JP2004138703A - ミラー部品及びそのミラー部品を用いた光スイッチ - Google Patents
ミラー部品及びそのミラー部品を用いた光スイッチ Download PDFInfo
- Publication number
- JP2004138703A JP2004138703A JP2002301629A JP2002301629A JP2004138703A JP 2004138703 A JP2004138703 A JP 2004138703A JP 2002301629 A JP2002301629 A JP 2002301629A JP 2002301629 A JP2002301629 A JP 2002301629A JP 2004138703 A JP2004138703 A JP 2004138703A
- Authority
- JP
- Japan
- Prior art keywords
- light
- mirror
- optical switch
- cantilever
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
【課題】簡単な構成で光路の高精度な切り替えを行うことができるミラー部品と、そのミラー部品を用いた安価で小型の多チャンネル光スイッチを提供する。
【解決手段】本発明のミラー部品は、階段状に配置されている複数の反射面を有している。このミラー部品を、所定の入射光に対して変位させ、光が照射される反射面を変更する。各反射面は階段状に配置されているので、各反射面で反射した光の光路は互いに異なる。この反射光路の違いを利用して、光のスイッチングを行うことができる。
【選択図】 図1
【解決手段】本発明のミラー部品は、階段状に配置されている複数の反射面を有している。このミラー部品を、所定の入射光に対して変位させ、光が照射される反射面を変更する。各反射面は階段状に配置されているので、各反射面で反射した光の光路は互いに異なる。この反射光路の違いを利用して、光のスイッチングを行うことができる。
【選択図】 図1
Description
【0001】
【産業上の利用分野】
本発明は、光スイッチや光アッテネータ等の光学部品に使用されるミラー部品及びそのミラー部品を利用した1×Nの多チャンネル光スイッチに関する。
【0002】
【従来の技術】
近年、光通信技術の発展により、光クロスコネクトによるネットワーク網が拡大しつつある。これに伴い、高速で大容量の光信号をダイレクトに切り替えるための光スイッチの需要が高まっている。光スイッチの光切り替え手段として、機械的に光ファイバを可動させる方式(例えば、非特許文献1参照)、2次元又は3次元のMEMSミラー方式(例えば、非特許文献2参照)、静電駆動ミラー方式(例えば、特許文献1参照)等の種々の方式が知られている。
【0003】
【非特許文献1】
日立金属社製光スイッチMS−102 取扱い説明書
【非特許文献2】
藤田博之、他1名,「マイクロメカニカル光デバイス」,応用物理,応用物理学会,第69巻,第11号(2000)p.1278−1281
【特許文献1】
特開2002−23074号公報(第6頁)
【0004】
【発明が解決しようとする課題】
しかしながら、いずれの方式による光スイッチも、多チャンネル化に対して以下のような課題がある。例えば、単一のスイッチ素子を用いて1×Nチャンネルのスイッチアレイを構成する場合には、Nチャンネル分の光スイッチを並べて配置する必要がある。これにより、多チャンネル(1×Nチャンネル)の光スイッチは大型化する。MEMSミラーを用いて大規模のマトリクスアレイの作製が行われているが、この方式は障害回避用途等の上記1×Nチャンネルスイッチアレイに対しては製造コスト及び量産性の面で適していなかった。
【0005】
また、別な課題として、特に可動式の光スイッチを多チャンネル構成にした場合、位置の変動による影響が極めて大きい。例えば、カンチレバーを撓ませ、カンチレバー面上に設置したミラーの角度を変位させて光路を切り替える光スイッチでは、カンチレバーの変位を高精度に制御する必要がある。ミラー角度が所定の角度から微妙に変化した場合、ミラーで反射した光の経路も変化してしまう。これにより、所望の光出射部に光を導くことができなくなる。この問題を解消するために、カンチレバーの変位量を高精度に制御するためのシステムを導入する必要が生じ、光スイッチの高コスト化を招くことになる。また、カンチレバー上にミラーを垂直に立てる構成の場合、上記変位量制御の問題は多少緩和されるが、前述のアレイ化に伴う問題は存在する。
【0006】
そこで、本発明の目的は、簡単な構成で光路の高精度な切り替えを行うことができるミラー部品と、そのミラー部品を用いた安価で小型の多チャンネル光スイッチを提供することである。
【0007】
【課題を解決するための手段】
本発明の第1の態様に従えば、複数の反射面を有するミラー部品であって、該複数の反射面が階段状に配置されていることを特徴とするミラー部品が提供される。
【0008】
本発明のミラー部品は、階段状に配置されている複数の反射面を有している。このミラー部品を、所定の入射光に対して変位させ、光が照射される反射面を変更する。各反射面は階段状に配置されているので、各反射面で反射した光の光路は互いに異なる。この反射光路の違いを利用して、例えば、光のスイッチングを行うことができる。入射光に対して垂直方向に延在する反射面を構成する複数の段部がそれぞれ異なる高さ位置に形成されており、反射面と入射光の出射部との距離が互いに異なる状態をいい、例えば、図1に示すように、段部の反射面の高さ位置が高くなる程、段階的に反射面と光出射部との距離が長く(又は短く)なる場合だけでなく、図6に示すように、段部の高さ位置とは無関係に反射面と光出射部との距離が変わる場合も含まれる。
【0009】
本発明では、上記複数の反射面が、平面で且つ互いに平行となるように形成されていることが望ましい。段差を持って形成された各反射面に対し、同じ角度で入射した光は、同じ角度で反射する。これにより、各反射面で反射した光の経路は、互いに平行となる。
【0010】
本発明の第2の態様に従えば、光の伝送経路を切り替えるための光スイッチであって、
光入射部と;
光出射部と;
階段状に配置されている複数の反射面を有するミラー部品と;
上記ミラー部品を駆動させるためのミラー駆動部と;を備え、
上記ミラー駆動部を駆動させることにより上記ミラー部品が変位することにより、上記複数の反射面のうちいずれか一つの反射面に、上記光入射部から照射された光が斜めに照射され、該反射面からの反射光が上記光出射部に導かれることを特徴とする光スイッチが提供される。
【0011】
本発明の光スイッチは、階段状に配置された複数の反射面を有するミラー部品を用いて、光の切り替えを行う。このミラー部品を、ミラー部品駆動部を駆動させることにより、光入射部から照射される所定の入射光に対して変位させ、光が照射されるミラー部品の反射面を変更する。各反射面は階段状に配置されているので、各反射面で反射した光の光路は互いに異なる。各反射光路に対応した複数の光出射部を配置し、そのうちのいずれか一つの光出射部に選択的に光を導くことにより、光のスイッチングを行うことができる。
【0012】
本発明では、上記複数の反射面が、平面で且つ互いに平行となるように形成されていることが望ましい。光は、各反射面に対して同じ角度で入射し、同じ角度で反射する。これにより、各反射面からの光路が互いに平行となる。反射光が平行光となるので、例えば、光出射部を、複数の光ファイバが平行に配置されて構成されるファイバアレイ等の既成品を利用して構成することができる。
【0013】
上記ミラー駆動部が圧電素子で構成されていることが好ましい。これにより、光スイッチを小型化することができる。また、上記ミラー駆動部がカンチレバーで構成されていてもよい。この場合、ミラーの反射面がカンチレバーの長手方向に実質的に平行に配置されていることが望ましい。これにより、各反射面においてカンチレバーの微妙な変位量の差が生じた場合においても、常に反射光の経路を一定に保つことができる。さらに、上記ミラー部品と上記カンチレバーとが一体成形により形成されていてもよい。これにより、光スイッチの製造工程が簡略化される。上記カンチレバーが基体及び該基体上に形成された磁歪膜で構成されており、上記光スイッチがさらに上記磁歪膜に磁界を印加するための磁界印加手段を含んでもよい。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態を、図を用いて説明するが、本発明はこれに限定されるものではない。
【0015】
【実施例1】
本発明における光スイッチを、図1及び2を用いて説明する。図1及び2に示すように、本発明の光スイッチ100は、主に、ミラー1、圧電素子3、送光用ファイバ5及び受光用ファイバアレイ7で構成されている。ミラー1は、4つの段部11〜14からなる階段状の形態を有する。ミラー1の寸法は、長さ(X方向の長さとする)d1=707.1μm、幅(Y方向の長さとする)w1=1.2mm、高さ(Z方向の長さ)h=800μmである。段11〜14は、いずれもX−Y平面に平行な上面及び上面に垂直な(Y−Z平面に平行な)側面で形成されており、側面A,B,C及びDを、本光スイッチの反射面とした。上面は入射光に対して平行に延在する面であり、側面は入射光に対して垂直に存在している面である。なお。各段11〜14の高さ(Z方向長さ)h0は、いずれも200μmとした。また、各段のX方向の長さd0は、いずれも176.8μmとした。ミラー1は、予め所望の形状を得るために作製した型に、電界鋳造法によってニッケルを流し込むことにより作製した。圧電素子3は、PZT素子を用いた。圧電素子3は、圧電素子に電力供給した際にZ方向に向かって収縮するように配置した。次いで、圧電素子3の上面に、ミラー1を、接着剤を用いて固定した。圧電素子3に電力を供給して圧電素子3をZ方向に収縮させることにより、圧電素子3上に固定されたミラー1は、Z方向に向かって上下に変位する。なお、接着剤に代えて、はんだ付け等でミラー1を圧電素子3上に固定してもよい。
【0016】
送光用ファイバ5は、コア径9μmの日本ガイシ社製光ファイバである。送光用ファイバ5は、そこから射出される光LS1が、ミラー1の各反射面に対して45°の入射角で入射するように配置されている。光LS1は、送光用ファイバ5からX−Y平面に対して平行に進行するように照射される。この光LS1の各反射面におけるスポット径は、100μmであった。なお、本実施例では、送光用ファイバに供給される光の光源として、波長λ=1544.7nm、出力1mWの半導体レーザを用いた。ファイバアレイ7は、同一平面上で4本平行に配置し固定した、ファイバ径が125μmの日本ガイシ社製光ファイバ群であり(受光ファイバF1〜F4)、各光ファイバ間ピッチは250μmである。ファイバアレイ7は、全ての受光ファイバF1〜F4の光軸の高さ(Z方向位置)が同じとなり且つそれらの光軸がそれぞれX−Y平面で反射面A〜Dに対して45°の傾きとなるように配置されている。また、送光用ファイバ5のミラー側先端部分7aから、各反射面A,B,C及びDを介して各受光ファイバのミラー側先端部分7a,7b,7c及び7dに至るまでの光の光路長が同じとなるように、図2に示すように、ファイバアレイ7の各受光ファイバの先端部分7a〜7dが、所定の間隔でずれて配置されている。
【0017】
次に、本光スイッチ100の作動方法を、図1及び2を用いて説明する。ここでは、光スイッチ100を切り替えて、送光用ファイバ5から照射した光を反射面A〜Dに、この順で照射し、各反射面から反射された光をファイバアレイ7の各受光ファイバに導く場合について説明する。光LS1の光スポット全体が垂直面である反射面A内に入るように、入射角45°で送光用ファイバ5から光を照射する。反射面Aで反射した光RL1は反射角45°で反射し、ファイバアレイ7の受光ファイバF1に導かれる。次に、圧電素子3に電力を供給して、光LS1が照射される高さ位置に対するミラー1の相対的な位置を200μmだけ垂直下方向(Z方向下向き)に降下する(矢印AR1)。ミラー1が降下した後、光LS1を入射すると、光LS1はミラー1の反射面Bを照射する。反射面Bに入射した光は、反射面Aと同様にして、反射角45°で反射する。次いで、反射面Bで反射した光RL2は、ファイバアレイ7の受光ファイバF1に隣接する受光ファイバF2に導かれる。さらに、圧電素子3の変位を制御して、光LS1の照射位置に対するミラー1の高さを、200μm垂直下方向に降下する。ミラー1が降下した後、光LS1を入射すると、光LS1はミラー1の反射面Cを照射する。反射面Cに入射した光は、反射面A及びBと同様にして、反射角45°で反射する。次いで、反射面Cで反射した光RL3は、ファイバアレイ5の受光ファイバF2に隣接する受光ファイバF3に導かれる。同様にして、圧電素子3の変位を制御することにより、さらにミラー1の高さを200μm垂直下方向に降下する。ミラー1が降下した後、光LS1を入射すると、光LS1はミラー1の反射面Dを照射する。反射面Dに入射した光は、反射面A,B及びCと同様にして、反射角45°で反射する。次いで、反射面Dで反射した光RL4は、受光ファイバF3に隣接する受光ファイバF4に導かれる。送光用ファイバ5を介して照射された光LS1は、X−Y平面に対して平行に照射される。また反射面A〜DがいずれもX−Y平面に対して垂直で且つ互いの面が平行となるように形成されているので、各受光ファイバに導かれた反射光の光路の高さ(Z方向の高さ)は変わらず、反射光の光路は互いに平行となる。これにより、複数の受光ファイバを同一平面上で互いに平行となるように配置し固定したファイバアレイを用いて光の切り替えが可能となる。
【0018】
また、本光スイッチ100では、反射面A〜DがX−Y平面に対して垂直な面で形成されているので、仮に圧電素子3の上下変位量(Z方向の変位量)が微妙に変化してミラーの反射面の高さ位置が変わった場合でも、許容範囲内であれば反射光の光路を変化させることなく、光を所定の受光ファイバに導くことができる。
【0019】
上記実施例の場合、各反射面の高さはh=200μm、各反射面における入射光の光スポット径は100μmであるので、例えば、ある反射面の中心高さ位置、即ち、反射面の下部から100μmの高さに光スポットの中心が来るように光を照射した場合、上下方向(Z方向)に対しそれぞれ50μmのマージンがあることになる。よって、この範囲内であれば仮に反射面が光の照射位置に対してZ方向のいずれかの方向にずれた場合でも、所定の受光ファイバに光を導くことができる。
【0020】
以上のようにして、光スイッチ100の圧電素子3の高さを制御することにより、一つの光入射部(送光用ファイバ等)からの光を、複数の光出射部(受光ファイバ等)のうちいずれか一つの光出射部に導くことができる。これにより、1×Nの光スイッチングが可能となる。
【0021】
上記実施例では、ミラーの反射面に対する光の入射角を45°としたが、この角度に限定されず任意の角度にすることができる。受光ファイバの光軸方向に互いにずれる量は、入射角に応じて変更し得る。なお、反射光量の低下を防止するために、反射面での全反射条件、即ち、ブリュースター角を越えない範囲で入射角を設定するのが好ましい。また、光LS1は、反射光量の点からすれば、Z方向に偏光した直線偏光が好ましい。
【0022】
【実施例2】
本発明の別実施例を、図3を用いて説明する。図3に示すように、本実施例における光スイッチ300では、ミラー1’の各反射面A’〜D’を、Y方向に対し角度θ=30°となるように傾斜して形成し、さらに反射面に対する入射角θ=30°を変更した以外は、実施例1と同様に構成した。本実施例では、ミラー1’の反射面傾斜角度θ=30°、幅w2=500μm、反射面のX方向ピッチd0’=289μmとした。なお、ファイバアレイ7’は、実施例1と同じ250μmのピッチのファイバアレイを使用した。送光用ファイバ5’からミラー1’の反射面に向かって照射された光LS3は、圧電素子3’の高さを制御することにより、角度θ=30°で傾斜した反射面A’,B’,C’又はD’のいずれかの面に、入射角θ=30°で入射する。次いで、反射面A’〜D’のいずれかの面に入射した光は、反射角θ=30°でファイバアレイ7’に向かって反射し、ファイバアレイ7’を構成するいずれかの受光ファイバに導かれる。このとき、ミラー1’の各反射面における光LS3が照射される位置は、ミラー1’の長さ方向(X方向)に延びる一つの軸上に存在している。これにより、実施例1のミラーに比べてミラーの幅w2を小さくすることができる。また、本光スイッチ300では、ミラーの段数を増やすとともにその数に対応する数の受光ファイバを用意することにより、ミラーの幅(Y方向長さ)の制約を受けずに、さらに多チャンネル化することができる。
【0023】
【変形例】
上記実施例の光スイッチにおける変形例を、図4及び5を用いて説明する。図4に示すように、本変形例の光スイッチ400では、ミラーを駆動する駆動部としてカンチレバー43を用いた以外は実施例1と同様とした。カンチレバー43は、長さ10mm、幅1mm、厚さ20μmの石英からなる基体の一方の面上にスパッタリングによりTb−Fe合金から構成された磁歪膜を厚さ3μmで形成し、さらに、その磁性材料膜上にSiO2からなる保護層を厚さ0.05μmで形成することにより得た。
【0024】
ミラー41は、カンチレバー43の自由端43b近傍の保護層上に、ミラー41の各反射面A”〜D”がカンチレバー43の長手方向に平行となるように配置されている。また、カンチレバー43の駆動装置として、図4に示すような、磁界印加装置40を用いた。磁界印加装置40は、矩形の枠状に形成されたコア42、コア42の各辺部分42a〜42dに周回して配置されるコイル46a〜46d及び電源(不図示)等で構成されている。この磁界印加装置40では、不図示の電源を用いて、対向するコイル46a及び46c(又は、コイル46b及び46d)に電力を供給することによって、コイル内側及びこれらのコイルが周回するコアに一定方向の磁界が発生する。磁界印加装置40を用いて、カンチレバー43の長手方向に磁界を印加することにより、カンチレバー43を構成している磁歪膜がカンチレバー43の長手方向に伸びる。これにより、カンチレバー43を構成する基体との間にずれ応力が生じ、カンチレバー43は、支持部49に固定された端部(固定端)43aを支点として自由端43bがほぼ円軌道を描くように撓む(矢印AR4)。磁界印加装置40で印加する磁界の大きさを制御することによって、カンチレバー43の撓み量を変化させる。これにより、送光用ファイバ45から出射された光LS4は、カンチレバー43上に固着されたミラー41の所望の反射面に照射される。反射面で反射した光は、受光用ファイバアレイ47のいずれかの受光ファイバに導かれる。これにより。光のスイッチングが可能となる。なお、ミラー41の反射面がカンチレバー43の幅方向に平行になるように配置されると、カンチレバー43の変位量に微小な差が生じた場合、反射光の経路が変化してしまう。したがって、ミラー41の反射面は、カンチレバー43の長手方向に平行に配置するのが望ましい。
【0025】
上記変形例では、カンチレバー及びカンチレバーの駆動装置として、種々のものを用い得る。例えば、カンチレバーとして、ガラス、シリコン等の半導体ウエハ、セラミック、金属又はポリイミド等の高分子樹脂等を用いてもよい。カンチレバーの駆動装置として、静電駆動装置等を用いてもよい。また、カンチレバーとミラーとをニッケル等の金属を用いて一体成形により形成してもよい。これにより、光スイッチの光路切り替え部の精度及び強度が増すだけでなく、光スイッチの生産効率を上げることができる。
【0026】
上記実施例では、入射光と垂直方向(高さ方向又はZ方向)に延在する反射面が、高さ位置が高くなるに従って段階的に入射光源に近づくように構成されたミラーを用いたが、図6に示すように、高さ位置に無関係に入射光源との距離が変化するように反射面が形成されたミラー61を用いても構わない。
【0027】
上記実施例では、ニッケルを用いてミラーを作製したが、ニッケル合金、銅又は真鍮等の銅合金を用いてもよい。また、これらの金属面上に、例えば、金等の薄膜をコーティングしてもよい。上記実施例では、電解鋳造法によりミラーを作製したが、予め所望の形状に成形した樹脂若しくは金属又は予め所望の形状に削り出したガラスまたはシリコン等の表面に、金属反射膜を蒸着又はメッキすることによってミラーを作製してもよい。
【0028】
上記実施例では、ミラーを駆動させるために圧電素子を用いたが、ミラーを垂直方向に上下動させることができるものであれば、磁歪アクチュエータや静電式のアクチュエータ等、種々のものを用い得る。
【0029】
【発明の効果】
本発明のミラー部品を用いることにより、反射面における光の照射位置が多少変動した場合でも反射光の光路に影響を受けることがない、安定した動作を行う、小型の多チャンネル光スイッチを製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における光スイッチの概略図である。
【図2】図1に示す光スイッチの概略平面図である。
【図3】本発明の実施例2における光スイッチの概略平面図である。
【図4】本発明の変形例における光スイッチの概略図であり、(a)は、光スイッチの概略上面図を示しており、(b)は(a)のa−a線断面図を示している。
【図5】本発明の変形例でカンチレバー上に設置したミラーの拡大図であり、(a)は概略上面図を示しており、(b)は(a)のb−b線断面図を示している。
【図6】本発明のミラーの別形態を示した図である。
【符号の説明】
1,1’,41 ミラー
3,3’ 圧電素子
5,5’,45 送光用ファイバ
7,7’,47 ファイバアレイ
42 コア
43 カンチレバー
46a〜46d コイル
49 支持部
100,300,400 光スイッチ
A,B,C,D,A’,B’,C’,D’ 反射面
LS1,LS3,LS4,LS 入射光
【産業上の利用分野】
本発明は、光スイッチや光アッテネータ等の光学部品に使用されるミラー部品及びそのミラー部品を利用した1×Nの多チャンネル光スイッチに関する。
【0002】
【従来の技術】
近年、光通信技術の発展により、光クロスコネクトによるネットワーク網が拡大しつつある。これに伴い、高速で大容量の光信号をダイレクトに切り替えるための光スイッチの需要が高まっている。光スイッチの光切り替え手段として、機械的に光ファイバを可動させる方式(例えば、非特許文献1参照)、2次元又は3次元のMEMSミラー方式(例えば、非特許文献2参照)、静電駆動ミラー方式(例えば、特許文献1参照)等の種々の方式が知られている。
【0003】
【非特許文献1】
日立金属社製光スイッチMS−102 取扱い説明書
【非特許文献2】
藤田博之、他1名,「マイクロメカニカル光デバイス」,応用物理,応用物理学会,第69巻,第11号(2000)p.1278−1281
【特許文献1】
特開2002−23074号公報(第6頁)
【0004】
【発明が解決しようとする課題】
しかしながら、いずれの方式による光スイッチも、多チャンネル化に対して以下のような課題がある。例えば、単一のスイッチ素子を用いて1×Nチャンネルのスイッチアレイを構成する場合には、Nチャンネル分の光スイッチを並べて配置する必要がある。これにより、多チャンネル(1×Nチャンネル)の光スイッチは大型化する。MEMSミラーを用いて大規模のマトリクスアレイの作製が行われているが、この方式は障害回避用途等の上記1×Nチャンネルスイッチアレイに対しては製造コスト及び量産性の面で適していなかった。
【0005】
また、別な課題として、特に可動式の光スイッチを多チャンネル構成にした場合、位置の変動による影響が極めて大きい。例えば、カンチレバーを撓ませ、カンチレバー面上に設置したミラーの角度を変位させて光路を切り替える光スイッチでは、カンチレバーの変位を高精度に制御する必要がある。ミラー角度が所定の角度から微妙に変化した場合、ミラーで反射した光の経路も変化してしまう。これにより、所望の光出射部に光を導くことができなくなる。この問題を解消するために、カンチレバーの変位量を高精度に制御するためのシステムを導入する必要が生じ、光スイッチの高コスト化を招くことになる。また、カンチレバー上にミラーを垂直に立てる構成の場合、上記変位量制御の問題は多少緩和されるが、前述のアレイ化に伴う問題は存在する。
【0006】
そこで、本発明の目的は、簡単な構成で光路の高精度な切り替えを行うことができるミラー部品と、そのミラー部品を用いた安価で小型の多チャンネル光スイッチを提供することである。
【0007】
【課題を解決するための手段】
本発明の第1の態様に従えば、複数の反射面を有するミラー部品であって、該複数の反射面が階段状に配置されていることを特徴とするミラー部品が提供される。
【0008】
本発明のミラー部品は、階段状に配置されている複数の反射面を有している。このミラー部品を、所定の入射光に対して変位させ、光が照射される反射面を変更する。各反射面は階段状に配置されているので、各反射面で反射した光の光路は互いに異なる。この反射光路の違いを利用して、例えば、光のスイッチングを行うことができる。入射光に対して垂直方向に延在する反射面を構成する複数の段部がそれぞれ異なる高さ位置に形成されており、反射面と入射光の出射部との距離が互いに異なる状態をいい、例えば、図1に示すように、段部の反射面の高さ位置が高くなる程、段階的に反射面と光出射部との距離が長く(又は短く)なる場合だけでなく、図6に示すように、段部の高さ位置とは無関係に反射面と光出射部との距離が変わる場合も含まれる。
【0009】
本発明では、上記複数の反射面が、平面で且つ互いに平行となるように形成されていることが望ましい。段差を持って形成された各反射面に対し、同じ角度で入射した光は、同じ角度で反射する。これにより、各反射面で反射した光の経路は、互いに平行となる。
【0010】
本発明の第2の態様に従えば、光の伝送経路を切り替えるための光スイッチであって、
光入射部と;
光出射部と;
階段状に配置されている複数の反射面を有するミラー部品と;
上記ミラー部品を駆動させるためのミラー駆動部と;を備え、
上記ミラー駆動部を駆動させることにより上記ミラー部品が変位することにより、上記複数の反射面のうちいずれか一つの反射面に、上記光入射部から照射された光が斜めに照射され、該反射面からの反射光が上記光出射部に導かれることを特徴とする光スイッチが提供される。
【0011】
本発明の光スイッチは、階段状に配置された複数の反射面を有するミラー部品を用いて、光の切り替えを行う。このミラー部品を、ミラー部品駆動部を駆動させることにより、光入射部から照射される所定の入射光に対して変位させ、光が照射されるミラー部品の反射面を変更する。各反射面は階段状に配置されているので、各反射面で反射した光の光路は互いに異なる。各反射光路に対応した複数の光出射部を配置し、そのうちのいずれか一つの光出射部に選択的に光を導くことにより、光のスイッチングを行うことができる。
【0012】
本発明では、上記複数の反射面が、平面で且つ互いに平行となるように形成されていることが望ましい。光は、各反射面に対して同じ角度で入射し、同じ角度で反射する。これにより、各反射面からの光路が互いに平行となる。反射光が平行光となるので、例えば、光出射部を、複数の光ファイバが平行に配置されて構成されるファイバアレイ等の既成品を利用して構成することができる。
【0013】
上記ミラー駆動部が圧電素子で構成されていることが好ましい。これにより、光スイッチを小型化することができる。また、上記ミラー駆動部がカンチレバーで構成されていてもよい。この場合、ミラーの反射面がカンチレバーの長手方向に実質的に平行に配置されていることが望ましい。これにより、各反射面においてカンチレバーの微妙な変位量の差が生じた場合においても、常に反射光の経路を一定に保つことができる。さらに、上記ミラー部品と上記カンチレバーとが一体成形により形成されていてもよい。これにより、光スイッチの製造工程が簡略化される。上記カンチレバーが基体及び該基体上に形成された磁歪膜で構成されており、上記光スイッチがさらに上記磁歪膜に磁界を印加するための磁界印加手段を含んでもよい。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態を、図を用いて説明するが、本発明はこれに限定されるものではない。
【0015】
【実施例1】
本発明における光スイッチを、図1及び2を用いて説明する。図1及び2に示すように、本発明の光スイッチ100は、主に、ミラー1、圧電素子3、送光用ファイバ5及び受光用ファイバアレイ7で構成されている。ミラー1は、4つの段部11〜14からなる階段状の形態を有する。ミラー1の寸法は、長さ(X方向の長さとする)d1=707.1μm、幅(Y方向の長さとする)w1=1.2mm、高さ(Z方向の長さ)h=800μmである。段11〜14は、いずれもX−Y平面に平行な上面及び上面に垂直な(Y−Z平面に平行な)側面で形成されており、側面A,B,C及びDを、本光スイッチの反射面とした。上面は入射光に対して平行に延在する面であり、側面は入射光に対して垂直に存在している面である。なお。各段11〜14の高さ(Z方向長さ)h0は、いずれも200μmとした。また、各段のX方向の長さd0は、いずれも176.8μmとした。ミラー1は、予め所望の形状を得るために作製した型に、電界鋳造法によってニッケルを流し込むことにより作製した。圧電素子3は、PZT素子を用いた。圧電素子3は、圧電素子に電力供給した際にZ方向に向かって収縮するように配置した。次いで、圧電素子3の上面に、ミラー1を、接着剤を用いて固定した。圧電素子3に電力を供給して圧電素子3をZ方向に収縮させることにより、圧電素子3上に固定されたミラー1は、Z方向に向かって上下に変位する。なお、接着剤に代えて、はんだ付け等でミラー1を圧電素子3上に固定してもよい。
【0016】
送光用ファイバ5は、コア径9μmの日本ガイシ社製光ファイバである。送光用ファイバ5は、そこから射出される光LS1が、ミラー1の各反射面に対して45°の入射角で入射するように配置されている。光LS1は、送光用ファイバ5からX−Y平面に対して平行に進行するように照射される。この光LS1の各反射面におけるスポット径は、100μmであった。なお、本実施例では、送光用ファイバに供給される光の光源として、波長λ=1544.7nm、出力1mWの半導体レーザを用いた。ファイバアレイ7は、同一平面上で4本平行に配置し固定した、ファイバ径が125μmの日本ガイシ社製光ファイバ群であり(受光ファイバF1〜F4)、各光ファイバ間ピッチは250μmである。ファイバアレイ7は、全ての受光ファイバF1〜F4の光軸の高さ(Z方向位置)が同じとなり且つそれらの光軸がそれぞれX−Y平面で反射面A〜Dに対して45°の傾きとなるように配置されている。また、送光用ファイバ5のミラー側先端部分7aから、各反射面A,B,C及びDを介して各受光ファイバのミラー側先端部分7a,7b,7c及び7dに至るまでの光の光路長が同じとなるように、図2に示すように、ファイバアレイ7の各受光ファイバの先端部分7a〜7dが、所定の間隔でずれて配置されている。
【0017】
次に、本光スイッチ100の作動方法を、図1及び2を用いて説明する。ここでは、光スイッチ100を切り替えて、送光用ファイバ5から照射した光を反射面A〜Dに、この順で照射し、各反射面から反射された光をファイバアレイ7の各受光ファイバに導く場合について説明する。光LS1の光スポット全体が垂直面である反射面A内に入るように、入射角45°で送光用ファイバ5から光を照射する。反射面Aで反射した光RL1は反射角45°で反射し、ファイバアレイ7の受光ファイバF1に導かれる。次に、圧電素子3に電力を供給して、光LS1が照射される高さ位置に対するミラー1の相対的な位置を200μmだけ垂直下方向(Z方向下向き)に降下する(矢印AR1)。ミラー1が降下した後、光LS1を入射すると、光LS1はミラー1の反射面Bを照射する。反射面Bに入射した光は、反射面Aと同様にして、反射角45°で反射する。次いで、反射面Bで反射した光RL2は、ファイバアレイ7の受光ファイバF1に隣接する受光ファイバF2に導かれる。さらに、圧電素子3の変位を制御して、光LS1の照射位置に対するミラー1の高さを、200μm垂直下方向に降下する。ミラー1が降下した後、光LS1を入射すると、光LS1はミラー1の反射面Cを照射する。反射面Cに入射した光は、反射面A及びBと同様にして、反射角45°で反射する。次いで、反射面Cで反射した光RL3は、ファイバアレイ5の受光ファイバF2に隣接する受光ファイバF3に導かれる。同様にして、圧電素子3の変位を制御することにより、さらにミラー1の高さを200μm垂直下方向に降下する。ミラー1が降下した後、光LS1を入射すると、光LS1はミラー1の反射面Dを照射する。反射面Dに入射した光は、反射面A,B及びCと同様にして、反射角45°で反射する。次いで、反射面Dで反射した光RL4は、受光ファイバF3に隣接する受光ファイバF4に導かれる。送光用ファイバ5を介して照射された光LS1は、X−Y平面に対して平行に照射される。また反射面A〜DがいずれもX−Y平面に対して垂直で且つ互いの面が平行となるように形成されているので、各受光ファイバに導かれた反射光の光路の高さ(Z方向の高さ)は変わらず、反射光の光路は互いに平行となる。これにより、複数の受光ファイバを同一平面上で互いに平行となるように配置し固定したファイバアレイを用いて光の切り替えが可能となる。
【0018】
また、本光スイッチ100では、反射面A〜DがX−Y平面に対して垂直な面で形成されているので、仮に圧電素子3の上下変位量(Z方向の変位量)が微妙に変化してミラーの反射面の高さ位置が変わった場合でも、許容範囲内であれば反射光の光路を変化させることなく、光を所定の受光ファイバに導くことができる。
【0019】
上記実施例の場合、各反射面の高さはh=200μm、各反射面における入射光の光スポット径は100μmであるので、例えば、ある反射面の中心高さ位置、即ち、反射面の下部から100μmの高さに光スポットの中心が来るように光を照射した場合、上下方向(Z方向)に対しそれぞれ50μmのマージンがあることになる。よって、この範囲内であれば仮に反射面が光の照射位置に対してZ方向のいずれかの方向にずれた場合でも、所定の受光ファイバに光を導くことができる。
【0020】
以上のようにして、光スイッチ100の圧電素子3の高さを制御することにより、一つの光入射部(送光用ファイバ等)からの光を、複数の光出射部(受光ファイバ等)のうちいずれか一つの光出射部に導くことができる。これにより、1×Nの光スイッチングが可能となる。
【0021】
上記実施例では、ミラーの反射面に対する光の入射角を45°としたが、この角度に限定されず任意の角度にすることができる。受光ファイバの光軸方向に互いにずれる量は、入射角に応じて変更し得る。なお、反射光量の低下を防止するために、反射面での全反射条件、即ち、ブリュースター角を越えない範囲で入射角を設定するのが好ましい。また、光LS1は、反射光量の点からすれば、Z方向に偏光した直線偏光が好ましい。
【0022】
【実施例2】
本発明の別実施例を、図3を用いて説明する。図3に示すように、本実施例における光スイッチ300では、ミラー1’の各反射面A’〜D’を、Y方向に対し角度θ=30°となるように傾斜して形成し、さらに反射面に対する入射角θ=30°を変更した以外は、実施例1と同様に構成した。本実施例では、ミラー1’の反射面傾斜角度θ=30°、幅w2=500μm、反射面のX方向ピッチd0’=289μmとした。なお、ファイバアレイ7’は、実施例1と同じ250μmのピッチのファイバアレイを使用した。送光用ファイバ5’からミラー1’の反射面に向かって照射された光LS3は、圧電素子3’の高さを制御することにより、角度θ=30°で傾斜した反射面A’,B’,C’又はD’のいずれかの面に、入射角θ=30°で入射する。次いで、反射面A’〜D’のいずれかの面に入射した光は、反射角θ=30°でファイバアレイ7’に向かって反射し、ファイバアレイ7’を構成するいずれかの受光ファイバに導かれる。このとき、ミラー1’の各反射面における光LS3が照射される位置は、ミラー1’の長さ方向(X方向)に延びる一つの軸上に存在している。これにより、実施例1のミラーに比べてミラーの幅w2を小さくすることができる。また、本光スイッチ300では、ミラーの段数を増やすとともにその数に対応する数の受光ファイバを用意することにより、ミラーの幅(Y方向長さ)の制約を受けずに、さらに多チャンネル化することができる。
【0023】
【変形例】
上記実施例の光スイッチにおける変形例を、図4及び5を用いて説明する。図4に示すように、本変形例の光スイッチ400では、ミラーを駆動する駆動部としてカンチレバー43を用いた以外は実施例1と同様とした。カンチレバー43は、長さ10mm、幅1mm、厚さ20μmの石英からなる基体の一方の面上にスパッタリングによりTb−Fe合金から構成された磁歪膜を厚さ3μmで形成し、さらに、その磁性材料膜上にSiO2からなる保護層を厚さ0.05μmで形成することにより得た。
【0024】
ミラー41は、カンチレバー43の自由端43b近傍の保護層上に、ミラー41の各反射面A”〜D”がカンチレバー43の長手方向に平行となるように配置されている。また、カンチレバー43の駆動装置として、図4に示すような、磁界印加装置40を用いた。磁界印加装置40は、矩形の枠状に形成されたコア42、コア42の各辺部分42a〜42dに周回して配置されるコイル46a〜46d及び電源(不図示)等で構成されている。この磁界印加装置40では、不図示の電源を用いて、対向するコイル46a及び46c(又は、コイル46b及び46d)に電力を供給することによって、コイル内側及びこれらのコイルが周回するコアに一定方向の磁界が発生する。磁界印加装置40を用いて、カンチレバー43の長手方向に磁界を印加することにより、カンチレバー43を構成している磁歪膜がカンチレバー43の長手方向に伸びる。これにより、カンチレバー43を構成する基体との間にずれ応力が生じ、カンチレバー43は、支持部49に固定された端部(固定端)43aを支点として自由端43bがほぼ円軌道を描くように撓む(矢印AR4)。磁界印加装置40で印加する磁界の大きさを制御することによって、カンチレバー43の撓み量を変化させる。これにより、送光用ファイバ45から出射された光LS4は、カンチレバー43上に固着されたミラー41の所望の反射面に照射される。反射面で反射した光は、受光用ファイバアレイ47のいずれかの受光ファイバに導かれる。これにより。光のスイッチングが可能となる。なお、ミラー41の反射面がカンチレバー43の幅方向に平行になるように配置されると、カンチレバー43の変位量に微小な差が生じた場合、反射光の経路が変化してしまう。したがって、ミラー41の反射面は、カンチレバー43の長手方向に平行に配置するのが望ましい。
【0025】
上記変形例では、カンチレバー及びカンチレバーの駆動装置として、種々のものを用い得る。例えば、カンチレバーとして、ガラス、シリコン等の半導体ウエハ、セラミック、金属又はポリイミド等の高分子樹脂等を用いてもよい。カンチレバーの駆動装置として、静電駆動装置等を用いてもよい。また、カンチレバーとミラーとをニッケル等の金属を用いて一体成形により形成してもよい。これにより、光スイッチの光路切り替え部の精度及び強度が増すだけでなく、光スイッチの生産効率を上げることができる。
【0026】
上記実施例では、入射光と垂直方向(高さ方向又はZ方向)に延在する反射面が、高さ位置が高くなるに従って段階的に入射光源に近づくように構成されたミラーを用いたが、図6に示すように、高さ位置に無関係に入射光源との距離が変化するように反射面が形成されたミラー61を用いても構わない。
【0027】
上記実施例では、ニッケルを用いてミラーを作製したが、ニッケル合金、銅又は真鍮等の銅合金を用いてもよい。また、これらの金属面上に、例えば、金等の薄膜をコーティングしてもよい。上記実施例では、電解鋳造法によりミラーを作製したが、予め所望の形状に成形した樹脂若しくは金属又は予め所望の形状に削り出したガラスまたはシリコン等の表面に、金属反射膜を蒸着又はメッキすることによってミラーを作製してもよい。
【0028】
上記実施例では、ミラーを駆動させるために圧電素子を用いたが、ミラーを垂直方向に上下動させることができるものであれば、磁歪アクチュエータや静電式のアクチュエータ等、種々のものを用い得る。
【0029】
【発明の効果】
本発明のミラー部品を用いることにより、反射面における光の照射位置が多少変動した場合でも反射光の光路に影響を受けることがない、安定した動作を行う、小型の多チャンネル光スイッチを製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における光スイッチの概略図である。
【図2】図1に示す光スイッチの概略平面図である。
【図3】本発明の実施例2における光スイッチの概略平面図である。
【図4】本発明の変形例における光スイッチの概略図であり、(a)は、光スイッチの概略上面図を示しており、(b)は(a)のa−a線断面図を示している。
【図5】本発明の変形例でカンチレバー上に設置したミラーの拡大図であり、(a)は概略上面図を示しており、(b)は(a)のb−b線断面図を示している。
【図6】本発明のミラーの別形態を示した図である。
【符号の説明】
1,1’,41 ミラー
3,3’ 圧電素子
5,5’,45 送光用ファイバ
7,7’,47 ファイバアレイ
42 コア
43 カンチレバー
46a〜46d コイル
49 支持部
100,300,400 光スイッチ
A,B,C,D,A’,B’,C’,D’ 反射面
LS1,LS3,LS4,LS 入射光
Claims (9)
- 複数の反射面を有するミラー部品であって、該複数の反射面が階段状に配置されていることを特徴とするミラー部品。
- 上記複数の反射面が、平面で且つ互いに平行となるように形成されていることを特徴とする請求項1に記載のミラー部品。
- 光の伝送経路を切り替えるための光スイッチであって、
光入射部と;
光出射部と;
階段状に配置されている複数の反射面を有するミラー部品と;
上記ミラー部品を駆動させるためのミラー駆動部と;を備え、
上記ミラー駆動部を駆動させることにより上記ミラー部品が変位することにより、上記複数の反射面のうちいずれか一つの反射面に、上記光入射部から照射された光が斜めに照射され、該反射面からの反射光が上記光出射部に導かれることを特徴とする光スイッチ。 - 上記複数の反射面が、平面で且つ互いに平行に形成されていることを特徴とする請求項3に記載の光スイッチ。
- 上記ミラー駆動部が圧電素子で構成されていることを特徴とする請求項3または4に記載の光スイッチ。
- 上記ミラー駆動部がカンチレバーで構成されていることを特徴とする請求項3または4に記載の光スイッチ。
- 上記ミラーの反射面がカンチレバーの長手方向に実質的に平行に配置されていることを特徴とする請求項6に記載の光スイッチ。
- 上記ミラー部品と上記カンチレバーとが一体成形により形成されていることを特徴とする請求項6または7に記載の光スイッチ。
- 上記カンチレバーが基体及び該基体上に形成された磁歪膜で構成されており、上記光スイッチがさらに上記磁歪膜に磁界を印加するための磁界印加手段を含むことを特徴とする請求項6または7に記載の光スイッチ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301629A JP2004138703A (ja) | 2002-10-16 | 2002-10-16 | ミラー部品及びそのミラー部品を用いた光スイッチ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002301629A JP2004138703A (ja) | 2002-10-16 | 2002-10-16 | ミラー部品及びそのミラー部品を用いた光スイッチ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004138703A true JP2004138703A (ja) | 2004-05-13 |
Family
ID=32449924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002301629A Withdrawn JP2004138703A (ja) | 2002-10-16 | 2002-10-16 | ミラー部品及びそのミラー部品を用いた光スイッチ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004138703A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2427896A (en) * | 2005-07-01 | 2007-01-10 | Ford Global Tech Llc | Distributor for engine with laser ignition |
-
2002
- 2002-10-16 JP JP2002301629A patent/JP2004138703A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2427896A (en) * | 2005-07-01 | 2007-01-10 | Ford Global Tech Llc | Distributor for engine with laser ignition |
US7350493B2 (en) | 2005-07-01 | 2008-04-01 | Ford Global Technologies, Llc | Distributor for engine with laser ignition |
GB2427896B (en) * | 2005-07-01 | 2010-06-16 | Ford Global Tech Llc | Distributor for engine with laser ignition |
DE102006030309B4 (de) * | 2005-07-01 | 2017-12-07 | Ford Global Technologies, Llc | Zündverteiler für einen Motor mit Laserzündung |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10054748B2 (en) | Micromechanically aligned optical assembly | |
US6360036B1 (en) | MEMS optical switch and method of manufacture | |
US7480432B2 (en) | Glass-based micropositioning systems and methods | |
EP0690028B1 (en) | Process for producing micro lens | |
CN1208637C (zh) | 制造锥形光波导的方法 | |
US6411754B1 (en) | Micromechanical optical switch and method of manufacture | |
WO2002054120A1 (fr) | Circuit de traitement de signaux optiques et procede de fabrication | |
US11048053B2 (en) | Movable flexure and MEMS elements for improved optical coupling to photonic integrated circuits | |
US6477290B1 (en) | Fiber optic switch using MEMS | |
US6200502B1 (en) | Process for the production of optical components with coupled optical waveguides and optical components produced by said method | |
JPH11326707A (ja) | レーザー光結合装置とレーザー光結合の調整方法 | |
US6738538B2 (en) | Method to construct optical infrastructure on a wafer | |
JP2004138703A (ja) | ミラー部品及びそのミラー部品を用いた光スイッチ | |
KR20030050798A (ko) | 자기구동 마이크로미러 및 그 제조방법과, 그를 이용한광스위치 | |
US6760508B2 (en) | Fiber optic switch process and optical design | |
CN117518347B (zh) | 一种可编程光纤阵列的装置及其应用 | |
JPWO2002103432A1 (ja) | 光スイッチ | |
Moore et al. | Silicon technology for optical MEMS | |
JP3719208B2 (ja) | 光路制御素子、それを用いたミラー搭載発光素子、ミラー | |
WO2001090791A1 (fr) | Module optique | |
KR20050073147A (ko) | 광 스위치 및 그 제조방법 | |
Powers et al. | Controlled motion: an enabling technology for photonics applications | |
WO2004005997A1 (ja) | カンチレバ−、光ビ−ム調整装置、可変光減衰器、および、可変光減衰装置 | |
WO2003069389A1 (en) | Three dimensional alignment method and system | |
WO2003034098A2 (en) | Alignment and packaging methods and apparatus for optoelectronic, micro-electro mechanical systems, and optical devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060110 |