、本発明において、ヒートシンクと放熱用金属板、放熱用金属板とセラミックス基板、セラミックス基板と回路用金属板とを接合するロウ材については、本発明者等の検討に拠れば、Cu、Zn、Ge、Si、Sn及びAgからなる群から選ばれる1種以上とMgとを含有するAl合金が、両者の材料間の密着性に優れることから、好ましい。前記Al合金としては、例えばJIS呼称2017等のAl合金が挙げられる。また、ロウ材の厚みに関しては、本発明者等の検討結果に基づけば、10〜30μmのときに再現性高く、強固な接合状態が得られることから好ましい。
【0038】
【実施例】
面積が異なるセラミックス基板を用い、以下の手順に従って、モジュール構造体、更にモジュールを作製し、その反りを評価することで、本発明の実施例とした。一方、基板面積が420mmのものを比較例とし、実施例との比較を行った。
【0039】
(実施例1〜6、比較例)
セラミックス基板として、0.635mmの厚みで、レーザーフラッシュ法による熱伝導率が180W/mK、三点曲げ強さの平均値が400MPaのAlN(窒化アルミニウム)基板を表1のサイズで各種用意した。また、回路用金属板と前記AlN基板のヒートシンクに対する面(以下、基板裏面という)に接合される放熱用金属板として0.4mm厚のJIS呼称1085のAl(アルミニウム)板を表1のサイズで2枚ずつ用意した。
【0040】
【表1】

Figure 2004140199
【0041】
前記AlN基板の表裏両面に、JIS呼称2017Al箔(20μm厚さ)を介して前記Al板を重ね、垂直方向に10MPaで加圧した。そして、10−2Paの真空中、温度630℃、20分の条件下で加熱しながらAl板とAlN基板とを接合した。接合後、Al板表面の所望部分にエッチングレジストをスクリーン印刷して、塩化第二鉄溶液にてエッチング処理することにより回路パターンを形成し、セラミックス回路基板を作製した。
【0042】
実施例6については、回路形成された面の反対の主面にダイヤモンドカッターで短手方向へ幅1.0mm深さ1.35mmのセラミックス分割溝を設けた。こうすることにより図2に示されるような基板面積が200mmの連結された基板が簡単に得られた。
【0043】
次に、ヒートシンクとして、46×46×4mmサイズのJIS呼称6063アルミニウム合金板を用意した。そして前記セラミックス回路基板と前記ヒートシンクとの間に、厚さ20μmのJIS呼称2017Al箔を入れ、黒鉛治具で垂直方向に10MPaで加圧しながら10−2Paの真空中において610℃、4分の加熱処理を行いヒートシンクとセラミックス回路基板とを接合した。最後に基板とヒートシンク全面に無電解Niメッキを行い、モジュール構造体を得た。
【0044】
作製したモジュール構造体のAl回路面に、裏がAuでメッキされた7mm×5mm×0.4mmのシリコンチップを、鉛と錫の質量割合がそれぞれ90:10である半田を用いて350℃でリフローにより半田付けを行い、所定のモジュールを得た。
【0045】
前記操作で得たモジュールについて、リフロー前後の反り量の変化を以下の手順で求めた。ヒートシンク裏面(基板接合面と反対の主面)について基板接合部直下の部分を基板短手方向に基板の短手長さで輪郭形状測定装置(東京精密社製「サーフコム2800E」)により反り形状を測定した。そして、リフロー前後の測定結果の差を求めた。
【0046】
その結果、接合面積が300mm以下のときに、急激に反り変化量が減少し、10μm以下となった。10μm以下の反り変化であれば、長期に渡り実使用条件下で被る温度変化を受けても、その放熱性に大きく影響することは無い。また、実施例6では、反り変化が10μm以下であり、しかも基板面積は2倍であり、実質的に基板面積を広げながらも反り変化量は実用上問題は無いレベルのものが得られている。これに対して、比較例としてあげた、接合面積が420mmのものでは、反り変化量は14μmで前記10μmを超えており、モジュールの長期に渡って使用した場合には、放熱性が劣化することが判る。
【0047】
【発明の効果】
本発明のモジュール構造体は特定の構造を有し、その結果実用上問題のない程度までに反り変化が抑制されているので、これを用いて得られるモジュールは電気的信頼性に優れるので、いろいろな用途のパワーモジュール、特に移動用機器向けのパワーモジュールに好適であり、産業上非常に有用である。
【0048】
また、本発明のモジュール構造体の製造方法は、前記の特徴を有するモジュール構造体を安定して歩留まり高く提供できるので、産業上非常に有用である。
【図面の簡単な説明】
【図1】本発明のモジュール構造体の一例を示す断面図である。
【図2】本発明のモジュール構造体の一例を示す断面図である。
【符号の説明】
1 回路
2 セラミックス基板
3 放熱用金属板
4 ボンディングワイヤー
5 ヒートシンク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a module structure which has a structure in which a heat sink and a ceramic circuit board are joined and has excellent heat dissipation and high reliability, which is used for a power module mounted with a power element in the semiconductor field, and its manufacture. About the method.
[0002]
[Prior art]
In recent years, with the progress of power electronics, devices controlled by power devices such as IGBTs and MOS-FETs are rapidly increasing. In particular, mobile devices such as electric railways and vehicles are rapidly becoming power devices and have attracted attention.
[0003]
In addition, with increasing interest in environmental issues, electric vehicles and hybrid cars using both gasoline engines and electric motors have begun to be marketed, and demand for power modules mounted on them is expected to grow. Power modules used for these vehicles are required to have particularly high reliability for the purpose of use.
[0004]
The current standard power module has a structure in which a ceramic circuit board that forms a circuit on one main surface of a ceramic substrate is soldered to a copper heat sink made of high-purity copper such as oxygen-free copper. There is a problem that cracks derived from a difference in coefficient of thermal expansion occur in a solder layer between a ceramic circuit board and a heat sink due to a repeated thermal cycle accompanying operation of a semiconductor element, a temperature change in an operating environment, and the like. The presence of cracks reduces the heat dissipation of the heat generated in the semiconductor element, increases the temperature of the semiconductor element, and causes the deterioration of the semiconductor element, thereby lowering the reliability of the entire power module. I will.
[0005]
In order to suppress the occurrence of cracks due to the difference in the coefficient of thermal expansion in the solder layer, a configuration using an Al-SiC composite material or a Cu-Mo composite material whose coefficient of thermal expansion is closer to the ceramic substrate than copper is used for the heat sink. It has been widely used as a driving power module for electric railways and hybrid cars (for example, see Patent Document 1).
[0006]
However, the heat sink made of the composite material has a drawback that it is much more expensive than a copper heat sink due to the special manufacturing method of the composite material and the use of a special metal such as Mo or W. .
[0007]
Therefore, in order to maintain high reliability and at the same time to be inexpensive, by using a brazing material instead of the conventional fragile solder as a joining material between the ceramic circuit board and the metal heat sink, A module structure having a structure in which a ceramic circuit board is joined to a heat sink made of metal such as copper or an aluminum alloy is being studied (for example, see Patent Document 2).
[0008]
In addition, with higher integration and higher power of semiconductor devices, higher heat dissipation is required, and it is desired that the solder has a lead-free composition from the viewpoint of environmental pollution. For this reason, although so-called lead-free solder has begun to be used, there is a problem that its reliability is inferior to that of Pb-Sn-based solder which is widely used at present. Further, since the solder itself has a lower thermal conductivity than the substrate and the heat sink, there is a disadvantage that the presence thereof deteriorates the heat radiation. Therefore, a module structure in which a ceramic circuit board and a heat sink are joined without using solder is increasingly desired in terms of both characteristics and cost.
[0009]
[Patent Document 1]
JP-A-11-116361 [Patent Document 2]
Japanese Patent No. 3171234
[Problems to be solved by the invention]
A module joined using a brazing material is manufactured by joining a ceramic circuit board and a heat sink using a brazing material, passing through the module structure, and then soldering a semiconductor element onto a circuit on the ceramic circuit board. In addition, in a module structure in which a ceramic circuit board and a metal heat sink are joined using a brazing material, the metal heat sink is fixed to the ceramic circuit board. Since the semiconductor element is annealed and softened by the heat treatment at the time of bonding, when soldering the semiconductor element, there is a problem that the warpage due to thermal expansion becomes very large and the thickness of the solder becomes uneven.
[0011]
Furthermore, after soldering, that is, in the process of cooling to room temperature, a phenomenon in which the warp greatly changes before and after soldering occurs, resulting in a gap of 10 μm or more between the heat sink and the cooling unit, thereby increasing the thickness of the existing grease. However, there arises a problem that the heat radiation characteristics are remarkably deteriorated under actual use conditions. This problem has been a major problem to be solved, especially for power modules.
[0012]
[Means for Solving the Problems]
In view of the above circumstances, the present inventors have conducted various studies on a module structure formed by joining a ceramic circuit board and a metal heat sink using a brazing material, and found that the ceramic circuit board and the metal heat sink were specified. It has been found that when the above-mentioned structure is employed, the above-mentioned problem is solved, and a module structure having high heat dissipation, excellent reliability, and low cost can be easily obtained, and the present invention has been accomplished.
[0013]
That is, the present invention relates to a module structure in which a plurality of ceramic substrates having a circuit formed on one main surface and a metal layer for heat dissipation bonded to the opposite main surface are placed on one main surface of one heat sink. Wherein the heat dissipation metal layer is joined to the heat sink through a brazing material layer, and the area of the contact portion between the heat dissipation metal layer and the heat sink is 300 mm 2 or less. It is.
[0014]
In addition, the present invention is the module structure described above, wherein the circuits on the plurality of ceramic substrates are electrically connected to each other with a connection portion, and preferably, the connection portion forms a circuit. The above-mentioned module structure, which is made of the same substance as the substance.
[0015]
In addition, the present invention provides
(1) One ceramic substrate is placed on one circuit metal plate via a brazing material, and a laminate having a heat-dissipating metal plate placed on the ceramic substrate via a brazing material is heated to form a ceramic. A step of obtaining a joined body in which a circuit metal plate and a heat dissipation metal plate are joined to both main surfaces of the substrate,
(2) processing the heat-dissipating metal plate of the joined body to expose a part of the ceramic substrate and provide mutually independent regions;
(3) a step of processing the circuit heat radiating plate of the joined body to provide a circuit of the individual substrate and a connecting portion for electrically connecting the circuits;
(4) a step of cutting the ceramic substrate at the portion where the heat-dissipating metal plate has been removed, thereby forming a ceramic circuit substrate to which circuits are connected;
(5) joining a metal plate for heat radiation of the ceramic circuit board to one metal heat sink via a brazing material;
A method for manufacturing a module structure, comprising:
[0016]
Further, the present invention provides
(1) A plurality of ceramic substrates are arranged on one circuit metal plate via a brazing material, respectively, and a laminate in which a heat dissipation metal plate is arranged on each ceramic substrate via a brazing material is heated. A step of obtaining a joined body in which a circuit metal plate and a heat dissipation metal plate are joined to both main surfaces of a ceramic substrate,
(2) processing the circuit metal plate of the joined body so that individual ceramic substrates are not divided, and providing a circuit of each joined body and a connecting portion for electrically connecting the circuits;
(3) bonding the heat-dissipating metal plate of the bonded body on one metal heat sink via a brazing material;
A method for manufacturing a module structure, comprising:
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors, as described above, in order to solve the above problems in the known art, using an inexpensive metal heat sink, as a result of repeated studies to obtain a highly reliable module structure, The present inventors have found that when a ceramic circuit board is bonded to a heat sink with a specific area or less, a highly heat-dissipating, highly reliable, and inexpensive module structure can be easily obtained, and the present invention has been achieved. It is.
[0018]
That is, the module structure of the present invention has a plurality of ceramic substrates on which a circuit is formed on one main surface and a metal layer for heat radiation is bonded on the opposite main surface on one main surface of one heat sink. Wherein the heat-dissipating metal layer has a structure in which the heat-dissipating metal layer is joined to the heat sink via a brazing material layer, and the area of the contact portion between the heat-dissipating metal layer and the heat sink is 300 mm 2 or less. And When this requirement is satisfied, the reason is not clear, but when manufacturing a module structure in which a ceramic circuit board and a metal heat sink are joined using a brazing material, even when subjected to a heating history up to the brazing temperature, The hardness of the heat sink does not decrease, and the warpage of the obtained module structure can be reduced. As a result, problems such as breakage of the semiconductor element can be prevented. It should be noted that, based on the results of the study by the present inventors, even if the above-described structure is provided, when the area of the portion where the heat-dissipating metal layer and the heat sink are in contact (hereinafter referred to as “joining area”) exceeds 300 mm 2 , Cannot achieve the effects of the present invention.
[0019]
In the present invention, the bonding area needs to be relatively small, 300 mm 2 or less, and the area of the ceramic circuit board (hereinafter, referred to as “substrate area”) tends to decrease accordingly. In response to this new problem, the present inventors have studied variously and found that it is only necessary to adopt a structure in which a plurality of ceramic circuit boards in which circuits are electrically connected to each other are arranged on one heat sink. This has led to the present invention.
[0020]
According to the present invention, in the module structure, the circuits on the plurality of ceramic substrates are electrically connected to each other with a connecting portion, preferably, the connecting portion is made of the same material as a material constituting the circuit. It is characterized by: When the above configuration is employed, the object of the present invention can be achieved without substantially reducing the substrate area. Rather, the presentation of this configuration is intended to present a means capable of substantially increasing the substrate area, and has the effect of significantly increasing the degree of freedom in designing the ceramic circuit board as compared with the related art. The reason why it is preferable that the connecting portion is made of the same material as the material constituting the circuit is, as described later in detail, in manufacturing the module structure of the present invention, the joining of the circuits is performed. There is no need to provide a step for performing the above steps, and the circuits are electrically connected with extremely high reliability. As a result, there is an advantage that a highly reliable and inexpensive module can be provided as a result.
[0021]
As a heat sink used in the module structure of the present invention, for the purpose of the present invention, a metal heat sink, among which inexpensive copper, aluminum, or an alloy thereof is selected, but a lightweight heat module is used for power modules of mobile devices. Aluminum or an alloy thereof is preferably selected.
[0022]
Regarding the ceramic circuit board used in the present invention, the ceramic substrate constituting the ceramic circuit board may be of any type as long as it satisfies required properties such as insulation properties, thermal conductivity, and mechanical strength. Aluminum nitride (AlN), which is a ceramic having high thermal conductivity, or silicon nitride (Si 3 N 4 ) having both high strength and relatively high thermal conductivity is more preferable.
[0023]
As the circuit provided on the ceramic substrate, any metal may be used as long as it is a metal having good conductivity, but copper and aluminum, which are inexpensive and have high thermal conductivity, and a composite material of both are preferably used. Further, as the copper or aluminum, those having high electric conductivity, high plastic deformation ability against stress generation, and high purity are preferable.
[0024]
As for the metal layer for heat radiation provided on the back surface of the ceramic substrate, copper or aluminum having high thermal conductivity is preferably used, but it is not always necessary to use the same material as the circuit.
[0025]
1 and 2 are cross-sectional views of an embodiment of the module structure of the present invention. In the figure, 1 is a circuit, 2 is a ceramic substrate, 3 is a metal layer for heat radiation, 4 is a bonding wire, and 5 is a heat sink.
[0026]
As a method for obtaining the module structure of the present invention, it can be obtained by applying a conventionally known method.However, the method of the present invention described later has good reproducibility and high productivity and can obtain the module of the present invention. it can.
[0027]
That is, one of the manufacturing methods of the module structure of the present invention is as follows: (1) One ceramic substrate is arranged on one circuit metal plate via a brazing material, and the ceramic substrate is further placed on the ceramic substrate via a brazing material. Heating the laminate on which the heat dissipating metal plate is disposed to obtain a joined body in which the circuit metal plate and the heat dissipating metal plate are joined on both main surfaces of the ceramic substrate; (2) heat radiation of the joined body Forming a part of the ceramic substrate by exposing a part of the ceramic substrate and providing mutually independent regions; and (3) processing the circuit metal plate of the joined body so that the circuit part of the individual substrate is (4) a step of providing a connecting portion for electrically connecting a circuit, (4) a step of cutting the ceramic substrate at a portion where the heat-dissipating metal plate is removed to form a ceramic circuit substrate to which the circuit is connected; ) One metal heat sink Above, it is characterized by comprising the step, bonding the radiating metal plate of the ceramic circuit board through a brazing material.
[0028]
In the method of the present invention, through the above-mentioned step (1), one metal plate for circuit is provided on one main surface of one ceramic substrate, and one or more metal plates for heat radiation are provided on the other main surface. A joined body can be obtained. Here, when using a plurality of heat dissipation metal plates, it is necessary to arrange the plurality of heat dissipation metal plates at predetermined positions on the ceramic substrate. However, there is a problem that even if the alignment is performed with great effort, a positional shift is likely to occur in the brazing operation. On the other hand, when one heat-dissipating metal plate having a large area is used, after brazing, it is easy to adjust the region where the heat-dissipating metal plate is to be removed and the position for cutting the ceramic substrate in a later step, which is preferable. .
[0029]
In the step (2) of the present invention, the present invention can be applied to not only a case where one metal plate is used but also a case where a plurality of metal plates are used. As described above, when using a plurality of heat dissipating metal plates, there is a difficulty in positioning, but when adopting this process, if a slightly larger heat dissipating metal plate is adopted in advance, Even if misalignment occurs, it can be corrected.
[0030]
In the step (3) of the present invention, there is an advantage that both a part to be a circuit and a connecting portion for electrically connecting the circuits in each ceramic substrate cut in a subsequent step can be formed in one step. In the present invention, when a processing method such as etching is applied to the steps (2) and (3), they can be performed simultaneously.
[0031]
Through the steps (4) and (5) of the present invention, the module structure of the present invention described in detail above can be easily obtained. In these operations, a conventionally known technique may be applied to a method for cutting the ceramic substrate and a method for joining the metal plate for heat radiation to the metal heat sink. In step (2), by setting each area of the heat-dissipating metal plate to 300 mm 2 or less in advance, the module structure obtained through step (5) has a heating history up to the brazing temperature as described above. However, the hardness of the heat sink does not decrease even if the heat sink receives the heat. As a result, the warpage is small, and the effect of preventing the occurrence of problems such as breakage of the semiconductor element is exhibited.
[0032]
As described above, according to the manufacturing method of the present invention, the above-described module structure can be obtained with high yield and therefore with high productivity.
[0033]
Further, according to the present invention, (1) a plurality of ceramic substrates are arranged on one circuit metal plate via a brazing material, respectively, and a heat-dissipating metal plate is arranged on each ceramic substrate via a brazing material. A step of heating the laminate to obtain a joined body in which a circuit board and a heat-dissipating metal plate are joined to both main surfaces of a ceramic substrate; Providing a circuit of each joined body and a connecting portion for electrically connecting the circuits by processing so as not to be divided; (3) disposing a metal plate for heat dissipation of the joined body on one metal heat sink; A method for manufacturing a module structure, comprising a step of joining via a brazing material.
[0034]
In the method of the present invention, in the step (1), the size of each heat-dissipating metal plate to be laminated on the ceramic substrate is 300 mm 2 or less in advance. The obtained module structure does not reduce the hardness of the heat sink even when subjected to a heating history up to the brazing temperature, and as a result, the warpage is small and the occurrence of defects such as breakage of the semiconductor element can be prevented. Demonstrate.
[0035]
In the step (2), the individual ceramic substrates are not divided, in other words, only the circuit metal plate is processed into a circuit having a connection portion. At this time, a conventionally known method can be adopted as a processing method. However, when the etching method conventionally applied to circuit formation is directly employed, the present invention can be carried out without significant process change. Yes, it is preferable. In addition, according to this method, the connection portion and the circuit portion can be made of the same material, and the space above the upper surface of the circuit has no obstruction when electronic components or the like are mounted on the module structure. There is an advantage that an excellent module structure can be obtained. The step (3) is the same as the step (5), and is a step of joining a ceramic circuit board in which circuits are connected to one heat sink, and a conventional method may be applied while paying attention to alignment. .
[0036]
According to the method of the present invention, there is an advantage that the module structure of the present invention can be provided at lower cost without using a ceramic substrate having a large size as compared with the above method.
[0037]
In the present invention, the brazing material for joining the heat sink and the metal plate for heat dissipation, the metal plate for heat dissipation and the ceramic substrate, and the brazing material for joining the ceramic substrate and the metal plate for the circuit, according to the study of the present inventors, Cu, Zn An Al alloy containing Mg and at least one selected from the group consisting of Ge, Si, Sn and Ag is preferable because of excellent adhesion between the two materials. Examples of the Al alloy include an Al alloy such as JIS 2017. Further, regarding the thickness of the brazing material, it is preferable that the thickness is 10 to 30 μm, since a high reproducibility and a strong bonding state can be obtained based on the results of the study by the present inventors.
[0038]
【Example】
Using a ceramic substrate having a different area, a module structure and a module were manufactured according to the following procedure, and the warpage thereof was evaluated. On the other hand, a substrate having a substrate area of 420 mm 2 was used as a comparative example and compared with the examples.
[0039]
(Examples 1 to 6, Comparative Example)
As the ceramic substrate, various AlN (aluminum nitride) substrates having a thickness of 0.635 mm, a thermal conductivity of 180 W / mK by a laser flash method, and an average value of three-point bending strength of 400 MPa were prepared in sizes shown in Table 1. A 0.4 mm-thick Al (aluminum) plate of JIS designation 1085 having a thickness of 0.4 mm as a heat-dissipating metal plate to be joined to a surface of a circuit metal plate and a surface of the AlN substrate with respect to a heat sink (hereinafter referred to as a back surface of the substrate) has a size shown in Table 1. Two were prepared at a time.
[0040]
[Table 1]
Figure 2004140199
[0041]
The Al plate was overlaid on both front and back surfaces of the AlN substrate via JIS-designed 2017 Al foil (thickness: 20 μm), and was vertically pressed at 10 MPa. Then, the Al plate and the AlN substrate were joined while heating at 630 ° C. for 20 minutes in a vacuum of 10 −2 Pa. After the bonding, an etching resist was screen-printed on a desired portion of the surface of the Al plate, and a circuit pattern was formed by performing an etching treatment with a ferric chloride solution, thereby producing a ceramic circuit board.
[0042]
In Example 6, a ceramic dividing groove having a width of 1.0 mm and a depth of 1.35 mm was provided in the lateral direction by a diamond cutter on the main surface opposite to the surface on which the circuit was formed. In this way, a connected substrate having a substrate area of 200 mm 2 as shown in FIG. 2 was easily obtained.
[0043]
Next, a JIS 6063 aluminum alloy plate having a size of 46 × 46 × 4 mm was prepared as a heat sink. Then, JIS 2017 Al foil having a thickness of 20 μm is inserted between the ceramic circuit board and the heat sink, and is pressed at 10 MPa in a vertical direction with a graphite jig at 610 ° C. for 4 minutes in a vacuum of 10 −2 Pa. Heat treatment was performed to join the heat sink and the ceramic circuit board. Finally, electroless Ni plating was performed on the entire surface of the substrate and the heat sink to obtain a module structure.
[0044]
A 7 mm × 5 mm × 0.4 mm silicon chip plated with Au on the back side was mounted on the Al circuit surface of the fabricated module structure at 350 ° C. using solder in which the mass ratio of lead and tin was 90:10, respectively. Soldering was performed by reflow to obtain a predetermined module.
[0045]
With respect to the module obtained by the above operation, the change in the amount of warpage before and after reflow was determined by the following procedure. Measure the warped shape of the back surface of the heat sink (the main surface opposite to the substrate bonding surface) using a contour shape measuring device ("Surfcom 2800E" manufactured by Tokyo Seimitsu Co., Ltd.) in the short direction of the substrate in the short direction of the substrate. did. Then, the difference between the measurement results before and after the reflow was obtained.
[0046]
As a result, when the joint area was 300 mm 2 or less, the amount of change in the warp sharply decreased to 10 μm or less. If the change in the warpage is 10 μm or less, even if it is subjected to a temperature change under the actual use conditions for a long period of time, the heat radiation is not significantly affected. In Example 6, the warp change was 10 μm or less, and the substrate area was doubled. Thus, the warp change amount was practically large even though the substrate area was increased. . On the other hand, in the case of the comparative example having a bonding area of 420 mm 2 , the warpage change amount is 14 μm and exceeds the above-mentioned 10 μm, and when the module is used for a long period of time, heat radiation deteriorates. You can see that.
[0047]
【The invention's effect】
The module structure of the present invention has a specific structure, and as a result, the warp change is suppressed to such a level that there is no practical problem. Modules obtained using the module structure have excellent electrical reliability. It is suitable for a power module for various uses, particularly a power module for mobile equipment, and is industrially very useful.
[0048]
Further, the method for manufacturing a module structure according to the present invention can provide a module structure having the above-mentioned features stably at a high yield, and is very useful in industry.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a module structure according to the present invention.
FIG. 2 is a sectional view showing an example of a module structure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit 2 Ceramic substrate 3 Metal plate for heat dissipation 4 Bonding wire 5 Heat sink

Claims (5)

一主面に回路が形成され、反対の主面に放熱用金属層が接合されたセラミックス基板を複数、一つのヒートシンクの一主面上に載置してなるモジュール構造体であって、前記放熱用金属層が前記ヒートシンクにロウ材層を介して接合され、且つ放熱用金属層とヒートシンクとの接する部分の面積がいずれも300mm以下であることを特徴とするモジュール構造体。A module structure comprising a plurality of ceramic substrates each having a circuit formed on one main surface and a heat-dissipating metal layer bonded to an opposite main surface mounted on one main surface of one heat sink. A module structure, wherein a metal layer for use is joined to the heat sink via a brazing material layer, and a contact area between the metal layer for heat dissipation and the heat sink is 300 mm 2 or less. 前記複数のセラミックス基板上の回路同士が連結部をもって電気的に結合されていることを特徴とする請求項1記載のモジュール構造体。2. The module structure according to claim 1, wherein the circuits on the plurality of ceramic substrates are electrically connected to each other with connecting portions. 前記連結部が回路を構成する物質と同一の物質からなることを特徴とする請求項2記載のモジュール構造体。3. The module structure according to claim 2, wherein the connection portion is made of the same material as a material constituting a circuit. (1)一つの回路用金属板上に一つのセラミックス基板をロウ材を介して配置し、更に前記セラミックス基板上にロウ材を介して放熱用金属板を配置した積層物を加熱して、セラミックス基板の両主面に回路用金属板と放熱用金属板とが接合された接合体を得る工程、
(2)前記接合体の放熱用金属板を加工して、セラミックス基板の一部を露出させるとともに、相互に独立な領域を設ける工程、
(3)前記接合体の回路用金属板を加工して、個別基板の回路と該回路同士を電気的に接続する連結部とを設ける工程、
(4)セラミックス基板を前記放熱用金属板が削除された部分で切断することで、回路が連結されたセラミックス回路基板とする工程、
(5)一つの金属製ヒートシンク上に、前記セラミックス回路基板の放熱用金属板をロウ材を介して接合する工程、
からなることを特徴とするモジュール構造体の製造方法。
(1) One ceramic substrate is placed on one circuit metal plate via a brazing material, and a laminate having a heat-dissipating metal plate placed on the ceramic substrate via a brazing material is heated to form a ceramic. A step of obtaining a joined body in which a circuit metal plate and a heat dissipation metal plate are joined to both main surfaces of the substrate,
(2) processing the heat-dissipating metal plate of the joined body to expose a part of the ceramic substrate and provide mutually independent regions;
(3) a step of processing a circuit metal plate of the joined body to provide a circuit on an individual substrate and a connecting portion for electrically connecting the circuits;
(4) a step of cutting the ceramic substrate at the portion where the heat-dissipating metal plate has been removed, thereby forming a ceramic circuit substrate to which circuits are connected;
(5) joining a metal plate for heat radiation of the ceramic circuit board to one metal heat sink via a brazing material;
A method for manufacturing a module structure, comprising:
(1)一つの回路用金属板上に複数のセラミックス基板をそれぞれロウ材を介して配置し、更に夫々のセラミックス基板上にロウ材を介して放熱用金属板を配置した積層物を加熱して、セラミックス基板の両主面に回路用金属板と放熱用金属板とが接合された接合体を得る工程、
(2)前記接合体の回路用金属板を個々のセラミックス基板が分割されないように加工して、各接合体の回路と該回路同士を電気的に接続する連結部とを設ける工程、
(3)一つの金属製ヒートシンク上に、前記接合体の放熱用金属板をロウ材を介して接合する工程、
からなることを特徴とするモジュール構造体の製造方法。
(1) A plurality of ceramic substrates are arranged on one circuit metal plate via a brazing material, respectively, and a laminate in which a heat dissipation metal plate is arranged on each ceramic substrate via a brazing material is heated. A step of obtaining a joined body in which a circuit metal plate and a heat dissipation metal plate are joined to both main surfaces of a ceramic substrate,
(2) processing the circuit metal plate of the joined body so that individual ceramic substrates are not divided, and providing a circuit of each joined body and a connecting portion for electrically connecting the circuits;
(3) bonding the heat-dissipating metal plate of the bonded body on one metal heat sink via a brazing material;
A method for manufacturing a module structure, comprising:
JP2002303690A 2002-10-18 2002-10-18 Method for manufacturing module structure Expired - Fee Related JP4121827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303690A JP4121827B2 (en) 2002-10-18 2002-10-18 Method for manufacturing module structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303690A JP4121827B2 (en) 2002-10-18 2002-10-18 Method for manufacturing module structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008104283A Division JP4692908B2 (en) 2008-04-14 2008-04-14 Module structure

Publications (2)

Publication Number Publication Date
JP2004140199A true JP2004140199A (en) 2004-05-13
JP4121827B2 JP4121827B2 (en) 2008-07-23

Family

ID=32451353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303690A Expired - Fee Related JP4121827B2 (en) 2002-10-18 2002-10-18 Method for manufacturing module structure

Country Status (1)

Country Link
JP (1) JP4121827B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202884A (en) * 2005-01-19 2006-08-03 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2007158156A (en) * 2005-12-07 2007-06-21 Mitsubishi Electric Corp Semiconductor module
JP2008091959A (en) * 2007-12-28 2008-04-17 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202884A (en) * 2005-01-19 2006-08-03 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
DE102006002452B4 (en) * 2005-01-19 2014-06-26 Fuji Electric Co., Ltd. Semiconductor device and method for its production
JP2007158156A (en) * 2005-12-07 2007-06-21 Mitsubishi Electric Corp Semiconductor module
JP4549287B2 (en) * 2005-12-07 2010-09-22 三菱電機株式会社 Semiconductor module
JP2008091959A (en) * 2007-12-28 2008-04-17 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP4683043B2 (en) * 2007-12-28 2011-05-11 富士電機システムズ株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP4121827B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
KR101610973B1 (en) Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
JP6359455B2 (en) Semiconductor circuit board, semiconductor device using the same, and method for manufacturing semiconductor circuit board
KR102224535B1 (en) Method for manufacturing power-module substrate
WO2016002803A1 (en) Substrate unit for power modules, and power module
JP2004115337A (en) Aluminum-ceramic bonded body
JPH07202063A (en) Ceramic circuit board
JP2003163315A (en) Module
JP2008235852A (en) Ceramic substrate and semiconductor module using the same
JP2013016525A (en) Power semiconductor module and manufacturing method of the same
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP4104429B2 (en) Module structure and module using it
JP2002064169A (en) Heat radiating structure
JP4951932B2 (en) Power module substrate manufacturing method
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP4121827B2 (en) Method for manufacturing module structure
CN202363444U (en) Metal-free base plate power module
JP2017063127A (en) Substrate for light-emitting module, light-emitting module, substrate for light-emitting module with cooler, and manufacturing method of substrate for light-emitting module
CN102254877B (en) Power module without metal baseplate
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
KR101774586B1 (en) Manufacturing method of substrate for power module equiptted with heat sink, substrate for power module equiptted with heat sink, and power module
JPH08102570A (en) Ceramic circuit board
JP4692908B2 (en) Module structure
JP4427154B2 (en) Ceramic circuit board
JP2017168635A (en) Substrate for power module and manufacturing method of power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060410

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4121827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees